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INTRODUCTION
Sixty years ago Sidon [7] asked, in the course of some investigations of Fourier

series, for a sequence a1 < a2... for which the sums ai + aj are all distinct and
for which ak tends to infinity as slowly as possible. Sidon called these sequences,
B2 sequences. The greedly algorithm gives ak � k3 and this was the best result
until Atjai, Komlos and Szemeredi [1] found a B2 sequence satisfying ak = o(k3).
However, this result is far from the main conjecture about B2 sequences.

Conjecture. Corresponding to every ε > 0, there exists a B2 sequence A such that
aj � j2+ε.

In general we say that a sequence A is a B2[g] sequence if rn(A) ≤ g for all
integer n, where rn(A) is the number of representations of n in the form n = a+ b,
a ≤ b (a, b ∈ A).

In 1960, P.Erdös and A.Renyi [5], using probabilistic methods, proved the fol-
lowing first steps towards the conjecture.

Theorem. (Erdös-Renyi): Corresponding to every ε > 0, there exists a natural
number g and a B2[g] sequence A such that aj � j2+ε.

On the other hand it is easy to see that a B2[g] sequence has to satisfy aj � j2.
Thus, it seems that the sequence of squares is on the border line for this kind
of problem. For this reason and because of the conexion between the additive
properties of the sequence of squares and the Fourier Series in the form

∑
ake

ik2x,
we have been interested in the study of B2 sequences whose terms are squares.

The entire sequence of squares cannot be a B2[g] sequence for any g because the
function r(n) = #{n;n = a2 + b2, a ≤ b} is not bounded uniformily in n.

However, in [3] we proved the existence of a B2-sequence of squares {a2
k} such

that a2
k � k4. (The reader is referred also to [4] and to the discussion in [6].)

The main purpose of this note is to show that A in the Erdös-Renyi theorem can
be taken to be a subsequence of the squares.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digital.CSIC

https://core.ac.uk/display/36041529?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2

Theorem 1. Corresponding to every ε > 0, there exists a natural number g and a
B2[g] sequence of squares {a2

k} such that ak � k1+ε.

We will use Erdös construction of a probability measure on the space of integer
sequences such that (in the resulting probability space) almost all integer sequences
have some prescribed rate of growth; thus the probable behaviour of the represen-
tation function in the addtion of sequences of precribed rates of growth may then
be investigated without further reference to these rates of growth.

PROOF OF THE THEOREM 1.
We will prove the theorem showing, for every ε > 0, the existence of a natural

number g and a sequence {ak}, with ak � k1+ ε
2 such that for every integer n ≥ n(ε),

the number of the representations of n in the form n = a2
k + a2

j , ak ≤ aj is less or
equal than g.

Let Ω = {ω} be the space of all the sequences of integers. First of all we
will construct, for every ε > 0, a probability space such that with probability 1
the sequences in that space satisfy aj ∼ cεj

1+ ε
2 . We will need the following two

theorems which can be found in [6], pg 142-144.

Theorem. Let α1, α2, α3, ... be real numbers satisfying 0 ≤ αn ≤ 1. Then. there
exists a probability space (Ω,S, µ) with the following two properties:

i) For every natural number n, the event B(n) = {ω;n ∈ ω} is measurable and
µ(B(n)) = αn.

ii) The events B(1), B(2), ... are independents.

Theorem. Let αj =
1
jc

for every integer j ≥ 1, 0 < c < 1. Then, with probability

1 in the space described above, the elements aj of the sequences ω = {aj} satisfy
aj ∼ (1− c)j 1

1−c as j →∞.

For our purpose we choose c =
ε

2 + ε
in the latter theorem. Then, with proba-

bility 1, the elements aj of the sequences ω = {aj} satisfy aj ∼ 2
2+εj

1+ ε
2 .

We define rn(ω) = #{n = a2
j + a2

k; aj ≤ ak, aj , ak ∈ ω}. Next, we will
prove that for every g > 1

c − 1 = 2
ε , with probability 1, rn(ω) ≤ g for every integer

n ≥ n(ε). Erdös and Renyi also obtained the estimation g > 2
ε .

We appeal to the Borel-Cantelli lemma.

Theorem. Let {En} be a sequence of measurable events.

If
∞∑
n=1

µ(En) < +∞; then, with probability 1, at most a finite number of such

events can occur.
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For a natural number g > 1
c − 1 we consider the events En = {ω; rn(ω) > g}

and we will prove that
∞∑
n=1

µ(En) < +∞. Then, with probability 1, at most a finity

number of events can occur and the theorem will follow.
We have

µ(En) =
∑

d≥g+1

µ(En,d), where En,d = {ω; rn(ω) = d}.

