

(12)

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

1 Número de solicitud: 200600248

51) Int. Cl.:

C07H 21/04 (2006.01)

PATENTE DE INVENCIÓN

B1

 ⁽²⁾ Fecha de presentación: 03.02.2006
 ⁽³⁾ Titular/es: Consejo Superior Investigaciones Científicas c/ Serrano, 117 28006 Madrid, ES
 Fecha de la concesión: 22.11.2010
 ⁽²⁾ Fecha de anuncio de la concesión: 02.12.2010
 ⁽³⁾ Fecha de publicación del folleto de la patente: 02.12.2010
 ⁽³⁾ Titular/es: Consejo Superior Investigaciones Científicas c/ Serrano, 117 28006 Madrid, ES
 ⁽³⁾ Inventor/es: Coll Capella, Miguel y Aymami Bofarull, Juan
 ⁽⁴⁾ Fecha de publicación del folleto de la patente:

54 Título: Estructura cristalina de ADN y su utilización para la identificación de fármacos.

(57) Resumen:

Estructura cristalina de ADN y su utilización para la identificación de fármacos.

La estructura cristalina que comprende un entrecruzamiento de tres cadenas de ADN está caracterizada porque: pertenece al grupo espacial P4(1)32 y tiene unas dimensiones de celda $a=b=c=70.98 \pm 0.7$ Å;

todos los nucleótidos que constituyen dichas cadenas de ADN se encuentran emparejados; y dicho entrecruzamiento de tres cadenas de ADN alberga, en una cavidad hidrofóbica, una molécula. La estructura cristalina de la invención es una diana adecuada para el diseño de fármacos anti-ADN con una elevada especificidad.

Aviso: Se puede realizar consulta prevista por el art. 37.3.8 LP.

DESCRIPCIÓN

Estructura cristalina de ADN y su utilización para la identificación de fármacos.

Esta invención se relaciona con el campo de la biomedicina en general y específicamente con la investigación 5 farmacológica y la biología molecular. En particular, la presente invención se refiere a una estructura cristalina de ADN del tipo de entrecruzamiento de tres cadenas y a su utilización en un procedimiento para la identificación de una molécula candidata a fármaco.

Estado de la técnica anterior 10

Los entrecruzamientos helicoidales son importantes elementos estructurales en los ácidos nucleicos. En el ADN son intermedios de los acontecimientos de recombinación genética homóloga y en el ARN son importantes elementos estructurales.

15

Los entrecruzamientos de ADN son estructuras ramificadas únicas que consisten en varias hebras dobles o cadenas que convergen en un punto. El entrecruzamiento de ADN mejor caracterizado es el de cuatro cadenas, también conocido como unión Holliday (en inglés "Holliday junction"), un intermedio clave en la recombinación homóloga (cf. R. Holliday, "A mechanism for gene conversion in fungi", Genet. Res. 1964, vol. 5, pp. 282-304). Han sido resueltas las estructuras tridimensionales de entrecruzamientos de cuatro cadenas libres (cf. M. Ortiz-Lombardia et al., "Crystal

20 structure of a DNA Holliday junction", Nat Struct Biol 1999, vol. 6, pp. 913-7) y la de diferentes complejos con proteínas (cf. T. Biswas et al., "A structural basis for allosteric control of DNA recombination by lambda integrase", Nature 2005, vol. 435, pp. 1059-66; S. M. Roe et al., "Crystal structure of an octameric RuvA-Holliday junction complex", Mol Cell 1998, vol. 2, 361-72; D. N. Gopaul et al., "Structure of the Holliday junction intermediate in Cre-loxP sitespecific recombination" 1998, Embo J vol. 17, pp. 4175-87; M.). 25

Los entrecruzamientos de tres cadenas, a pesar de ser las estructuras ramificadas de ácido nucleico más simples y más abundantes, no están bien caracterizadas. Los entrecruzamientos de tres cadenas se producen tanto en ARN como en ADN. En ARN se encuentran implicadas en funciones biológicas cruciales tales como el empalme (en inglés

- "splicing") (cf. C. Guthrie *et al.*, "Spliceosomal snRNAs", *Annu Rev Genet* 1988, vol. 22, pp. 387-419) y la traducción (cf. A. Nikulin *et al.*, "Crystal structure of the S15-rRNA complex", *Nat Struct Biol* 2000, vol. 7, pp. 273-7; B. T. Wimberly *et al.*, "Structure of the 30S ribosomal subunit", *Nature* 2000, vol. 407, pp. 327-39; N. Ban *et al.*, "The 30 complete atomic structure of the large ribosomal subunit at 2.4 A resolution", Science 2000, vol. 289, pp. 905-20). En ADN, los entrecruzamientos de tres cadenas se forman temporalmente durante la replicación del ADN (cf. M. R.
- Singleton *et al.*, "Structural analysis of DNA replication fork reversal by RecG", *Cell* 2001, vol. 107, pp. 79-89). Estas son estructuras intermedias formadas por expansiones de tripletes repetidos (cf. P. E. Pearson *et al.*, "Slipped-strand 35 DNAs formed by long (CAG)*(CTG) repeats: slipped-out repeats and slip-out junctions", Nucleic Acids Res 2002, vol. 30, pp. 4534-47) debidas, en varios casos, a anomalías asociadas con varias enfermedades genéticas en humanos tales como la distrofia miotónica tipo 1 y la enfermedad de Huntington (cf. R. R. Sinden, "Neurodegenerative diseases. Origins of instability", Nature 2001, vol. 411, pp. 757-8). 40

Por otro lado, los ácidos nucleicos han sido, tradicionalmente, objeto de diferentes estudios relacionados con diversas enfermedades, especialmente en el campo del cáncer.

Los fármacos que interaccionan con el ADN (también conocidos como fármacos anti-ADN) pueden unirse de 45 manera covalente, como es el caso de los derivados de cis-Pt (de uso común en tratamientos anticancer), o de manera no covalente. Se conocen dos tipos principales de fármacos que interaccionan de manera no covalente con el ADN, los agentes intercalantes de ADN y los agentes de unión a surco menor. En la actualidad, los agentes de unión a surco menor están siendo investigados como agentes antibacterianos o anticancer.

50

Por otro lado, los compuestos conocidos de manera colectiva como agentes intercalantes se pueden unir entre las bases de ADN, interrumpiendo la transcripción, replicación y/o las actividades de las topoisomerasas, induciendo la muerte de las células cancerígenas. Algunos de estos agentes intercalantes también se utilizan profusamente en clínica como fármacos anticancer.

55

A pesar de los muchos esfuerzos realizados para rediseñar la estructura química de los fármacos anti-ADN, estos resultan ser, en general, fármacos no específicos con amplios efectos citotóxicos.

Por tanto, existe la necesidad de nuevos agentes terapéuticos anti-ADN que sean altamente citotóxicos y específicos para el desarrollo de terapias alternativas a las ya existentes, así como procedimientos para la identificación de los 60 mismos.

Explicación de la invención

Los inventores de la presente invención han caracterizado una nueva estructura cristalina de ADN del tipo entre-65 cruzamiento de tres cadenas (en inglés "3-way junction" y de aquí en adelante también abreviada como "3WJ") que es capaz de complejarse con un fármaco.

Por lo tanto, en un primer aspecto la presente invención se refiere a una estructura cristalina que comprende un entrecruzamiento de tres cadenas de ADN, dicha estructura cristalina caracterizada porque: pertenece al grupo espacial P4(1)32 y tiene unas dimensiones de celda $a=b=c=70,98 \pm 0,7$ Å;

todos los nucleótidos que constituyen dichas cadenas de ADN se encuentran emparejados; y dicho entrecruza-5 miento de tres cadenas de ADN alberga, en una cavidad hidrofóbica, una molécula.

La estructura cristalina de la 3WJ de ADN de la presente invención tiene una conformación no apilada (forma de Y) y tiene una cavidad hidrofóbica trigonal central en la que la molécula o sustancia utilizada como candidato a fármaco helicato supramolecular $[Fe_2L_3]Cl_4$ - encaja perfectamente, utilizando 9 de sus 12 anillos aromáticos para interaccionar con el ADN. Los inventores de la presente invención han utilizado una molécula de helicato bien conocida para el experto en la materia (cf. M. J. Hannon et al., "An inexpensive approach to supramolecular architecture", Chemical Communications 1997, pp. 1807-8) (Fig. 1a), para demostrar que la 3WJ de ADN es una estructura adecuada para que interaccionen fármacos.

15

De esta manera, la estructura cristalina de acuerdo con el primer aspecto de la invención puede ser útil como diana estructuralmente bien definida para la búsqueda e identificación de nuevos fármacos citotóxicos altamente específicos.

Tal y como se ilustra en el ejemplo adjunto, con la estructura cristalina del primer aspecto de la invención se consigue llevar a cabo una nueva aproximación para el reconocimiento del ADN y para el diseño de agentes que 20 posean superficies moleculares complementarias a la 3WJ de ADN.

Los procedimientos generales de obtención de estructuras cristalinas que comprenden oligonucleótidos de ADN complejados o sin complejar con moléculas son bien conocidos por los expertos en la materia (cf. I. Berger et al. "A highly efficient 24-condition matrix for the crystallization of nucleic acid fragments", Acta Cryst. D 1996, D52(3), pp. 25 465-8).

Uno de los posibles procedimientos para obtener dichas estructuras es el que se describe en el ejemplo adjunto.

La estructura del entrecruzamiento en el complejo con el helicato metalo-supramolecular [Fe₂L₃]⁴⁺ (de geometría 30 antiprisma trigonal) corresponde a un entrecruzamiento con forma de Y, no apilada, abierta. La estructura tiene simetría triple lo cual, en este caso, corresponde a una simetría cristalográfica favorecida por la naturaleza palindrómica de la secuencia oligonucleotídica utilizada (Figs. 1b y 2). Los tres brazos de la estructura son, por lo tanto, idénticos y no existe apilamiento coaxial hélice-a-hélice entre ellos. En cambio, el ángulo entre los brazos es de 110°, manteniéndose en una disposición piramidal casi plana (Fig. 2). 35

La estructura de la presente invención difiere de otras conocidas en el estado de la técnica, analizadas mediante RMN, en que dos de los brazos están apilados de manera coaxial (cf. B. N. van Buuren et al., "Solution structure of a DNA three-way junction containing two unpaired thymidine bases. Identification of sequence features that decide conformer selection", J Mol Biol 2000, vol. 304, pp. 371-83; B. Wu et al., "Global structure of a DNA three-way junction by solution NMR: towards prediction of 3H fold", Nucleic Acids Res 2004, vol. 32, pp. 3228-39). Sin embargo, en las publicaciones indicadas, la secuencia de ADN utiliza bases desemparejadas, lo cual explica las marcadas diferencias con la estructura de la presente invención.

