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ABSTRACT. When A and B are subsets of the integers in [1, X] and [1, Y ] respectively,

with |A| ≥ αX and |B| ≥ βX , we show that the number of rational numbers expressible

as a/b with (a, b) in A × B is � (αβ)1+εXY for any ε > 0, where the implied constant

depends on ε alone. We then construct examples that show that this bound cannot in

general be improved to � αβXY . We also resolve the natural generalisation of our

problem to arbitrary subsets C of the integer points in [1, X]× [1, Y ]. Finally, we apply

our results to answer a question of Sárközy concerning the differences of consecutive

terms of the product sequence of a given integer sequence.

1. INTRODUCTION

When A and B are intervals in the integers in [1, X] and [1, Y ] respectively, satisfying
|A| ≥ αX and |B| ≥ βY , where X , Y real numbers ≥ 1, α, β are real numbers in
(0, 1], a standard application of the Möbius inversion formula shows that the number
of rational numbers a/b with (a, b) in A×B is� αβXY .

Our purpose is to investigate what might be deduced when in place of intervals we
consider arbitrary subsets A and B of the integers in [1, X] and [1, Y ] respectively with
|A| ≥ αX and |B| ≥ βY . When A and B are not intervals, it may happen that an
abnormally large number of elements of these sets are multiples of certain integers,
determining which in general is not easy. Nevertheless, since the sets under consider-
ation are large, popular heuristics suggest that a non-trivial conclusion should still be
accessible. What is pleasing is that we in fact have the following theorem, which is our
principal conclusion. In the statement of this theorem and thereafter we write A/B to
denote the subset of Q consisting of all rational numbers expressible as a/b with (a, b)

in A×B for any A and B subsets of the integers ≥ 1.

THEOREM 1.1. — Let α and β be real numbers in (0, 1] and X and Y real numbers ≥ 1.
When A and B are subsets of the integers in [1, X] and [1, Y ] respectively, with |A| ≥ αX and
|B| ≥ βY we have |A/B| � (αβ)1+εXY for any ε > 0, where the implied constant depends
on ε alone.
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Deferring the detailed proof of Theorem 1.1 to Section 2, let us summarize our argu-
ment with the aid of the following notation. For any integer d ≥ 1, A and B subsets
of the integers ≥ 1, we write M(A, B, d) to denote the subset of A × B consisting of
all (a, b) in A × B with gcd(a, b) = d. We show in Proposition 2.1 that for A and B

as in Theorem 1.1 we have supd≥1 |M(A, B, d)| ≥ 1
8
(αβ)2XY . Starting from this initial

bound we then obtain supd≥1 |M(A, B, d)| � (αβ)1+εXY by a bootstrapping argument.
Theorem 1.1 follows immediately from this last bound, since for any integer d ≥ 1 we
have a/b 6= a1/b1 for any two points (a, b) and (a1, b1) of M(A, B, d), and therefore
|A/B| ≥ supd≥1 |M(A, B, d)|.

We supplement Theorem 1.1 with the following result which shows that the bound
provided by Theorem 1.1 cannot be replaced with |A/B| � αβXY . This bound, as we
have already remarked, holds when A and B are intervals.

THEOREM 1.2. — For any ε > 0, there exists α > 0 such that for all sufficiently large X there
exists a subset A of the integers in [1, X] satisfying |A| ≥ αX and |A/A| < εα2X2.

We prove Theorem 1.2 in Section 3. Our method depends on the observation that
for any ε > 0 and any set of prime numbers P with |P| sufficiently large, we have
|S(P)/S(P)| ≤ ε|S(P)|2 , where S(P) is the set of squarefree integers d formed from
the primes in the subsets of P containing about half the primes in P . By means of this
observation we deduce that, for a suitable P , the set of multiples of the elements of
S(P) in [1, X], meets the conditions of Theorem 1.2.

