Power Values of Palindromes

Javier Cilleruelo
Departamento de Matemáticas
Facultad de Ciencias
Universidad Autónoma de Madrid
28049, Madrid, España
franciscojavier.cilleruelo@uam.es
Florian Luca
Instituto de Matemáticas
Universidad Nacional Autonoma de México
C.P. 58089, Morelia, Michoacán, México
fluca@matmor.unam.mx
Igor E. Shparlinski
Department of Computing
Macquarie University
Sydney, NSW 2109, Australia
igor@ics.mq.edu.au
April 16, 2008

Abstract

We show that for a fixed integer base $g \geq 2$ the palindromes to base g which are k-powers form a very thin set in the set of all base g palindromes.

1 Introduction

For a fixed integer base $g \geq 2$ consider the base g representation of an arbitrary natural number $n \in \mathbb{N}$:

$$
\begin{equation*}
n=\sum_{k=0}^{L-1} a_{k}(n) g^{k} \tag{1}
\end{equation*}
$$

where $a_{k}(n) \in\{0,1, \ldots, g-1\}$ for each $k=0,1, \ldots, L-1$, and the leading digit $a_{L-1}(n)$ is nonzero. The integer n is said to be a base g palindrome if its digits satisfy the symmetry condition:

$$
\begin{equation*}
a_{k}(n)=a_{L-1-k}(n) \quad \text { for all } k=0,1, \ldots, L-1 \tag{2}
\end{equation*}
$$

When the base g is understood, we will refer to these numbers simply as palindromes.

It has recently been shown in [1] that almost all palindromes are composite. In [6], it has been shown that almost all Fibonacci numbers are not palindromes, and the argument there applies to some other similar sequences. For an integer $a \geq 2$, the smallest positive integer k such that a^{k} is not a base g palindrome has been estimated in [4] as $\exp \left(O\left((\log H)^{3} \log \log H\right)\right)$, where $H=\max \{a, g\}$. Several more results about the prime divisors and other arithmetic properties of palindromes can be found in $[2,3]$.

Square values of palindromes have been investigated in [5], where some constructions of infinite families of palindromes which are perfect squares are given.

Here, we continue the study of k-power values of palindromes and show that they form a very thin set in the set of all palindromes. We also show that this set is larger than standard heuristic arguments suggest.

Throughout the paper, implied constants in the symbols O and \ll may depend on the base g (we recall that the notations $U=O(V)$ and $U \ll V$ are equivalent to the assertion that the inequality $|U| \leq c V$ holds with some positive constant c).

2 Upper bound

Let $\mathcal{P}_{g, L}$ denote the set of all palindromes (2) of length L; that is, the set of positive integers satisfying both (1) and (2).

We also denote by $\mathcal{Q}_{g, L}^{k}$ the set of $n \in \mathcal{P}_{g, L}$ which are k-powers.

Theorem. The inequality

$$
\# \mathcal{Q}_{g, L}^{k} \ll\left(\# \mathcal{P}_{g, L}\right)^{1 / k}
$$

holds for all $L \geq 1$.
Proof. We may assume that L is large. Let $M=\lfloor(L-1) /(2 k)\rfloor$. We write $\mathcal{Q}_{g, L}^{k}=\sum_{0 \leq a<g^{M}} \mathcal{Q}_{g, L, a}^{k}$ where $\mathcal{Q}_{g, L, a}^{k}=\left\{x^{k} \in \mathcal{P}_{g, L}, x \equiv a\left(\bmod g^{M}\right)\right\}$.

We observe that $\# \mathcal{Q}_{g, L, a}^{k}=0$ for those a such that the last digit of $a_{g^{M}}^{k}$ in base g is 0 . Thus, we assume that the last digit of $a_{g^{M}}^{k}$ is different of zero. Then, if x^{k} is a palindrome for some positive integer x, its first M digits are the mirror reflection of the base g representation of $a_{g^{M}}^{k}$. We write b for this number of M digits. For $x^{k} \in \mathcal{Q}_{g, L, a}^{k}$, we have $b g^{L-M} \leq x^{k}<$ $(b+1) g^{L-M}$. Thus, $\left(b g^{L-M}\right)^{1 / k} \leq x<\left((b+1) g^{L-M}\right)^{1 / k}$. The number of integers in the arithmetic progression $x \equiv a\left(\bmod g^{M}\right)$ lying in the above interval is bounded above by $\frac{1}{g^{M}}\left(\left((b+1) g^{L-M}\right)^{1 / k}-\left(b g^{L-M}\right)^{1 / k}\right)+1$.