En particular, en la presente invención todas las bases se emparejan según la manera Watson-Crick y las unidades 45 de azúcar del esqueleto están en conformación C2'-endo. Los parámetros helicoidales corresponden a un ADN de tipo B con un giro medio de 35°. Las bases TA en el punto de unión están, en una de sus caras, no apiladas con otras bases de ADN, dejando un gran túnel hidrofóbico triangular en donde se une la sustancia candidato a fármaco. Cada cadena del ADN presenta una desviación repentina de 60° en el segmento central T3-A4. Esta característica estructural genera grandes deformaciones en la geometría del esqueleto de ADN, principalmente en el angulo de torsión β del esqueleto 50

y en los ángulos de torsión glicosídicos χ (Figs. 2 y 3b).

El entrecruzamiento de tipo 3WJ de la presente invención define dos lados o caras diferentes, un lado con un surco mayor (Fig. 2a) y un lado con un surco menor (Fig. 2b) donde convergen los tres surcos respectivos mayores o menores. En los brazos, el surco menor es estrecho tal y como se ha observado en segmentos de ADN con secuencias 55 de adenina (cf. M. Coll et al., "A bifurcated hydrogen-bonded conformation in the d(A.T) base pairs of the DNA dodecamer d(CGCAAATTTGCG) and its complex with distamycin", Proc Natl Acad Sci U S A 1987, vol. 84, pp. 8385-8389), con espacio sólo para la hidratación con una molécula de agua. El surco mayor tiene la estructura de un B-ADN de anchura regular.

Es interesante el hecho de que la estructura de la presente invención tenga una geometría completamente diferente de la del entrecruzamiento de cuatro brazos (cf. M. Ortiz-Lombardia et al., "Crystal structure of a DNA Holliday junction", Nat Struct Biol 1999, vol. 6, pp. 913-7). Se encontró que dicho entrecruzamiento de cuatro brazos estaba apilado en forma de X, es decir, con los brazos coaxialmente apilados por parejas en dos hélices continuas rotadas 45°,

y con una pequeña estructura compacta en el punto de cruce. A diferencia de la estructura de la presente invención, 65 dicho entrecruzamiento de cuatro brazos no deja espacio o cabida para la unión del ligando, excepto por los surcos de ADN. Por tanto la estructura de tipo 3WJ de la presente invención es única y, a diferencia del entrecruzamiento de cuatro brazos, define una cavidad apropiada para la unión de fármacos.

⁶⁰

La presencia de únicamente tres hebras dobles restringe las posibles conformaciones de 3WJ cuando se compara con los entrecruzamientos de cuatro hebras.

La estructura de tipo 3WJ de la presente invención no se perturba de manera significativa por la unión del fármaco, 5 sino que este encaja perfectamente dentro de la estructura.

Por otro lado, cabe destacar el hecho de que los inventores de la presente invención han obtenido cristales complejos con oligonucleótidos que difieren en longitud (6, 8, 10 y 12 metros) y en secuencia.

10 De hecho, los resultados del ejemplo incluido en el presente documento sugieren que $[Fe_2L_3]^{4+}$ se une de manera selectiva a entrecruzamientos de 3 cadenas hexonucleotídicas de ADN, en donde la secuencia central es TA ó AT.

Por tanto, en una realización particular del primer aspecto de la invención, la estructura cristalina se caracteriza porque cada una de las cadenas de ADN comprende en la región central de cada cadena un dinucleótido seleccionado de entre TA y AT.

En otra realización del primer aspecto de la invención, las cadenas de ADN son hexanucleótidos.

En todavía otra realización, las cadenas de ADN tienen secuencias nucleotídicas iguales o diferentes entre sí y se 20 seleccionan del grupo que consiste en: CGATCG, GCATGC, CGTACG, GCTAGC, CCATGG, GGATCC, CCTAGG y GGTACC.

En todavía aún otra realización, las tres cadenas de ADN que constituyen el entrecruzamiento tienen la misma secuencia y corresponden a la secuencia nucleotídica CGTACG.

25

Preferiblemente, dicha estructura cristalina de ADN tiene las características que se muestran en de la Tabla 1 y las coordenadas atómicas tridimensionales de la Tabla 2 y que han sido depositadas en el Protein Data Base (www.resb.org/pdb) con el código 2ETO (véase más abajo).

³⁰ Como se ha mencionado más arriba y se ilustra en el ejemplo adjunto, el espacio central de 3WJ está ocupado por el compuesto supramolecular tetracatiónico $[Fe_2L_3]^{4+}$, formado por tres cadenas orgánicas rodeadas por dos iones de Fe²⁺ (Fig. 1a). Cada cadena consiste en dos unidades de piridilamina (que se unen a los centros metálicos) separados por un espaciador difenilmetano. La estructura del fármaco helicato no sufre ningún cambio conformacional significativo por la unión al ADN. Este helicato tiene características duales remarcables: por un lado tiene una elevada carga positiva

35 debida a los dos iones de Fe²⁺ situados coaxialmente a ambos extremos del fármaco y, por otro lado, exhibe amplias superficies hidrofóbicas debido a la presencia de 12 anillos aromáticos. Ambas características son fuerzas directrices para la interacción (no covalente) del helicato con el ADN. En primer lugar, la interacción dipolo electrostática tiene lugar entre el antiprisma cargado positivamente y los fosfatos del ADN cargados negativamente (Fig. 3a). En segundo lugar, los anillos fenil y piridina de la forma helicato extienden las interacciones de tipo apilamiento-π con las bases

40 timina y adenina en el entrecruzamiento. Considerando una cadena orgánica sencilla, un anillo fenil (B) se apila con T3, mientras que el otro anillo de fenilo (C) se apila con A4 (Fig. 3b). Debido a la simetría triple del fármaco que se empareja con la simetría triple de 3WJ, esta doble interacción de apilamiento se repite 3 veces. También, el giro entre los dos anillos de B y C del fármaco es exactamente de 60°, el cual coincide con la desviación de 60° en la cadena de ADN entre las bases T3 y A4, dando lugar a un perfecto apilamiento entre bases consecutivas y anillos de fenilo 45 consecutivos.

Los tres anillos de piridina (D) en un extremo del fármaco se encuentran localizados en el lado del surco menor del entrecruzamiento y son girados 60°, otra vez, con respecto a los anillos de fenilo C. Esto les permite ocupar los surcos menores de ADN entre unidades de azúcar opuestas en el esqueleto del ADN, generándose una estructura sándwich, entre la A4 de una cadena y D5 de la cadena complementaria (Fig. 3c), donde el surco menor del ADN es particularmente estrecho, dando lugar a fuertes interacciones de Van der Waals entre el fármaco y el esqueleto azúcarfosfato de ADN. En el otro extremo del prisma, los tres anillos de piridina (A) ocupan el surco mayor, alejándose del ADN y no interaccionando con este (Fig. 2c).

- ⁵⁵ No existen enlaces de hidrógeno convencionales entre el fármaco y el ADN ya que la superficie externa del fármaco contiene únicamente unidades C-H. Sin embargo, se observan interacciones cortas C-H⁻⁻⁻X entre el C-H imino adyacente a los anillos D y el nitrógeno N3 de A4; los átomos de hidrógeno (putativos) se encuentran en la orientación adecuada para un enlace de hidrógeno C-H⁻⁻⁻X.
- En un segundo aspecto la presente invención se refiere a un procedimiento de identificación de una sustancia candidata a fármaco caracterizado porque comprende las etapas de: (a) obtener una estructura cristalina dejando crecer cristales a partir de gotas que comprenden la sustancia a ser identificada y secuencias nucleotídicas según las realizaciones preferidas del primer aspecto de la invención; y (b) determinar la estructura cristalina obtenida, de manera que si dicha estructura pertenece al grupo espacial P4(1)32, tiene unas dimensiones de celda a=b=c=70,98 ± 0,7Å y
- 65 todos los nucleótidos de dicha secuencia de ADN se encuentran emparejados, es indicativo de que dicha sustancia es un candidato a fármaco anti-ADN.

La determinación de los parámetros estructurales de la estructura cristalina de ADN de tipo 3WJ con la sustancia candidata a fármaco proporciona una información que permite, en un primer estadio, saber si la interacción entre la sustancia candidata a fármaco y el ADN es apropiada. Esta información puede ser utilizada para el diseño de moléculas (p. ej. fármacos) mediante técnicas computacionales que identifiquen posibles ligandos de unión para la cavidad característica de dicha estructura cristalina. Además, esta información puede ser utilizada para la predicción de cambios estructurales en la sustancia con el fin de optimizar la interacción de dicha sustancia con el ADN y, en consecuencia, mejorar su actividad anti-ADN. Por ejemplo Green *et al., J. of Medicinal Chemistry* 1994, vol. 37, pp. 1035-54, describe una aproximación iterativa para el diseño de ligandos en base a secuencias repetidas de modelación por ordenador, formación de complejos ADN-ligando y análisis de rayos X.

10

5

Como resultado de la determinación de la estructura tridimensional, se pueden utilizar técnicas computacionales más precisas para el diseño racional de fármacos. Por ejemplo, se pueden utilizar programas ligando-receptor (cf. Jones *et al., Current Opinion in Biotechnology* 1995, vol. 6, pp. 652-6) que requieren de información precisa sobre coordenadas atómicas de la diana.