The questions answered by the above theorems may be viewed as particular cases of
a more general problem namely, for X and Y real numbers ≥ 1 and γ in (0, 1], given
a subset C of the integer points in [1, X] × [1, Y ] satisfying |C| ≥ γXY , to determine
in terms of γ, X and Y an optimal lower bound for Frac(C), the number of rational
numbers a/b with (a, b) in C. Plainly, the above theorems take up the special case
when C is of the form A × B, that is, when C is equal to the product of its projections
onto the co-ordinate axes.

It turns out, however, that aforementioned general problem is somewhat easily re-
solved. In effect, the method of Proposition 2.1 generalizes without additional effort
to give the bound |Frac(C)| ≥ 1

8
γ2XY and, interestingly, this bound is in fact optimal

upto the constant 1
8
. More precisely, we have the following theorem.

THEOREM 1.3. — For any γ in (0, 1] and all sufficiently large X and Y there exists a subset
C of the integer points in [1, X]× [1, Y ] satisfying |C| ≥ γ

8
XY and |Frac(C)| ≤ γ2

2
XY .

We prove Theorem 1.3 at the end of Section 3 by explicitly describing sets C that satisfy
the conditions of this theorem. Such sets are in general far from being of the form
A × B, which is only natural on account of Theorem 1.1. Indeed, our bootstrapping
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argument for Theorem 1.1 depends crucially on the fact that this theorem is, from the
more general point view, about sets C which are of the form A×B.

We conclude this note with Section 4 where we apply Theorem 1.1 to obtain a near-
optimal answer to the following question of Sárközy. When A, B are sequences of
integers, let A.B be the sequence whose terms are the integers of the form ab, for some
a ∈ A, b ∈ B. Then Sárközy [4] asks if it is true that for any α > 0 and A such that the
lower asymptotic density d(A) > α there is a c(α) such that there are infinitely many
pairs of consecutive terms of A.A the difference between which is bounded by c(α).

Berczi [1] responded to the aforementioned question of Sárközy by showing that the
minimum of the differences between consecutive terms of A.A is � 1

α4 , where α =

d(A). Sandor [3] subsequently improved this by showing that this minimum is in fact
� 1

α3 , with α now the upper asymptotic density d(A) of A. Cilleruelo and Le [2]
obtained the same bound when α is the upper Banach density of A and showed that
this is the best possible bound for this density. The following result improves upon
and generalizes Sandor’s conclusion.

THEOREM 1.4. — Let α and β be real numbers in (0, 1] and let ε be > 0. When A and B are
infinite sequences of integers with upper asymptotic densities α and β respectively, there are
infinitely many pairs of consecutive terms of the product sequence A.B the difference between
which is� 1

(αβ)1+ε , where the implied constant depends on ε alone.

When A and B are the sequences of multiples of the integers h and k respectively, the
difference between any two consecutive terms of the sequence A.B is ≥ hk. Since we
have d(A) = 1

h
and d(B) = 1

k
, we see that the conclusion of Theorem 1.4 is optimal up

to a factor 1
(αβ)ε .

Throughout this note, X , Y shall denote real numbers ≥ 1 and α, β, γ real numbers in
(0, 1]. Also, the letter p shall denote a prime number. When I and J are subsets of a
given set, I \ J shall denote the set of elements of I that are not in J . In addition to the
notation introduced so far, we shall write Ad to denote the subset of a set of integers A

consisting of all multiples of d in A for any integer d. Finally, if B = {b} with b ≥ 1, we
simply write A/b in place of A/B, by an abuse of notation.

2. PROOF OF THE BOUND

Let A and B be finite subsets of the integers≥ 1. Then the family of subsetsM(A, B, d)

of A × B, with d varying over the integers ≥ 1, is a partition of A × B. Consequently,
we have

(1) |A×B| =
∑
d≥1

|M(A, B, d)| .
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When A and B are contained in [1, X] and [1, Y ] respectively, we have |Ad| ≤ X/d and
|Bd| ≤ Y/d, for any d ≥ 1. Since M(A, B, d) is contained in Ad × Bd, we then obtain
|M(A, B, d)| ≤ |Ad||Bd| ≤ XY

d2 , for all d ≥ 1.