Let r(n) be the function r(n) = #{n = a2 + b2; 0 < a ≤ b}. Then, n =
a2

1 + b1 = · · · = a2
r(n) + b2r(n), ai ≤ bi.

If rn(ω) = d then each component of exactly d pairs (aj1 , bj1), ..., (ajd , bjd) among
the r(n) pairs (a1, b1), ..., (ar(n), br(n)) belongs to ω.

Let En,d(j1, ..., jd) be the event

{ω; aj1 , bj1 , ..., ajd , bjd ∈ ω, ak or bk 6∈ ω, k 6= ji, i = 1, ..., d}.
Then

µ(En,d) =
∑

1≤j1···<jd≤r(n)

µ(En,d(j1, ..., jd))

and

µ(En,d(j1, ..., jd)) =
d∏

i=1

µ{ω; aji , bji ∈ ω}
∏

k 6=ji
i=1,...,d

(1− µ{ω; ak, bk ∈ ω});

here µ{ω; a, b ∈ ω} = 1
ac

1
bc except when a = b. In this case µ{ω; a, a ∈ ω} =

µ{ω; a ∈ ω} = 1
ac .

Estimation of µ(En) for n 6= 2a2.
We have

µ(En,d(j1, ..., jd)) ≤
d∏

i=1

1
(ajibji)c

,

whence

µ(En,d) =
∑

1≤j1<···<jd≤r(n)

µ(En,d(j1, ..., jd)) ≤
∑

1≤j1<···<jd≤r(n)

d∏

i=1

1
(ajibji)c

≤
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≤ 1
d!




∑

a2+b2=n
a≤b

1
(ab)c




d

.

If a2 + b2 = n, a ≤ b, then b ≥
√
n/2. We define an = min

a2+b2=n,a>0
a and we have

µ(En,d) ≤ 1
d!

(
r(n)

(an
√
n/2)c

)d
.

It is a well known fact that, for every δ > 0,
r(n)
nδ
→ 0 as n → ∞. Hence there

exists n0 = n0(ε) such that
r(n)

(an
√
n/2)c

≤ 1
2

for every n > n0, and we have

µ(En) =
∑

d≥g+1

µ(En,d) ≤ 2
(g + 1)!

(
r(n)

(an
√
n/2)c

)g+1

for n > n0.

Estimation of µ(En) for n = 2a2.
Here

µ{ω; rn(ω) > g} = µ{ω; rn(ω) > g, a ∈ ω}+ µ{ω; rn(ω) > g, a 6∈ ω} ≤

≤ 1
ac

2
g!

(
r(n)− 1

(an
√
n/2)c

)g
+
(

1− 1
ac

)
2

(g + 1)!

(
r(n)− 1

(an
√
n/2)c

)g+1

≤

≤ 4
(g + 1)!

(
r(n)

(
√
n/2)c

)g+1

for > n0.

Completion of proof.
Define rj = max

2j≤n<2j+1
r(n), and suppose 0 < δ < c

4 . From above, rj < 2δj for

j0 > j(δ), and we may suppose also that 2j0 ≥ n0.
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We write
∞∑
n=1

µ(En) =
∑

n≤2j0

µ(En) +
∑

n>2j0

µ(En).

The first sum is finite and the second sum can be written in the form

∑

j>j0

rj∑
m=g+1





∑

2j≤2j+1

r(n)=m,n=2a2

µ(En) +
∑

2j≤2j+1

r(n)=m,n6=2a2

µ(En)





= Σ1 + Σ2,

say; at once

Σ1 ≤
∑

j>j0

rj∑
m=g+1

4
(g + 1)!

(
rj

2
jc
2

)g+1

#{n = 2a2; 2j ≤ n < 2j+1} ≤

≤ 4
(g + 1)!

∑

j>j0

2jδ(g+2)

2
jc(g+1)

2

2
j
2 .

and this sum is finite if g >
1− c+ 4δ
c− 2δ

.

Next,

Σ2 ≤
∑

j>j0

rj∑
m=g+1

∑

2j≤n<2j+1

r(n)=m,n6=2a2

2
(g + 1)!

(
rj

(an2
j
2 )c

)g+1

≤

≤ 2
(g + 1)!

∑

j>j0

rj∑
m=g+1

∑

1≤k≤2
j
2

(
rj

(k2
j
2 )c

)g+1

#{n; 2j ≤ n < 2j+1, an = k} ≤

≤ 2
(g + 1)!

∑

j>j0

2jδ(g+2)

2
jc(g+1)

2

2
j
2

∑

k≥1

1
kc(g+1)

.

The last serie is convergent because g > 1
c − 1. Then Σ2 is finite if g satisfies

g >
1− c+ 4δ
c− 2δ

.

Finally, it is clear that δ can be chosen small enough so that the natural number
g > 1

c − 1 satisfies even the last condition.
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