15

Las aproximaciones por fragmentos unidos para diseñar fármacos, también requieren información precisa sobre las coordenadas atómicas de la diana (ADN). La idea básica que hay detrás de estas aproximaciones es determinar (computacionalmente o experimentalmente) los puntos de unión de ligandos a una molécula diana y, a continuación, construir una estructura para conectar los ligandos de manera que sus posiciones de unión relativas llevan a un com-

20 puesto que se puede perfeccionar adicionalmente utilizando, p. ej. la técnica iterativa de Green *et al. supra*. Para aproximaciones virtuales de fragmentos unidos véase Verlinde *et al., J. of Computer Arded Molecular Design* 1992, vol. 6, pp. 131-47 y para las aproximaciones por RMN y RX véase Shucker *et al., Science* 1996, vol. 274, pp. 1531-4 y Scout *et al., Structure* 1998, vol. 6, pp. 839-48. La utilización de estas aproximaciones se hace posible gracias a la determinación de la estructura cristalina según la presente invención.

25

30

Muchas de las técnicas y aproximaciones de diseños de fármacos basadas en la estructura descritas más arriba dependen del análisis por rayos X para poder identificar la posición de unión de un ligando en un complejo ADN-ligando. Una manera rápida es realizar un análisis cristalográfico de rayos X con el complejo, producir un mapa de densidad electrónico de diferencia de Fourier entre el ADN con ligando y sin ligando y asociar un determinado patrón de densidad electrónica residual con el ligando. Sin embargo, con el fin de producir el mapa de diferencias es necesario conocer de antemano la estructura cristalina del ácido nucleico. Por lo tanto, la determinación de la estructura cristalina del ADN, según el primer aspecto de la invención, permite que se puedan obtener mapas de densidad electrónica por diferencia de Fourier los cuales pueden ayudar enormemente en el proceso de diseñar el fármaco de manera racional y rápida.

35

40

Las aproximaciones descritas más arriba requieren de la identificación inicial de los posibles compuestos que puedan interaccionar con una biomolécula diana (en este caso la estructura cristalina de ADN). Algunas veces estos compuestos se conocen p. ej., a partir de la literatura científica publicada. Sin embargo, cuando no están o cuando se quieren nuevos fármacos, una primera etapa del programa de diseño del fármaco puede implicar el uso de bases de datos (tales como al Cambridge Structural Database) con el objetivo para la identificación de compuestos que interaccionen con el sitio o sitios activos de la biomolécula diana. El criterio de selección para la identificación se puede basar en propiedades farmacocinéticas tales como la estabilidad metabólica y la toxicidad.

Salvo que se defina de otra manera, todos los términos técnicos y científicos tienen el mismo significado que el
comúnmente entendido por un experto en la materia a la que la invención pertenece. A lo largo de la descripción y las reivindicaciones la palabra "comprende" y sus variantes no pretenden excluir otras características técnicas, componentes o pasos. El resumen de la solicitud se incorpora aquí como referencia. Para los expertos en la materia, otros objetos, ventajas y características de la invención se desprenderán en parte de la descripción y en parte de la práctica de la invención. Los siguientes ejemplos y dibujos se proporcionan a modo de ilustración, y no se pretende que sean limitativos de la presente invención.

Breve descripción de los dibujos

La Fig. 1. muestra los esquemas de (a), La estructura del helicato supramolecular tetracatiónico $[Fe_2L_3]^{4+}$ (L=C₂₅ 55 H₂₀N₄), siendo representados los iones de Fe²⁺ como esferas (b), el entrecruzamiento de tres cadenas de la presente invención donde se muestra la secuencia de ADN (CGTACG) utilizada en el Ejemplo de más abajo.

La Fig. 2 muestra la estructura cristalina del complejo de la 3WJ de ADN con el helicato en el centro del entrecruzamiento, en tres vistas diferentes: (a) vista desde el lado del surco mayor del ADN. (b) vista desde el lado del surco 60 menor (c) vista lateral.

La Fig. 3. muestra detalles de las interacciones entre el candidato a fármaco helicato y el ADN: (a) Vista de la estructura por el eje de simetría triple que muestra las interacciones electrostáticas hierro-fosfato en el lado del surco menor. (b) Interacciones de apilamiento (flechas dobles) entre los anillos fenilo B y C del fármaco y las bases centrales T3 y A4 del entrecruzamiento. La cadena de ADN muestra fuertes distorsiones en el punto de unión las bases no se

T3 y A4 del entrecruzamiento. La cadena de ADN muestra fuertes distorsiones en el punto de unión, las bases no se apilan, con un ángulo de torsión β del esqueleto inusual (O5'(T3)- C5'(T3)) de 78° y un ángulo de torsión glicosídico χ -150° en la timidina T3 (β =~180° y χ ~-110° en ADN tipo B regular). Además de las interacciones de apilamiento, se observan las interacciones de tipo C-H^{...}N: (C(D)^{...}N3(A4) = 3,3 Å). (c), Interacción del anillo fenilo terminal D

del fármaco con el surco menor estrecho de ADN, reminiscencia del surco menor que se une a fármacos. Los iones de hierro se representan como esferas.

Ejemplos

5

Ejemplo 1

Obtención y caracterización de la estructura cristalina de la invención y de su interacción con una sustancia

10 Cristalización y obtención de datos

La síntesis del helicato $[Fe_2L_3]Cl_4$ (L=C₂₅H₂₀N₄) (Fig. 1a) se ha descrito en M. J. Hannon *et al.*, "An inexpensive approach to supramolecular architecture", *Chemical Communications* 1997, pp. 1807-1808.

- Los cristales de la invención se hicieron crecer a temperatura ambiente a partir de gotas posadas (en inglés "*sitting drops*") que contenían $0,5 \mu$ l de una solución acuosa de [Fe₂L₃]Cl₄ 10 mM, 1 μ l de d(CGTACG) 3 mM y 1,5 μ l de una solución en reserva que contenía acetato de magnesio 0,08 M, TrisCl 0,05 M, pH 8,5, y PEG 400 al 5%. Después de una semana, aparecieron unos cristales octaédricos púrpura opacos que medían 0,2 x 0,2 x 0,2 mm.
- 20 Para congelar los cristales, estos se introdujeron en una solución que contenía glicerol al 25%. Se llevó a cabo un experimento MAD (difracción de múltiples longitudes de onda) cerca del canto de de absorción Fe K en la European Synchrotron Radiation Facility, ESRF, línea de luz: BM16 (Grenoble). Además, se recogieron los datos de alta resolución en la línea de luz ID14-EH2.
- Todos los datos se indexaron y se integraron mediante el programa XDS" (cf. W. Kabsch, "Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants", *J. Appl. Cryst.* 1993, vol. 26, pp. 795-800) y se escalaron y combinaron con el programa XSCALE (Tabla 1).

Determinación y refinado de la estructura

30

35

55

65

Se localizaron seis átomos de Fe utilizando el programa SHELXD (cf. G. Hedrick *et al.* "International Tables for Crystallography F", Kluwer Academic Publishers, Dordrecht/Boston/London, 2001, pp. 333-351) a partir de los diferentes datos anómalos. Las fases iniciales MAD obtenidas mediante la construcción de Harker y la modificación de densidad con SHELXE (cf. G. Sheldrick, "Macromolecular phasing with SHELXE", *Z. Krist.* 2002, vol. 217, 644-650) permitió calcular un mapa experimental de resolución de 2,6 A en donde se podía interpretar fácilmente un complejo fármaco-ADN.

Se localizó un segundo complejo en el segundo eje, perpendicular al eje del helicato, y, por lo tanto, desordenado en dos orientaciones opuestas. El primer complejo se construyó utilizando el programa gráfico X-VIEW (cf. D. E. McRee,
"XtalView/Xfit--A versatile program for manipulating atomic coordinates and electron density", *J Struct Biol* 1999, vol. 125, pp. 156-165). Una vez completado, este complejo se utilizó para construir el segundo complejo desordenado en dos orientaciones alternativas. Esto se realizó mediante superimposición de iones metálicos, los cuales habían sido localizados claramente.

- 45 El refinamiento de la estructura siguió con SHELXL97 (Sheldrick, G. & Scheider, *T. Methods in Enzymology* 277 (eds. Carter Jr., C. & Sweet, R.) 319- 343 (Elsevier, 1997)), con restricciones del complejo desordenado respecto al complejo ordenado y con una ocupación mitad.
- Se aplicó la corrección solvente y se refinaron los factores de temperatura isotrópicos. Se utilizó el programa gráfico
 TURBO-FRODO (cf. A. Roussel *et al.*, "In *Silicon Graphics geometry partners directory* 77-79", Silicon Graphics, Mountain View, CA, 1989) para construir un modelo y para la introducción de moléculas de agua. La Tabla 1 muestra las estadísticas de toma de datos, resolución de la estructura, refinamiento y modelo final, en donde:

^aSe tomaron los valores de pico de absorción como referencia.

^bLos valores entre paréntesis corresponden a la última capa de resolución.

 ${}^{c}R_{sigma} = (\sum [\sigma(F_{o}^{2})] / \sum [F_{o}^{2}]) \times 100.$

- ⁶⁰ ^dLa varianza V de densidad en una superficie esférica de radio 2,42 Å se calcula para cada píxel en el mapa y los píxeles con las varianzas más altas se consideran más probablemente ser posiciones atómicas. La conectividad es la fracción de píxeles adyacentes que se encuentran en el solvente o en la región macromolecular.
 - ^eContraste = La varianza V respecto todos los píxeles.

^fCC:CC (véase (g)) pseudo libre calculado con el 10% de las reflexiones omitidas al azar después de realizar un ciclo de modificación de densidad.

^gMapa CC = $[N\sum |E_H| |E_A| - \sum |E_H|\sum |E_A|] / \{[N\sum |E_H|^2 - (\sum |E_H|)^2] [N\sum |E_A|^2 - (\sum |E_A|)^2]\}^{1/2} x 100$ siendo E_H los factores estructurales normalizados derivados de las posiciones atómicas del hierro y E_A de los datos de MAD F_A observados.

 ${}^{h}R_{factor} = \{\sum_{\eta k \mid} ||F_{o}|-k|F_{c}||/\sum_{hk \mid} |F_{o}|\} x 100$, siendo F_{o} y F_{c} las amplitudes de factores estructurales observada y calcu-5 lada; R_{factor} libre, idéntico al anterior pero para una serie de reflexiones no utilizadas durante el refinamiento.