PROPOSITION 2.1. — When A and B are subsets of the integers in the intervals [1, X] and
[1, Y ] respectively, with |A| ≥ αX and |B| ≥ βY , we have supd≥1 |M(A, B, d)| ≥ (αβ)2XY

8
.

PROOF.— We adapt an argument from [2]. From (1) we have for any integer T ≥ 1 that

(2) |A×B| =
∑

1≤d≤T

|M(A, B, d)|+
∑
T<d

|M(A, B, d)| ≤
∑

1≤d≤T

|M(A, B, d)|+ XY

T
,

where the last inequality follows from
∑

T<d |M(A, B, d)| ≤
∑

T<d
XY
d2 ≤ XY

T
. Since

|A×B| ≥ αβXY we conclude from (2) that

(3) sup
d≥1

|M(A, B, d)| ≥ 1

T

∑
1≤d≤T

|M(A, B, d)| ≥
(

αβ − 1
T

T

)
XY

for any integer T ≥ 1. Since 2 > αβ, the interval [ 2
αβ

, 4
αβ

] contains an integer ≥ 1. The
proposition now follows on setting T in (3) to be any such integer.

DEFINITION 2.1— We call a real number δ an admissible exponent if there exists a real
number C > 0 such that for any α, β real numbers in (0, 1], any X , Y real numbers
≥ 1 and any subsets A and B of the integers in [1, X] and [1, Y ] with |A| ≥ αX and
|B| ≥ βY , we have supd≥1 |M(A, B, d)| ≥ C(αβ)δXY . We call a C satisfying these
conditions a constant associated to the admissible exponent δ.

Proposition 2.1 says that δ = 2 is an admissible exponent. Proposition 2.2 will allow us
to conclude that every δ > 1 is an admissible exponent. The following lemma prepares
us for an application of Hölder’s inequality within the proof of Proposition 2.2.

For any integer n ≥ 1 let τ(n) denote, as usual, the number of integers ≥ 1 that divide
n. When D is an integer ≥ 1 we write τD(n) to denote the number of divisors d of n

satisfying the condition p|d =⇒ p ≤ D for any prime number p.

LEMMA 2.1. — When q is an integer ≥ 0 there is a real number c(q) > 0 such that for all real
numbers X ≥ 1 and integers D ≥ 1 we have

(4)
∑

1≤n≤X

τD(n)q ≤ c(q)DX ,

PROOF.— In effect, we have
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(5)
∑

1≤n≤X

τD(n)q � X(log 2D)2q � (2q!) DX ,

where the implied constants are absolute. Plainly, the second inequality results from
the elementary inequality (log t)n ≤ n! t for t ≥ 1. We now prove the first inequality in
(5). Let us write D for the set of integers m satisfying the condition p|m =⇒ p ≤ D.
For any integer n ≥ 1, let k(n) be the largest of the divisors of n lying in D. We then
have that

(6)
∑

1≤n≤X

τD(n)q =
∑

1≤m≤X,

m∈D

τ(m)q
∑

1≤n≤X,

k(n)=m

1 ≤ X
∑
m∈D

τ(m)q

m
,

where we have used the upper bound X/m for the number of integers n in [1, X] with
k(n) = m. Let us write S(q) for any integer q ≥ 0 to denote the last sum in (6). Since
Merten’s formula gives

∏
1≤p≤D(1 − 1

p
) ∼ e−γ

log D
, with γ here being Euler’s constant, we

have

(7) S(0) =
∑
m∈D

1

m
=

∏
1≤p≤D

(
1 +

1

p
+

1

p2
+ . . .