So,

$$
\begin{aligned}
\# \mathcal{Q}_{g, L}^{k} & \leq g^{M} \max _{a} \# \mathcal{Q}_{g, L, a}^{k} \\
& \leq\left((b+1) g^{L-M}\right)^{1 / k}-\left(b g^{L-M}\right)^{1 / k}+g^{M} \\
& \leq g^{\frac{L-M}{k}} \frac{1}{k}\left(g^{M-1}\right)^{\frac{1}{k}-1}+g^{M} \leq \frac{1}{k} g^{\frac{L}{k}-M+1-\frac{1}{k}}+g^{M}
\end{aligned}
$$

which gives the desired result.

3 Lower bound

Most certainly, our result is not tight and there should be very few palindromes which are k-powers. We note that the standard naïve heuristic predictions suggests that

$$
\# \mathcal{Q}_{g, L}^{2} \approx \sum_{n \in \mathcal{P}_{g, L}} \frac{1}{n^{1 / 2}} \sim L \log g
$$

and

$$
\# \mathcal{Q}_{g, L}^{k} \approx \sum_{n \in \mathcal{P}_{g, L}} \frac{1}{n^{1-1 / k}}<\infty
$$

for $k \geq 3$.
However, the above heuristic is wrong and in fact it is easy to show that if $g>k$!, then there are infinitely many palindromic k-powers. To see this, observe that the polynomial $\left(x^{H}+1\right)^{k}$ is symmetric and all its coefficients are at most k !. Thus, for $x=g^{\ell}$ and $g>k$!, we obtain palindromic kth-powers. But the following theorem is stronger and unexpected.

Theorem. Given $k \geq 2$, there exists a positive constant $c=c(k)$ depending on k such that if $g \geq g(k)$, then

$$
\# \mathcal{Q}_{g, L}^{k} \gg L^{c g^{1 /\lfloor k / 2\rfloor}}
$$

Proof. It is clear that the k-power of a symmetric polynomial is also symmetric. So, we consider $f(x)=\sum_{a \in A} x^{a}$ for a symmetric set A with max $A=L$ and $\min A=0$. We have that

$$
f^{k}(x)=\sum_{n} r_{k}(n, A) x^{n}
$$

where

$$
r_{k}(n, A)=\#\left\{\left(a_{1}, \ldots, a_{k}\right): n=a_{1}+\cdots+a_{k}, a_{i} \in A\right\} .
$$

Of course, if $\max r_{k}(n, A) \leq g-1$, then $\sum_{n} r_{k}(n, A) g^{n}$ is a palindromic k-power since $r_{k}(k L-n, A)=r(n, A)$.

Next, we give a lower bound for the number of symmetric sets A with $\max A=L, \min A=0$, and $\max r_{k}(n, A) \leq g-1$.

Let $H=\lfloor(L-1) / 2\rfloor\}$, and let $B \subset\{1, \ldots, H\}$ be a subset with the property that all the quantities $\sum_{b \in U} b-\sum_{b \in U^{\prime}} b$, with disjoint multisets U and U^{\prime} of B, are distinct $(\bmod L)$. We will refer to this property as property P.

Claim 1. If B satisfies property P and $|B| \geq 2$, then set $A=\{0, L\} \cup B \cup$ $(L-B)$ is symmetric and satisfies

$$
\max r_{k}(n, A) \leq 2 k!(\# B)^{\lfloor k / 2\rfloor}
$$

Proof. The summands of any representation of n as a sum of k elements of A can be ordered as

$$
n=\sum_{b \in U_{1}} b+\sum_{b \in U_{2}}(L-b)+\sum_{b \in U_{3}}(b+(L-b))+\sum_{x \in U_{4}} x,
$$

where U_{1}, U_{2}, U_{3} are non decreasing sequences of elements of B with $U_{1} \cap U_{2}=$ \emptyset, U_{4} is a non decreasing sequence of elements of $\{0, L\}$, and $\# U_{1}+\# U_{2}+$ $2 \# U_{3}+\# U_{4}=k$.