ⁱPor unidad asimétrica.

10 Los datos obtenidos demuestran que la estructura cristalina de la presente invención es una diana adecuada para el diseño de una nueva familia de ligandos con una elevada especificidad estructural y fuerte unión.

Por tanto, la presente invención abre el camino para el desarrollo de nuevos agentes terapéuticos anti-ADN con características completamente nuevas.

15

TABLA 1

20	Recolección de datos:				
	Conjunto de Datos	<u>Pico</u>	<u>Inflexión</u>	<u>Lejana</u>	Alta Resoluciór
	λ (Å) ^a	1,739	1,741	1,627	0,933
25	Grupo espacial	P4132			
25	Parámetros de unidad de celda	a = b = c = 71.	.20 Å,		
		α=β=γ = 90°			
	Rango de Resolución (Å)	30-2,6	30-2,6	30-2,8	22,5-1,7
30	Número de reflexiones:				
50	total	73.467	54.690	42.532	91.621
	únicas	3399	3407	2865	7.134
	Completitud (%) ^b	99,3 (97,8)	99,5 (98,3)	99,7 (100)	99,2 (99,7)
35	<Ι / σ(I)> ^b	53,0 (11,4)	48,52 (9,3)	26,1 (5,5)	29,1 (8,8)
55	Multiplicidad Promedio	21,61	16,1	14,8	12,8
	R _{sigma} ^{c, b}	4,7 (24,3)	3,9 (26,6)	9,8 (55,1)	2,4 (11,8)
40	Taseado:				
	Conectividad ^a	0,90			
	Contraste	0,35			
	CC seudo libre ¹	62,9			
45	Mapa CC ⁹	94			
	Refinamiento:				
	$\mathbf{P}_{\mathbf{h}} = (\mathbf{P}_{\mathbf{h}} = \mathbf{h})^{\mathbf{h}}$	24 8 (27 5)			
50	Desviación cuadrática media res	necto los valores	diana		
50	Longitudes de enlace (Å)		Giarra	0.00	8
	Distancias de ángulo de enlace (Å)		0.02	2
	Factores B promedio (Å ²)	· ·)		,	
55	Fe^{2+}			16,6	i
55	Fármaco			17,2	
	ADN			22,0)
	Solvente			40,0	
60	Número de Fe ^{2+ i}			6	
00	Número de átomos en el fármaco	O ⁱ		149	
	Número de átomo en el ADN i			243	
	Número de moléculas de solvent	e ⁱ		40	

Estadísticas Cristalográficas

65

TABLA 2

Coordenadas atómicas tridimensionales de la estructura del complejo 3WJ de ADN y el helicato de formato PDB

5	ATOM	1 O5* C A 11 44.330 22.4	196 9.303 1.00 38.41 O
	ATOM	2 C5* C A 11 44.075 22.5	589 7.930 1.00 31.86 C
10	ATOM	3 C4* C A 11 42.566 22.6	S21 7.737 1.00 28.31 C
10	ATOM	4 O4* CA 11 42.133 23.8	331 8.349 1.00 25.39 O
	ATOM	5 C3* C A 11 42.070 22.6	3246.2951.0029.45C
15	ATOM	6 O3* C A 11 41.254 21.4	477 6.091 1.00 30.89 O
	ATOM	7 C2* C A 11 41.325 23.9	027 6.131 1.00 29.09 C
	ATOM	8 C1* CA 11 41.114 24.4	452 7.515 1.00 26.28 C
20	ATOM	9 N1 CA 11 41.347 25.8	75 7.814 1.00 23.28 N
	ATOM	10 C2 C A 11 40.231 26.	656 8.193 1.00 20.88 C
25	ATOM	11 O2 CA 11 39.174 26.	011 8.222 1.00 23.02 O
	ATOM	12 N3 CA 11 40.428 27.	952 8.473 1.00 20.02 N
	ATOM	13 C4 C A 11 41.631 28.	512 8.399 1.00 19.49 C
30	ATOM	14 N4 CA 11 41.789 29.	806 8.681 1.00 24.41 N
	ATOM	15 C5 C A 11 42.799 27.	752 8.013 1.00 20.55 C
35	ATOM	16 C6 C A 11 42.559 26.	476 7.747 1.00 18.25 C
	ATOM	17 P GA 12 40.761 20.9	973 4.658 1.00 36.81 P
	ATOM	18 O1P GA 12 40.325 19).563 4.612 1.00 34.44 O
40	ATOM	19 O2P GA 12 41.650 21	.450 3.556 1.00 40.23 O
	ΑΤΟΜ	20 O5* G A 12 39.401 21	.861 4.507 1.00 36.05 O
45	ΑΤΟΜ	21 C5* G A 12 38.281 21	.546 5.339 1.00 30.63 C
	ATOM	22 C4* G A 12 37.125 22	.488 5.089 1.00 25.56 C
50	ΑΤΟΜ	23 O4* G A 12 37.533 23	.827 5.449 1.00 26.90 O
50	ΑΤΟΜ	24 C3* G A 12 36.639 22	.579 3.648 1.00 27.58 C
	ATOM	25 O3* G A 12 35.233 22	.753 3.571 1.00 26.99 O
55	ATOM	26 C2* G A 12 37.383 23	.781 3.113 1.00 25.92 C
	ATOM	27 C1* GA 12 37.320 24	.691 4.322 1.00 25.50 C
60	ΔΤΟΜ	28 N9 G A 12 38 341 25	724 4 437 1.00 24.21 N
00		20 C8 G A 12 30 640 25	690 3 998 1 00 21 42 C
	ATOM	20 N7 G Δ 12 /0 280 26	803 4 275 1 00 20 76 N
65		21 C5 C A 12 20 262 27	61/ / Q2/ 1 00 23 76 C
	ATON	31 UD GA IZ 39.302 ZI	UT4 4.324 1.00 23.70 U

TABLA 2 (continuación)

5	ATOM	32 C6 GA 12	39.448 28.919 5.460 1.00 23.02	С
5	ATOM	33 O6 GA 12	40.393 29.730 5.504 1.00 28.21	0
	ATOM	34 N1 GA 12	38.252 29.358 6.038 1.00 21.96	Ν
10	ATOM	35 C2 G A 12	37.103 28.600 6.083 1.00 21.56	С
	ATOM	36 N2 GA 12	36.061 29.199 6.680 1.00 19.87	Ν
	ATOM	37 N3 GA 12	37.007 27.380 5.586 1.00 22.94	Ν
15	ATOM	38 C4 G A 12	38.149 26.945 5.028 1.00 23.10	С
	ATOM	39 P T A 13 3	4.347 22.416 2.269 1.00 29.77	Ρ
20	ATOM	40 O1P TA 13	32.946 22.281 2.769 1.00 30.64	0
	ATOM	41 O2P TA 13	34.946 21.328 1.461 1.00 29.58	0
	ATOM	42 O5* TA 13	34.456 23.756 1.402 1.00 29.39	0
25	ATOM	43 C5* TA 13	33.511 24.805 1.467 1.00 25.87	С
	ATOM	44 C4* TA 13	33.635 25.693 2.669 1.00 22.50	С
30	ATOM	45 O4* TA 13	34.966 26.237 2.816 1.00 20.78	0
	ATOM	46 C3* TA 13	32.735 26.931 2.611 1.00 20.92	С
	ATOM	47 O3* TA 13	32.283 27.309 3.895 1.00 18.88	0
35	ATOM	48 C2* TA 13	33.639 27.976 1.959 1.00 19.24	С
	ATOM	49 C1* TA 13	34.854 27.690 2.809 1.00 18.41	С
40	ATOM	50 N1 TA 13	36.204 28.120 2.398 1.00 16.10	Ν
40	ATOM	51 C2 TA 13	36.604 29.353 2.873 1.00 16.41	С
	ATOM	52 O2 TA 13	35.900 30.059 3.578 1.00 20.19	0
45	ATOM	53 N3 TA 13	37.861 29.720 2.484 1.00 15.36	Ν
	ATOM	54 C4 TA 13	38.721 28.991 1.701 1.00 16.26	С
	ATOM	55 O4 TA 13	39.831 29.452 1.423 1.00 18.06	0
50	ATOM	56 C5 TA 13	38.237 27.719 1.246 1.00 16.30	С
	ATOM	57 C5M TA 13	39.162 26.904 0.384 1.00 19.28	С
55	ATOM	58 C6 TA 13	37.013 27.333 1.608 1.00 15.37	С
	ATOM	59 P A A 14	30.776 27.817 4.142 1.00 22.41	Ρ
	ATOM	60 O1P AA 14	30.504 27.901 5.586 1.00 22.42	0
60	ΑΤΟΜ	61 O2P AA 14	29.860 27.082 3.194 1.00 20.84	0
	ATOM	62 O5* A A 14	30.763 29.303 3.568 1.00 22.10	0
65	ATOM	63 C5* A A 14	31.315 30.353 4.360 1.00 19.54	с

TABLA 2 (continuación)