)
=

∏
1≤p≤D

(
1− 1

p

)−1

� log 2D ,

where the implied constant is absolute. On noting that every divisor of an integer in D
is again in D and using τ(dk) ≤ τ(d)τ(k), valid for any integers d and k ≥ 1, we obtain

(8)
∑
m∈D

τ(m)q

m
=
∑
m∈D

τ(m)q−1

m

∑
d|m

1 =
∑

(d,k)∈D×D

τ(dk)q−1

dk
≤

(∑
d∈D

τ(d)q−1

d

)2

.

In other words, S(q) ≤ S(q − 1)2, for any q ≥ 1. An induction on q then shows that
for any integer q ≥ 0 we have S(q) ≤ S(0)2q � (log D)2q , where the implied constant is
absolute. On combining this bound with (6) we obtain the first inequality in (5).

PROPOSITION 2.2. — If δ > 1 is an admissible exponent then so is 3δ(1+1/q)−2
2δ−1

for every
integer q ≥ 1.

PROOF.— Let q be a given integer≥ 1 and, for the sake of conciseness, let us write δ′ to
denote 3δ(1+1/q)−2

2δ−1
, which is > 1 since δ > 1.

When C is a constant associated to δ, let us set C ′ to be the unique real number > 0

satisfying

(9)
1

8C ′ =

(
C ′

C

) 1
2(δ−1)

8
δ

δ−1 (4c(q))
δ

q(δ−1) ,
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where c(q) is the implied constant in (4) of Lemma 2.1. It is easily seen from (9) that by
replacing C with a smaller constant associated to δ if necessary we may assume that
1
4
≥ C ′.

We shall show that δ′ is an admissible exponent with C ′ a constant associated to δ′.
Thus let α, β be real numbers in (0, 1] and X , Y real numbers ≥ 1. Also, let A and B be
any subsets of the integers in [1, X] and [1, Y ] satisfying |A| ≥ αX and |B| ≥ βY . We
shall show that

(10) sup
d≥1

|M(A, B, d)| ≥ C ′(αβ)δ′XY .

Replacing α and β with α′ ≥ α and β′ ≥ β such that α′ ≤ |A| ≤ 2α′ and β′ ≤ |B| ≤ 2β′

if necessary, we reduce to the case when |A| ≤ 2αX and |B| ≤ 2βY .

Let us first dispose of the possibility that an abnormally large number of the integers
in A and B are multiples of a given integer. Thus let αd = |Ad|/X and βd = |Bd|/Y , for
any integer d ≥ 1. Suppose that there exists an integer d ≥ 1 such that

(11) αdβd ≥
(

C ′

C

) 1
δ

(αβ)
δ′
δ d

2
δ
−2 .

Then Ad and Bd are both non-empty and therefore X and Y are both ≥ d. Further,
the sets Ad/d and Bd/d are subsets of the integers in [1, X/d] and [1, Y/d]. Since δ is an
admissible exponent, C a constant associated to δ, and we have |Ad/d| = (dαd)|X/d|,
|Bd/d| = (dβd)|X/d|, there exists an integer d′ ≥ 1 such that

(12) |M(Ad/d, Bd/d, d′)| ≥ C(d2αdβd)
δ XY

d2
≥ C ′(αβ)δ′XY ,

where the last inequality follows from (11). Since |M(Ad/d, Bd/d, d′)| does not exceed
|M(A, B, dd′)|, we obtain (10) from (12). We may therefore verify (10) assuming that
for every integer d ≥ 1 we have

(13) αdβd <

(
C ′

C

) 1
δ

(αβ)
δ′
δ d

2
δ
−2 .