Since $n \equiv \sum_{b \in U_{1}} b-\sum_{b \in U_{2}} b(\bmod L)$, and B has property P, the sequences U_{1} and U_{2} are determined by n. We observe also that, given n, the sequence U_{4} is determined by $\# U_{3}$. Thus, the different representations of n in this form all come from the $\# B$ possible elections for each $b_{i}, 1 \leq i \leq \# U_{3}$, and the k ! different order in the presentations of the k elements. Since $\# U_{3} \leq k / 2$, we have that

$$
r_{k}(n, A) \leq k!\sum_{r=0}^{\lfloor k / 2\rfloor}(\# B)^{r} \leq 2 k!(\# B)^{\lfloor k / 2\rfloor}
$$

So, each set $B \subset\{1, \ldots, H\}$ with $2 \leq \# B \leq\left(\frac{g-1}{2 k!}\right)^{1 /\lfloor k / 2\rfloor}$ satisfying property P provides the k-power palindrome $\left(g^{L}+\sum_{b \in B}\left(g^{b}+g^{L-b}\right)+1\right)^{k}$.

Next, we estimate from below the number of subsets $B \subset\{1, \ldots, H\}$, with cardinality $t=\left\lfloor\left(\frac{g-1}{2 k!}\right)^{1 /\lfloor k / 2\rfloor}\right\rfloor$ satisfying property P.

We observe that B doesn't satisfies property P if there exist disjoint multisets U_{1} and U_{2} with elements in B such that $\sum_{b \in U_{1}} b-\sum_{b \in U_{2}} b=j L$, for some $j \in[-k, k]$.

In the first step, we choose any element $b_{1} \in B$ from $\{1, \ldots, H\}$, except those elements of B which are in the form $L, L / 2, \ldots, L / k$. If such an element cannot be choen, then B cannot satisfy property P.

Assume that $r \in\{1, \ldots, t-1\}$, and b_{1}, \ldots, b_{r} have been chosen. We take b_{r+1} to be any of the elements of $\{1, \ldots, H\}$ except for the previous ones, and those elements x such that there exists disjoint multisets U_{1} and U_{2} destroying property P, one of them containing x. Since the number of exceptions depends on t and k, but not on H, we have that once b_{1}, \ldots, b_{r} are chosen, we have $H+O_{k, t}(1)$ possibilities for b_{r+1}. Thus, the number of such sets of cardinality t chosen in this way is $\left(H+O_{k, t}(1)\right)^{t}$. But, since the same set can be ordered in t ! different ways, we have that the number of sets B satisfying property P is $\geq\left(H+O_{t, k}(1)\right)^{t} / t!\gg L^{t}$, as $L \rightarrow \infty$.

Finally, it easy to check that for $g>2^{\lfloor k / 2\rfloor+1} k!+1$, we have that $t \geq$ $c g^{1 /\lfloor k / 2\rfloor}$, where $c=\frac{1}{2}(4 k!)^{-1 /\lfloor k / 2\rfloor}$.

Certainly, obtaining tighter lower and upper bounds on $\# \mathcal{Q}_{g, L}$ is an interesting open question.

On the other hand, we have not been able to produce a similar explicit construction of k-powers palindromes for $g \leq k!$. In particular we don't know if there are infinitely many squares among binary palindromes (see also [5], where this questions has also been mentioned).

Acknowledgements

During the preparation of this paper, J. C. was supported in part by Grant MTM 2005-04730 of MYCIT, F. L. was supported in part by Grant SEPCONACyT 46755, and I. S. by ARC Grant DP0556431.

References

[1] W. Banks, D. Hart and M. Sakata, 'Almost all palindromes are composite', Math. Res. Lett., 11 (2004), 853-868.
[2] W. Banks and I. Shparlinski, 'Prime divisors of palindromes', Period. Math. Hungar., 51 (2005), 1-10.
[3] W. Banks and I. Shparlinski, 'Average value of the Euler function on binary palindromes', Bull. Polish Acad. Sci. Math, 54 (2006), 95-101.
[4] S. Hernández Hernández and F. Luca, 'Palindromic powers', Rev. Colombiana Mat., 40 (2006), 81-86.
[5] I. Korec, 'Palindromic squares for various number system bases', Math. Slovaca, 41 (1991), 261-276.
[6] F. Luca, 'Palindromes in Lucas sequences', Monatsh. Math., 138 (2003), 209-223.