5	ATOM	64 C4* AA 14	30.856 31.666 3.800 1.00 18.94	С
5	ATOM	65 O4* AA 14	31.350 31.858 2.452 1.00 21.49	0
	ATOM	66 C3* A A 14	29.336 31.811 3.677 1.00 20.93	С
10	ATOM	67 O3* AA 14	29.057 33.146 4.040 1.00 22.19	0
	ATOM	68 C2* A A 14	29.038 31.443 2.254 1.00 18.96	С
	ATOM	69 C1* AA 14	30.237 31.986 1.515 1.00 18.07	С
15	ATOM	70 N9 AA 14	30.837 31.302 0.371 1.00 15.29	Ν
	ATOM	71 C8 AA 14	31.210 29.985 0.314 1.00 17.04	С
20	ATOM	72 N7 AA 14	31.732 29.617 -0.828 1.00 16.68	Ν
	ATOM	73 C5 AA 14	31.703 30.790 -1.588 1.00 14.90	С
	ATOM	74 C6 AA 14	32.123 31.045 -2.899 1.00 16.21	С
25	ATOM	75 N6 AA 14	32.667 30.131 -3.713 1.00 18.43	Ν
	ATOM	76 N1 AA 14	31.961 32.314 -3.361 1.00 17.41	Ν
30	ATOM	77 C2 AA 14	31.417 33.212 -2.540 1.00 15.08	С
	ATOM	78 N3 AA 14	30.981 33.092 -1.286 1.00 14.60	Ν
	ATOM	79 C4 AA 14	31.158 31.822 -0.856 1.00 14.43	С
35	ATOM	80 P CA 15	27.582 33.776 3.914 1.00 24.65	Р
	ATOM	81 O1P CA 15	27.502 34.824 4.979 1.00 24.61	0
40	ATOM	82 O2P CA 15	26.581 32.678 3.877 1.00 21.14	0
-0	ATOM	83 O5* CA 15	27.544 34.471 2.493 1.00 25.11	0
	ATOM	84 C5* CA 15	28.468 35.557 2.288 1.00 25.68	С
45	ATOM	85 C4* CA 15	28.039 36.346 1.079 1.00 23.58	С
	ATOM	86 O4* CA 15	28.377 35.611 -0.110 1.00 25.20	0
	ATOM	87 C3* CA 15	26.539 36.611 0.973 1.00 27.46	С
50	ATOM	88 O3* CA 15	26.343 37.947 0.537 1.00 30.86	0
	ATOM	89 C2* CA 15	26.056 35.550 0.006 1.00 19.40	С
55	ATOM	90 C1* CA 15	27.223 35.417 -0.941 1.00 24.88	С
	ATOM	91 N1 CA 15	27.547 34.130 -1.564 1.00 21.53	Ν
	ΑΤΟΜ	92 C2 CA 15	28.010 34.081 -2.865 1.00 22.54	С
60	ΑΤΟΜ	93 O2 CA 15	28.146 35.146 -3.499 1.00 22.80	0
	ATOM	94 N3 CA 15	28.314 32.897 -3.445 1.00 24.50	Ν
65	ΑΤΟΜ	95 C4 CA 15	28.159 31.768 -2.737 1.00 22.31	С

10

TABLA 2 (continuación)

5	ATOM	96 N4 CA 15	28.474 30.645 -3.369 1.00 26.44	Ν
5	ATOM	97 C5 CA 15	27.685 31.790 -1.410 1.00 22.06	С
	ATOM	98 C6 CA 15	27.393 32.962 -0.847 1.00 23.93	С
10	ΑΤΟΜ	99 P GA 16	24.886 38.652 0.522 1.00 30.28	Ρ
	ATOM	100 O1P GA 16	25.071 40.018 1.071 1.00 31.28	0
15	ΑΤΟΜ	101 O2P GA 16	23.823 37.799 1.136 1.00 32.28	0
15	ATOM	102 O5* GA 16	24.543 38.678 -1.057 1.00 25.71	0
	ΑΤΟΜ	103 C5* GA 16	25.334 39.503 -1.890 1.00 26.26	С
20	ATOM	104 C4* GA 16	25.037 39.395 -3.356 1.00 25.40	С
	ATOM	105 O4* GA 16	25.443 38.083 -3.844 1.00 25.49	0
25	ΑΤΟΜ	106 C3* GA 16	23.564 39.546 -3.726 1.00 20.81	С
23	ΑΤΟΜ	107 O3* GA 16	23.420 40.314 -4.910 1.00 21.55	0
	ATOM	108 C2* GA 16	23.101 38.123 -3.899 1.00 20.71	С
30	ATOM	109 C1* GA 16	24.325 37.448 -4.474 1.00 22.20	С
	ATOM	110 N9 GA 16	24.460 36.027 -4.181 1.00 18.02	Ν
25	ΑΤΟΜ	111 C8 GA 16	24.151 35.361 -3.030 1.00 21.34	С
55	ATOM	112 N7 GA 16	24.396 34.078 -3.099 1.00 22.66	Ν
	ATOM	113 C5 GA 16	24.898 33.890 -4.376 1.00 19.05	С
40	ATOM	114 C6 GA 16	25.346 32.710 -5.043 1.00 20.19	С
	ATOM	115 O6 GA 16	25.377 31.558 -4.593 1.00 25.72	0
45	ΑΤΟΜ	116 N1 GA 16	25.765 32.999 -6.316 1.00 19.88	Ν
45	ΑΤΟΜ	117 C2 GA 16	25.773 34.224 -6.910 1.00 18.98	С
	ATOM	118 N2 GA 16	26.222 34.305 -8.167 1.00 19.64	Ν
50	ΑΤΟΜ	119 N3 GA 16	25.361 35.344 -6.310 1.00 18.64	Ν
	ΑΤΟΜ	120 C4 GA 16	24.948 35.081 -5.065 1.00 17.19	С
55	TER	121 GA 16		
55	ATOM	122 C5*A C B 31	23.497 10.415 30.205 0.50 29.02	С
	ATOM	123 C4*A CB 31	22.723 11.013 31.366 0.50 27.42	С
60	ATOM	124 O4*A CB 31	23.665 11.678 32.242 0.50 26.99	0
	ATOM	125 C3*A C B 31	21.665 12.059 31.023 0.50 28.55	С
<i></i>	ATOM	126 O3*A CB 31	20.516 11.932 31.852 0.50 32.14	0
65	ATOM	127 C2*A CB 31	22.360 13.377 31.246 0.50 27.21	С

TABLA 2 (continuación)

5	ATOM	128 C1*A CB 31	23.408 13.075 32.303 0.50 25.73	С
5	ATOM	129 N1 A C B 31	24.727 13.702 32.118 0.50 22.37	Ν
	ATOM	130 C2 A C B 31	25.041 14.840 32.861 0.50 19.79	С
10	ATOM	131 O2 A C B 31	24.178 15.267 33.648 0.50 23.00	0
	ATOM	132 N3 A C B 31	26.247 15.413 32.691 0.50 19.14	Ν
15	ATOM	133 C4 A C B 31	27.129 14.905 31.830 0.50 19.31	С
15	ATOM	134 N4 A C B 31	28.310 15.509 31.697 0.50 23.58	Ν
	ΑΤΟΜ	135 C5 A C B 31	26.832 13.743 31.058 0.50 21.22	С
20	ΑΤΟΜ	136 C6 A C B 31	25.631 13.181 31.234 0.50 20.20	С
	ATOM	137 P A G B 32	19.014 12.296 31.468 0.50 34.30	Ρ
25	ATOM	138 O1PA GB 32	18.115 11.748 32.539 0.50 35.87	0
25	ATOM	139 O2PA GB 32	18.701 11.963 30.057 0.50 38.07	0
	ATOM	140 O5*A GB 32	18.936 13.891 31.612 0.50 33.93	0
30	ATOM	141 C5*A GB 32	18.668 14.454 32.897 0.50 30.10	С
	ATOM	142 C4*A GB 32	18.793 15.955 32.852 0.50 28.12	С
	ATOM	143 O4*A GB 32	20.155 16.290 32.461 0.50 27.51	0
35	ATOM	144 C3*A GB 32	17.904 16.707 31.860 0.50 28.62	С
	ATOM	145 O3*A GB 32	17.537 17.968 32.385 0.50 29.17	0
40	ATOM	146 C2*A GB 32	18.784 16.788 30.635 0.50 27.47	С
	ATOM	147 C1*A GB 32	20.125 17.092 31.280 0.50 26.59	С
	ΑΤΟΜ	148 N9 A G B 32	21.321 16.746 30.525 0.50 23.71	N
45	ATOM	149 C8 A G B 32	21.468 15.884 29.472 0.50 22.87	С
	ATOM	150 N7 A G B 32	22.697 15.809 29.026 0.50 22.15	N
50	ATOM	151 C5 A G B 32	23.409 16.684 29.842 0.50 22.78	С
	ATOM	152 C6 A G B 32	24.782 17.042 29.860 0.50 22.24	С
	ATOM	153 O6 A G B 32	25.688 16.635 29.117 0.50 26.10	0
55	ATOM	154 N1 A G B 32	25.073 17.971 30.862 0.50 19.04	N
	ATOM	155 C2 A G B 32	24.151 18.487 31.736 0.50 19.59	С
60	ATOM	156 N2 A G B 32	24.604 19.373 32.640 0.50 17.65	Ν
	ATOM	157 N3 A G B 32	22.866 18.161 31.730 0.50 21.67	N
	ATOM	158 C4 A G B 32	22.572 17.268 30.770 0.50 22.70	С
65	ATOM	159 P A T B 33	16.352 18.895 31.838 0.50 31.49	Р