With the aid of (13) we shall in fact obtain a more precise conclusion than (10). Let us

set K = (αβ)1−δ′

8C′ and L = 1 + [K]. We shall show that

(14)
1

L

∑
1≤d≤L

|M(A, B, d)| ≥ C ′(αβ)δ′XY ,

so that we have |M(A, B, d)| ≥ C ′(αβ)δ′XY for some integer d ≤ L , which of course

implies (10). Note that since L is roughly about (αβ)1−δ′

C′ , (14) is what one might expect
from (1).
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Let D be an integer in [ 2
αβ

, 4
αβ

]. Thus in particular D > 1. When L ≥ D we obtain (14)
even without (13). In effect, we then have K ≥ 1 and hence that L < 2K or, what is
the same thing, that L < (αβ)1−δ′

4C′ from which (14) follows on noting that for any integer
T ≥ D, and in particular for T = L, we have from (3) that

(15)
1

T

∑
1≤d≤T

|M(A, B, d)| ≥
(

αβ − 1
T

T

)
XY ≥

(
αβ − 1

D

T

)
XY ≥ αβXY

2T
.

Suppose now that 1 ≤ L < D. Let us first verify that for any integer T such that
1 ≤ T < D we have the following inequality on account of (13).

(16)∑
T<d≤D

|M(A, B, d)| ≤
(

C ′

C

) 1
2δ

(αβ)
δ′
2δ T

1
δ
−1 (XY )

1
2

( ∑
T<d≤D

|Ad|

) 1
2
( ∑

T<d≤D

|Bd|

) 1
2

.

Indeed, for any integer d satisfying T < d ≤ D we have that

(17) |Ad||Bd| = (αdXβdY )
1
2 |Ad|

1
2 |Bd|

1
2 ≤

(
C ′

C

) 1
δ

(αβ)
δ′
2δ T

1
δ
−1 (XY )

1
2 |Ad|

1
2 |Bd|

1
2 ,

where the last inequality follows from (13) on noting that d
1
δ
−1 ≤ T

1
δ
−1 for d satisfying

T < d ≤ D, since δ ≥ 1. On combining the bound |M(A, B, d)| ≤ |Ad||Bd| with (17)
and an application of the Cauchy-Schwarz inequality we obtain (16).

We now estimate the sums on the right hand side of (16). An application of Hölder’s
inequality gives

(18)
∑

T<d≤D

|Ad| =
∑

T<d≤D

∑
n∈A,

d|n

1 ≤
∑
n∈A

τD(n) ≤ |A|1−
1
q

( ∑
1≤n≤X

τD(n)q

) 1
q

.

From Lemma 2.1 we have the upper bound c(q)DX for the last sum in (18). Since
|A| ≤ 2αX and D ≤ 4

αβ
, we deduce from (18) that

(19)
∑

T<d≤D

|Ad| ≤ (2α)1− 2
q β−

1
q (4c(q))

1
q X.

Arguing similarly, we obtain the bound

(20)
∑

T<d≤D

|Bd| ≤ (2β)1− 2
q α−

1
q (4c(q))

1
q Y.

With these estimates we conclude from (16) that for any integer T satisfying 1 ≤ T < D

we have
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(21)
∑

T<d≤D

|M(A, B, d)| ≤ 2

(
C ′

C

) 1
2δ

(αβ)
δ′
2δ

+ 1
2
− 3

2q T
1
δ
−1(4c(q))

1
q XY ,

We now reveal that our choices for C ′ and δ′ were made so that K satisfies the relation

(22) 2

(
C ′

C

) 1
2δ

(αβ)
δ′
2δ

+ 1
2
− 3

2q K
1
δ
−1(4c(q))

1
q =

αβ

4
,

as may be confirmed by a modest calculation using the expressions defining C ′ and δ′

in terms of C and δ.

We see that
∑

L<d≤D |M(A, B, d)| ≤ αβ
4

XY using (21) for T = L together with (22) and
noting that K < L. Since (15) applied with T = D gives us

∑
1≤d≤D |M(A, B, d)| ≥

αβ
2

XY , we conclude that when 1 ≤ L < D we have

(23)
1

L

∑
1≤d≤L

|M(A, B, d)| ≥ αβ

4L
XY .

If L = 1 we obtain (14) from (23) on noting that αβ
4
≥ C ′(αβ)δ′ , since 1

4
≥ C ′ and 1 ≤ δ′.