	ATOM	160 O1PA TB 33	15.776 19.656 32.986 0.5	50 30.42 O
	ATOM	161 O2PA TB 33	15.403 18.129 30.978 0.5	50 30.35 O
5	ATOM	162 O5*A TB 33	17.101 19.919 30.872 0.5	0 29.10 O
	ΑΤΟΜ	163 C5*A TB 33	17.516 21.218 31.247 0.5	0 24.89 C
10	ATOM	164 C4*A TB 33	18.806 21.260 32.023 0.5	0 22.97 C
	ATOM	165 O4*A TB 33	19.843 20.431 31.431 0.5	0 20.80 O
	ATOM	166 C3*A TB 33	19.462 22.640 32.100 0.5	0 18.44 C
15	ATOM	167 O3*A TB 33	20.119 22.793 33.317 0.5	0 16.12 O
	ATOM	168 C2*A TB 33	20.415 22.629 30.913 0.5	0 18.75 C
20	ATOM	169 C1*A TB 33	20.962 21.214 31.041 0.5	0 19.25 C
	ATOM	170 N1 A T B 33	21.489 20.563 29.825 0.5	0 17.21 N
25	ATOM	171 C2 A T B 33	22.824 20.738 29.525 0.5	0 17.21 C
25	ATOM	172 O2 A T B 33	23.574 21.402 30.222 0.5	0 19.26 O
	ATOM	173 N3 A T B 33	23.240 20.104 28.385 0.5	0 16.88 N
30	ATOM	174 C4 A T B 33	22.484 19.329 27.526 0.5	0 16.87 C
	ATOM	175 O4 A T B 33	22.997 18.819 26.531 0.5	0 17.35 O
35	ATOM	176 C5 A T B 33	21.090 19.190 27.902 0.5	0 15.99 C
	ATOM	177 C5MA TB 33	20.202 18.371 27.027 0.5	0 17.65 C
	ATOM	178 C6 A T B 33	20.678 19.806 29.016 0.5	0 14.83 C
40	ATOM	179 P A A B 34	20.311 24.119 34.172 0.5	0 20.84 P
	ATOM	180 O1PA AB 34	21.188 23.824 35.341 0.5	0 22.22 O
45	ATOM	181 O2PA AB 34	18.983 24.762 34.384 0.5	0 20.55 O
	ATOM	182 O5*A AB 34	21.143 25.095 33.206 0.5	0 19.18 O
	ATOM	183 C5*A AB 34	22.557 24.908 33.112 0.5	0 19.15 C
50	ATOM	184 C4*A AB 34	23.185 26.097 32.436 0.5	0 19.69 C
	ATOM	185 O4*A A B 34	22.754 26.181 31.062 0.5	0 19.00 O
55	ATOM	186 C3*A AB 34	22.830 27.457 33.046 0.5	0 20.62 C
	ATOM	187 O3*A AB 34	23.979 28.289 32.833 0.5	i0 21.71 O
(0)	ATOM	188 C2*A A B 34	21.660 27.919 32.191 0.5	0 20.32 C
00	ATOM	189 C1*A A B 34	22.005 27.389 30.836 0.5	60 17.90 C
	ATOM	190 N9 A A B 34	21.033 26.894 29.866 0.5	0 16.07 N
65	ATOM	191 C8 A A B 34	20.108 25.896 30.047 0.5	0 16.19 C
	ATOM	192 N7 A A B 34	19.365 25.663 28.993 0.5	0 17.05 N

TABLA 2 (continuación)

5	ATOM	193 C5 A A B 34	19.843 26.574 28.048 0.50 15.31	С
5	ATOM	194 C6 A A B 34	19.459 26.822 26.723 0.50 16.10	С
	ATOM	195 N6 A A B 34	18.476 26.144 26.108 0.50 15.71	Ν
10	ATOM	196 N1 A A B 34	20.131 27.790 26.069 0.50 17.12	Ν
	ATOM	197 C2 A A B 34	21.106 28.450 26.701 0.50 14.87	С
15	ATOM	198 N3 A A B 34	21.557 28.305 27.955 0.50 16.22	Ν
15	ATOM	199 C4 A A B 34	20.865 27.333 28.576 0.50 14.84	С
	ATOM	200 P A C B 35	24.075 29.715 33.564 0.50 21.10	Ρ
20	ATOM	201 O1PA CB 35	25.493 30.042 33.858 0.50 20.32	0
	ATOM	202 O2PA C B 35	23.040 29.847 34.625 0.50 23.12	0
25	ATOM	203 O5*A C B 35	23.592 30.698 32.373 0.50 21.20	0
25	ATOM	204 C5*A C B 35	24.438 30.818 31.227 0.50 22.73	С
	ATOM	205 C4*A C B 35	23.933 31.892 30.303 0.50 22.09	С
30	ATOM	206 O4*A CB 35	22.829 31.431 29.496 0.50 22.78	0
	ATOM	207 C3*A C B 35	23.415 33.157 31.005 0.50 23.81	С
25	ATOM	208 O3*A C B 35	23.851 34.276 30.228 0.50 24.69	0
35	ATOM	209 C2*A CB 35	21.909 32.995 30.923 0.50 18.86	С
	ATOM	210 C1*A CB 35	21.758 32.393 29.539 0.50 21.90	С
40	ATOM	211 N1 A C B 35	20.559 31.581 29.271 0.50 21.99	Ν
	ATOM	212 C2 A C B 35	20.049 31.533 27.969 0.50 23.16	С
	ATOM	213 O2 A C B 35	20.622 32.179 27.075 0.50 24.04	0
45	ATOM	214 N3 A C B 35	18.948 30.783 27.705 0.50 22.07	Ν
	ATOM	215 C4 A C B 35	18.360 30.105 28.687 0.50 20.77	С
50	ATOM	216 N4 A C B 35	17.277 29.382 28.393 0.50 25.10	Ν
	ATOM	217 C5 A C B 35	18.858 30.135 30.022 0.50 22.30	С
	ATOM	218 C6 A C B 35	19.949 30.876 30.273 0.50 23.11	С
55	ATOM	219 P A G B 36	24.299 35.642 30.936 0.50 25.17	Ρ
	ATOM	220 O1PA G B 36	25.768 35.649 31.202 0.50 27.97	0
60	ATOM	221 O2PA G B 36	23.346 35.966 32.022 0.50 25.08	0
	ΑΤΟΜ	222 O5*A G B 36	24.058 36.680 29.733 0.50 24.16	0
	ATOM	223 C5*A G B 36	24.785 36.552 28.508 0.50 23.54	С
65	ATOM	224 C4*A GB 36	24.097 37.279 27.377 0.50 24.02	С

	ATOM 225 O4*A G B 36 22.860	36.619 27.005 0.50 23.11	0
5	ATOM 226 C3*A G B 36 23.707	38.726 27.690 0.50 21.78	С
5	ATOM 227 O3*A G B 36 23.852	2 39.539 26.525 0.50 22.38	0
	ATOM 228 C2*A G B 36 22.275	38.587 28.155 0.50 20.96	С
10	ATOM 229 C1*A G B 36 21.732	37.425 27.364 0.50 22.21	С
	ATOM 230 N9 A G B 36 20.807	36.534 28.062 0.50 19.21	Ν
15	ATOM 231 C8 A G B 36 20.841	36.180 29.390 0.50 20.21	С
10	ATOM 232 N7 A G B 36 19.875	35.362 29.721 0.50 20.74	Ν
	ATOM 233 C5 A G B 36 19.163	35.165 28.542 0.50 19.18	С
20	ATOM 234 C6 A G B 36 18.013	34.381 28.271 0.50 19.18	С
	ATOM 235 O6 A G B 36 17.344	33.663 29.030 0.50 23.04	0
25	ATOM 236 N1 A G B 36 17.629	34.473 26.938 0.50 17.77	Ν
23	ATOM 237 C2 A G B 36 18.266	35.223 25.982 0.50 16.99	С
	ATOM 238 N2 A G B 36 17.723	35.165 24.761 0.50 16.57	Ν
30	ATOM 239 N3 A G B 36 19.336	35.955 26.226 0.50 17.69	Ν
	ATOM 240 C4 A G B 36 19.729	35.883 27.512 0.50 16.75	С
35	TER 241 G B 36		
	HETATM 242 FE FE2 4 23.251	33.116 -13.063 0.50 16.15	FE
	HETATM 243 FE FE2 5 18.360	30.929 -2.943 0.50 16.76	FE
40	HETATM 244 FE FE2 6 40.553	30.373 -5.101 0.33 20.46	FE
	HETATM 245 FE FE2 7 34.042	2 37.158 1.558 0.33 15.56	FE
45	HETATM 246 FE FE2 8 20.328	8 20.754 20.801 0.17 21.05	FE
	HETATM 247 FE FE2 9 27.203	3 27.203 27.203 0.17 12.56	FE
	HETATM 248 N11 NPM 1 24.2	19 31.739 -14.131 0.50 18.31	Ν
50	HETATM 249 N12 NPM 1 22.07	76 31.573 -12.775 0.50 17.99	Ν
	HETATM 250 N13 NPM 1 17.42	21 32.115 -4.233 0.50 15.55	Ν
55	HETATM 251 N14 NPM 1 17.73	30 32.349 -1.718 0.50 17.80	Ν
	HETATM 252 C1A NPM 1 25.3	38 31.856 -14.835 0.50 19.99	С
	HETATM 253 C1B NPM 1 25.9	21 30.805 -15.540 0.50 18.76	С
60	HETATM 254 C1C NPM 1 25.3	47 29.589 -15.552 0.50 17.15	С
	HETATM 255 C1D NPM 1 24.1	70 29.448 -14.843 0.50 19.54	С
65	HETATM 256 C1E NPM 1 23.6	60 30.518 -14.141 0.50 19.33	С
	HETATM 257 C1F NPM 1 22.44	41 30.479 -13.351 0.50 20.47	С

TABLA 2 (continuación)

5	HETATM 258	C1G NPM	1	20.850 31.503 -12.017 0.50 15.78	С
5	HETATM 259	C1H NPM	1	19.735 32.105 -12.569 0.50 14.85	С
	HETATM 260	C1I NPM	1	18.546 32.086 -11.830 0.50 17.77	С
10	HETATM 261	C1J NPM	1	18.449 31.400 -10.647 0.50 19.46	С
	HETATM 262	C1K NPM	1	19.599 30.802 -10.116 0.50 20.40	С
15	HETATM 263	C1L NPM	1	20.823 30.948 -10.770 0.50 17.38	С
15	HETATM 264	C1M NPM	1	17.158 31.330 -9.886 0.50 19.45	С
	HETATM 265	C1N NPM	1	17.243 31.566 -8.400 0.50 17.83	С
20	HETATM 266	C10 NPM	1	16.565 30.734 -7.538 0.50 17.26	С
	HETATM 267	C1P NPM	1	16.586 30.930 -6.181 0.50 16.37	С
25	HETATM 268	C1Q NPM	1	17.319 31.959 -5.678 0.50 14.50	С
25	HETATM 269	C1R NPM	1	18.019 32.756 -6.501 0.50 14.22	С
	HETATM 270	C1S NPM	1	17.988 32.559 -7.855 0.50 13.64	С
30	HETATM 271	C1T NPM	1	16.890 33.171 -3.747 0.50 16.73	С
	HETATM 272	C1U NPM	1	17.008 33.350 -2.323 0.50 20.05	С
	HETATM 273	C1V NPM	1	16.460 34.427 -1.625 0.50 22.81	С
35	HETATM 274	C1W NPM	1	16.651 34.473 -0.260 0.50 23.96	С
	HETATM 275	C1X NPM	1	17.371 33.449 0.329 0.50 22.42	С
40	HETATM 276	C1Y NPM	1	17.888 32.414 -0.402 0.50 19.31	С
	HETATM 277	N11 NPM	2	22.149 33.642 -14.631 0.50 18.61	Ν
	HETATM 278	N12 NPM	2	21.990 34.393 -12.178 0.50 14.55	Ν
45	HETATM 279	N13 NPM	2	20.103 31.845 -3.014 0.50 13.12	Ν
	HETATM 280	N14 NPM	2	19.322 29.891 -1.521 0.50 16.38	Ν
50	HETATM 281	C1A NPM	2	22.291 33.210 -15.888 0.50 18.54	С
	HETATM 282	C1B NPM	2	21.450 33.654 -16.898 0.50 17.74	С
	HETATM 283	C1C NPM	2	20.441 34.566 -16.627 0.50 18.51	С
55	HETATM 284	C1D NPM	2	20.294 35.016 -15.302 0.50 18.19	С
	HETATM 285	C1E NPM	2	21.156 34.547 -14.342 0.50 18.10	С
60	HETATM 286	C1F NPM	2	21.110 34.921 -12.955 0.50 15.96	С
	HETATM 287	C1G NPM	2	21.960 34.769 -10.799 0.50 13.86	С
	HETATM 288	C1H NPM	2	22.972 35.566 -10.299 0.50 13.90	С
65	HETATM 289	C1I NPM	2	22.960 35.907 -8.938 0.50 11.98	С

TABLA 2 (continuación)

	HETATM	290	C1J NPM	2	21.932 35.504 -8.119 0.50 12.33	С
5	HETATM	291	C1K NPM	2	20.952 34.671 -8.652 0.50 13.53	С
	HETATM	292	C1L NPM	2	20.912 34.386 -9.998 0.50 12.13	С
10	HETATM	293	C1M NPM	2	21.859 35.914 -6.666 0.50 13.99	С
10	HETATM	294	C1N NPM	2	21.384 34.855 -5.690 0.50 14.89	С
	HETATM	295	C10 NPM	2	21.967 33.585 -5.707 0.50 15.36	С
15	HETATM	296	C1P NPM	2	21.545 32.614 -4.840 0.50 13.53	С
	HETATM	297	C1Q NPM	2	20.535 32.877 -3.917 0.50 12.52	С
20	HETATM	298	C1R NPM	2	19.979 34.151 -3.861 0.50 14.89	С
20	HETATM	299	C1S NPM	2	20.382 35.114 -4.785 0.50 12.89	С
	HETATM	300	C1T NPM	2	20.958 31.407 -2.131 0.50 14.59	С
25	HETATM	301	C1U NPM	2	20.571 30.352 -1.237 0.50 16.31	С
	HETATM	302	C1V NPM	2	21.340 29.840 -0.185 0.50 18.98	С
30	HETATM	303	C1W NPM	2	20.816 28.831 0.604 0.50 18.76	С
50	HETATM	304	C1X NPM	2	19.656 28.291 0.233 0.50 16.33	С
	HETATM	305	C1Y NPM	2	18.827 28.935 -0.702 0.50 17.43	С
35	HETATM	306	N11 NPM	3	24.566 34.498 -13.408 0.50 24.10	Ν
	HETATM	307	N12 NPM	3	24.422 32.761 -11.505 0.50 18.51	Ν
40	HETATM	308	N13 NPM	3	18.810 29.490 -4.216 0.50 12.34	Ν
10	HETATM	309	N14 NPM	3	16.732 29.848 -2.745 0.50 17.15	Ν
	HETATM	310	C1A NPM	3	24.605 35.391 -14.417 0.50 24.37	С
45	HETATM	311	C1B NPM	3	25.611 36.305 -14.515 0.50 23.38	С
	HETATM	312	C1C NPM	3	26.609 36.342 -13.574 0.50 24.29	С
50	HETATM	313	C1D NPM	3	26.588 35.423 -12.523 0.50 20.82	С
00	HETATM	314	C1E NPM	3	25.561 34.527 -12.471 0.50 22.02	С
	HETATM	315	C1F NPM	3	25.426 33.528 -11.432 0.50 19.55	С
55	HETATM	316	C1G NPM	3	24.228 31.771 -10.488 0.50 17.07	С
	HETATM	317	C1H NPM	3	24.499 30.425 -10.668 0.50 18.87	С
60	HETATM	318	C1I NPM	3	24.262 29.525 -9.647 0.50 14.98	С
	HETATM	319	C1J NPM	3	23.755 29.933 -8.426 0.50 13.23	С
	HETATM	320	C1K NPM	3	23.512 31.277 -8.246 0.50 14.12	С
65	HETATM	321	C1L NPM	3	23.695 32.209 -9.273 0.50 11.96	С

TABLA 2 (continuación)

	HETATM	322	C1M NPM	3	23.646 28.943 -7.279 0.50 11.67	С
5	HETATM	323	C1N NPM	3	22.368 29.075 -6.438 0.50 12.42	С
	HETATM	324	C10 NPM	3	21.164 29.363 -7.084 0.50 11.79	С
10	HETATM	325	C1P NPM	3	19.987 29.507 -6.330 0.50 12.04	С
10	HETATM	326	C1Q NPM	3	20.013 29.289 -4.971 0.50 13.71	С
	HETATM	327	C1R NPM	3	21.212 29.026 -4.347 0.50 15.83	С
15	HETATM	328	C1S NPM	3	22.385 28.920 -5.079 0.50 12.84	С
	HETATM	329	C1T NPM	3	17.973 28.528 -4.236 0.50 13.90	С
20	HETATM	330	C1U NPM	3	16.770 28.671 -3.458 0.50 16.47	С
20	HETATM	331	C1V NPM	3	15.758 27.765 -3.378 0.50 17.76	С
	HETATM	332	C1W NPM	3	14.654 28.057 -2.587 0.50 19.02	С
25	HETATM	333	C1X NPM	3	14.616 29.239 -1.924 0.50 18.75	С
	HETATM	334	C1Y NPM	3	15.632 30.139 -2.016 0.50 18.39	С
20	HETATM	335	N11 NPM	10	42.383 29.795 -4.585 1.00 28.42	Ν
50	HETATM	336	N12 NPM	10	40.245 29.970 -3.208 1.00 23.78	Ν
	HETATM	337	N13 NPM	10	33.279 35.702 0.440 1.00 14.30	Ν
35	HETATM	338	N14 NPM	10	32.483 38.126 0.812 1.00 15.78	Ν
	HETATM	339	C1A NPM	10	43.463 29.721 -5.356 1.00 28.62	С
40	HETATM	340	C1B NPM	10	44.697 29.299 -4.862 1.00 30.21	С
40	HETATM	341	C1C NPM	10	44.827 28.943 -3.577 1.00 31.98	С
	HETATM	342	C1D NPM	10	43.712 28.999 -2.760 1.00 29.58	С
45	HETATM	343	C1E NPM	10	42.524 29.442 -3.297 1.00 27.80	С
	HETATM	344	C1F NPM	10	41.271 29.558 -2.553 1.00 25.67	С
50	HETATM	345	C1G NPM	10	38.988 30.090 -2.495 1.00 20.67	С
50	HETATM	346	C1H NPM	10	37.970 29.199 -2.809 1.00 19.03	С
	HETATM	347	C1I NPM	10	36.768 29.367 -2.114 1.00 16.82	С
55	HETATM	348	C1J NPM	10	36.553 30.322 -1.161 1.00 16.47	С
	HETATM	349	C1K NPM	10	37.623 31.180 -0.850 1.00 16.03	С
(0)	HETATM	350	C1L NPM	10	38.818 31.038 -1.531 1.00 15.92	С
00	HETATM	351	C1M NPM	10	35.266 30.421 -0.406 1.00 12.86	С
	HETATM	352	C1N NPM	10	34.738 31.815 -0.172 1.00 13.12	С
65	HETATM	353	C10 NPM	10	34.208 32.188 1.021 1.00 15.77	С

TABLA 2 (continuación)

	HETATM	354	C1P NPM	10	33.758 33.459 1.296 1.00 17.08	С
5	HETATM	355	C1Q NPM	10	33.780 34.353 0.266 1.00 15.94	С
	HETATM	356	C1R NPM	10	34.320 34.013 -0.930 1.00 15.86	С
10	HETATM	357	C1S NPM	10	34.749 32.735 -1.187 1.00 16.41	С
10	HETATM	358	C1T NPM	10	32.213 36.018 -0.208 1.00 14.47	С
	HETATM	359	C1U NPM	10	31.721 37.358 -0.039 1.00 14.02	С
15	HETATM	360	C1V NPM	10	30.565 37.837 -0.673 1.00 16.56	С
	HETATM	361	C1W NPM	10	30.215 39.163 -0.472 1.00 20.32	С
20	HETATM	362	C1X NPM	10	30.989 39.917 0.404 1.00 19.26	С
20	HETATM	363	C1Y NPM	10	32.094 39.372 1.024 1.00 17.69	С
	HETATM	364	N11 NPM	30	20.870 18.915 20.282 0.50 28.55	Ν
25	HETATM	365	N12 NPM	30	21.087 20.145 22.507 0.50 22.43	Ν
	HETATM	366	N13 NPM	30	25.228 27.410 27.285 0.50 13.08	Ν
30	HETATM	367	N14 NPM	30	27.093 29.179 27.238 0.50 16.03	Ν
20	HETATM	368	C1A NPM	30	20.735 18.326 19.098 0.50 29.58	С
	HETATM	369	C1B NPM	30	21.159 17.016 18.859 0.50 30.63	С
35	HETATM	370	C1C NPM	30	21.731 16.310 19.843 0.50 31.24	С
	HETATM	371	C1D NPM	30	21.883 16.906 21.076 0.50 30.39	С
40	HETATM	372	C1E NPM	30	21.441 18.196 21.259 0.50 27.75	С
	HETATM	373	C1F NPM	30	21.547 18.948 22.501 0.50 25.07	С
	HETATM	374	C1G NPM	30	21.180 20.909 23.736 0.50 19.86	С
45	HETATM	375	C1H NPM	30	20.012 21.353 24.311 0.50 18.61	С
	HETATM	376	C1I NPM	30	20.074 22.063 25.512 0.50 16.94	С
50	HETATM	377	C1J NPM	30	21.264 22.381 26.110 0.50 17.38	С
	HETATM	378	C1K NPM	30	22.459 21.915 25.526 0.50 11.99	
	HETATM	379	C1L NPM	30	22.383 21.170 24.346 0.50 16.45	С
55	HETATM	380	C1M NPM	30	21.271 23.264 27.337 0.50 14.92	С
	HETATM	381	C1N NPM	30	22.314 24.364 27.307 0.50 15.00	С
60	HETATM	382	C10 NPM	30	23.105 24.610 28.390 0.50 17.56	С
	HETATM	383	C1P NPM	30	24.087 25.579 28.389 0.50 18.04	С
	HETATM	384	C1Q NPM	30	24.229 26.357 27.280 0.50 16.05	С
65	HETATM	385	C1R NPM	30	23.449 26.135 26.206 0.50 15.27	С

TABLA 2 (continuación)

	HETATM	386	C1	S NPM	1 30	22.522	25.127	26.19 [°]	7 0.50 15.60	С
5	HETATM	387	C1	T NPM	I 30	24.813	28.617	27.25 [,]	1 0.50 14.12	С
	HETATM	388	C1	U NPM	1 30	25.809	29.661	27.22	8 0.50 14.58	С
10	HETATM	389	C1	V NPM	30	25.515	31.024	27.184	4 0.50 17.26	С
10	HETATM	390	C1		A 30	26.564	4 31.91	7 27.19	4 0.50 19.19	С
	HETATM	391	C1	X NPM	30	27.856	31.413	27.214	4 0.50 19.11	С
15	HETATM	392	C1	Y NPM	I 30	28.085	30.062	27.17	3 0.50 16.43	С
	HETATM	393	0	HOH	101	33.246	28.247	7.010	1.00 27.10	0
20	HETATM	394	0	HOH	102	42.346	28.597	0.620	1.00 31.82	0
	HETATM	395	0	HOH	103	34.693	25.622	6.505	1.00 26.94	0
	HETATM	396	0	HOH	104	28.373	38.380	-3.634	1.00 24.10	0
25	HETATM	397	0	HOH	105	32.271	26.930	-0.799	1.00 32.73	0
	HETATM	398	0	HOH	106	34.566	32.210	5.131	1.00 20.54	0
30	HETATM	399	0	HOH	107	30.082	32.100	7.182	1.00 23.91	0
20	HETATM	400	0	HOH	108	26.196	29.351	4.619	1.00 47.40	0
	HETATM	401	0	HOH	109	29.054	34.682	7.348	1.00 26.03	0
35	HETATM	402	0	HOH	110	18.376	34.136	32.334	1.00 37.04	0
	HETATM	403	0	HOH	111	23.347	13.231	27.945	1.00 61.50	0
40	HETATM	404	0	HOH	112	27.654	40.637	1.352	1.00 25.58	0
10	HETATM	405	0	HOH	113	43.117	29.418	4.069	1.00 39.36	0
	HETATM	406	0	HOH	114	45.056	32.754	-5.797	1.00 40.64	0
45	HETATM	407	0	HOH	115	30.214	14.885	30.437	1.00 30.89	0
	HETATM	408	0	HOH	116	21.861	35.961	-0.248	1.00 47.77	0
50	HETATM	409	0	HOH	117	24.258	33.183	2.196	1.00 47.36	0
50	HETATM	410	0	HOH	118	33.138	23.668	6.230	1.00 34.86	0
	HETATM	411	0	HOH	119	29.896	25.594	7.089	1.00 39.13	0
55	HETATM	412	0	HOH	120	23.251	25.489	37.448	1.00 45.34	0
	HETATM	413	0	HOH	121	37.792	25.616	-3.248	1.00 42.72	0
60	HETATM	414	0	HOH	122	46.255	20.316	9.980	1.00 29.06	0
00	HETATM	415	0	НОН	123	26.762	38.117	5.190	1.00 50.62	0
	HETATM	416	0	НОН	124	28.420	38.917	7.596	1.00 44.93	0
65	HETATM	417	0	HOH	125	19.636	14.311	26.966	1.00 49.30	0

TABLA 2 (continuación)

5	HETATM	418	0	HOH	126	33.704	27.440	-4.066	1.00 39.80	0
	HETATM	419	0	HOH	127	21.118	26.580	36.620	1.00 58.31	0
	HETATM	420	0	HOH	128	29.083	38.877	3.016	1.00 26.66	0
10	HETATM	421	0	HOH	129	23.476	32.351	-0.163	1.00 24.95	0
	HETATM	422	0	HOH	130	33.652	25.005	9.389	1.00 33.25	0
15	HETATM	423	0	HOH	131	36.369	24.926	-1.000	1.00 44.68	0
	HETATM	424	0	HOH	132	20.191	22.401	37.913	1.00 53.01	0
20	HETATM	425	0	HOH	133	17.261	19.558	27.835	1.00 56.45	0
20	HETATM	426	0	HOH	134	12.512	21.136	30.880	1.00 47.39	0
	HETATM	427	0	HOH	135	42.463	25.915	3.299	1.00 54.47	0
25	HETATM	428	0	HOH	136	45.074	33.856	-10.124	1.00 52.40	0
	HETATM	429	0	HOH	137	15.767	25.425	26.037	1.00 49.56	0
30	HETATM	430	0	HOH	138	19.611	24.415	39.582	1.00 58.18	0
	HETATM	431	0	HOH	139	36.089	19.355	4.222	1.00 46.72	0
	HETATM	432	0	HOH	140	45.730	31.466	-7.778	1.00 41.08	0
35	HETATM	433	0	HOH	141	29.205	26.898	0.874	1.00 60.12	0
	HETATM	434	0	HOH	142	40.823	23.484	1.745	1.00 47.09	0
40	HETATM	435	0	HOH	143	33.439	28.096	9.651	1.00 51.49	0
	HETATM	436	0	HOH	145	27.195	33.804	-14.960	1.00 39.47	0
45	HETATM	437	0	HOH	146	39.884	18.968	6.154	1.00 53.82	0
45	END									

REIVINDICACIONES

1. Estructura cristalina que comprende un entrecruzamiento de tres cadenas de ADN, dicha estructura cristalina 5 caracterizada porque:

a) pertenece al grupo espacial P4(1)32 y tiene unas dimensiones de celda a=b=c=70,98 \pm 0,7Å;

b) dichas cadenas de ADN son hexanucleótidos cuyas secuencias nucleotídicas, iguales o diferentes entre sí, se
 ¹⁰ seleccionan del grupo que consiste en CGATCG, GCATGC, CGTACG, GCTAGC, CCATGG, GGATCC, CCTAGG y
 GGTACC, en los que todos los nucleótidos se encuentran emparejados; y

c) el entrecruzamiento de las tres cadenas de ADN alberga, en una cavidad hidrofóbica, una molécula.

¹⁵ 2. Estructura cristalina según la reivindicación 1 caracterizada porque las tres cadenas de ADN tienen la misma secuencia nucleotídica y ésta es CGTACG.

3. Estructura cristalina según cualquiera de las reivindicaciones anteriores **caracterizada** porque tiene las coordenadas atómicas dimensionales de la Tabla 1.

4. Estructura cristalina según cualquiera de las reivindicaciones anteriores **caracterizada** por el hecho de que la molécula es un candidato a fármaco anti-ADN.

5. Procedimiento de identificación de una sustancia candidata a fármaco **caracterizado** porque comprende las etapas de:

a) obtener una estructura cristalina dejando crecer, a temperatura ambiente, gotas posadas que comprenden la sustancia a ser identificada y las secuencias nucleotídicas según cualquiera de las reivindicaciones 1 a 2; y

³⁰ b) determinar los parámetros de la estructura cristalina obtenida de manera que si dicha estructura pertenece al grupo espacial P4(1)32, tiene unas dimensiones de celda a=b=c=70,98 \pm 0,7Å y todos los nucleótidos de las secuencias nucleotídicas de ADN se encuentran emparejados, es indicativo de que dicha sustancia es un candidato a fármaco anti-ADN.

35

40

45

50

55

60

65

FIG. 1

FIG. 2

FIG. 3

OFICINA ESPAÑOLA DE PATENTES Y MARCAS (1) ES 2 318 936

(21) Nº de solicitud: 200600248

2 Fecha de presentación de la solicitud: 03.02.2006

32 Fecha de prioridad:

INFORME SOBRE EL ESTADO DE LA TÉCNICA

(51) Int. Cl.: *C07H 21/04* (2006.01)

ESPAÑA

DOCUMENTOS RELEVANTES

Categoría	56	Reivindicaciones afectadas					
A	WOODS, K. C., MARTIN, S. equivalence in site-specific re crystal structure and activity to a three-way lox DNA juncti Octubre 2001, Vol. 313, Nº 1	1-5					
A	SHLYAKHTENKO, L. S., POT Structure and dynamics of th microscopy studies. Nucleic A Vol. 28, Nº 18, páginas 3472-	1-5					
A	EICHMAN, B. F., VARGASON Holliday junction in an inverte effects on the structure of fou the National Academy of Scie Vol. 97, Nº 8, páginas 3971-3	1-5					
A	NOWAKOWSKI, J., SHIM, P. Aternative conformations of a Journal of Molecular Biology. páginas 93-102. ISSN 0022-2	1-5					
A	KADRMAS, J. L., RAVIN, A., stabilities of DNA three-way, f (multi-helix junction loops): un stabilizing or destabilizing. No Junio 1995, Vol. 23, Nº 12, pa	1-5					
Categorí	a de los documentos citados						
 X: de particular relevancia Y: de particular relevancia combinado con otro/s de la misma categoría A: refleja el estado de la técnica O: referido a divulgación no escrita P: publicado entre la fecha de prioridad y la de presentación de la solicitud E: documento anterior, pero publicado después de la fecha de presentación de la solicitud 							
El preser X para	nte informe ha sido realizado todas las reivindicaciones	para las reivindicaciones nº:					
Fecha de	e realización del informe 20-33-2009	Examinador E. Relaño Reyes	Página 1/1				