When 1 < L < D we have 1 ≤ K and hence L < (αβ)1−δ′

4C′ so that (14) results from (23) in
this final case as well.

COROLLARY 2.1. — Every δ > 1 is an admissible exponent.

PROOF. — Let q be any integer ≥ 4 and let {δn(q)}n≥1 the sequence of real numbers
determined by the relations δ1(q) = 2 and

(24) δn+1(q) =
3δn(q)

(
1 + 1

q

)
− 2

2δn(q)− 1

for n ≥ 1. Then each δn(q) is an admissible exponent by Propositions 2.1 and 2.2. It is
easily verified that the sequence δn(q) is decreasing and has a limit δ(q) given by the
relation

(25) δ(q) = 1 +
3

4q
+

1

2

√
6

q
+

9

4q2
.

Plainly, any δ > δ(q) is an admissible exponent. The corollary now follows on taking q

arbitrarily large in (25).

Theorem 1.1 follows from the above corollary and the definition of admissible expo-
nents on recalling that |A/B| ≥ supd≥1 |M(A, B, d)|.

3. COUNTEREXAMPLES
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Let us first prove Theorem 1.2. To this end, given an integer m ≥ 1 let P denote any set
of 2m prime numbers and, for any subset I of P , let d(I) =

∏
p∈I p. If S(P) denotes the

set of all d(I) with |I| = m, we have the following lemma.

LEMMA 3.1. — For any ε > 0, we have |S(P)/S(P)| ≤ ε|S(P)|2 for all sufficiently large m.

PROOF. — Plainly, we have |S(P)| =
(
2m
m

)
. Let Q be the set of ordered pairs of disjoint

subsets of P . Then, for any I and J subsets of P , we have

(1)
d(I)

d(J)
=

d(I \ J)

d(J \ I)
,

and since I \ J and J \ I are disjoint, (I \ J, J \ I) is in Q. Thus |S(P)/S(P)| ≤ |Q|. Let
us associate any (U, V ) in Q to the map from P to the three element set {1, 2, 3} that
takes U to 1, V to 2 and the complement of U ∪ V in P to 3. It is easily seen that this
association in fact gives a bijection from Q onto the set of maps from P to {1, 2, 3} and
hence that |Q| = 32m. In summary, we deduce that

(2) |S(P)/S(P)| ≤ |Q| = 32m =
32m(
2m
m

)2 |S(P)|2 ≤ (2m + 1)2

(
3

4

)2m

|S(P)|2 ,

where we have used the inequality
(
2m
m

)
≥ 22m

2m+1
. The lemma follows from (2) on noting

that (2m + 1)2
(

3
4

)2m → 0 as m → +∞.

PROOF OF THEOREM 1.2. — Given an integer m ≥ 1, it is easily deduced from the
prime number theorem that the interval [T, T + T/m] contains at least 2m prime num-
bers when T is sufficiently large. For such a T , let P be a subset of 2m prime numbers
in [T, T + T/m]. If A(P) is the sequence of integers ≥ 1 that are divisible by at least
one of the integers d(I) in S(P) then a simple application of the principle of inclusion
and exclusion implies that A(P) has an asymptotic density α(P) that is given by the
relation

(3) α(P) =
∑

1≤r≤(2m
m )

(−1)r+1
∑

1≤i1<i2...<ir≤(2m
m )

1

d(Ii1 ∪ Ii2 . . . ∪ Iir)
,

where I1, I2, . . . , I(2m
m ) are the subsets of cardinality m in P .

For any i we have Tm ≤ d(Ii) ≤ (1 + 1
m

)mTm < eTm. Consequently, for the term r = 1

in (3) we obtain

(4)
∑

1≤i≤(2m
m )

1

d(Ii)
≥
(
2m
m

)
eTm

.
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When r ≥ 2, we have that d(Ii1 ∪ Ii2 . . . ∪ Iir), for any distinct indices i1, i2 . . . , ir, has at
least k+1 prime factors in P and hence is≥ Tm+1. It follows from (3) and these bounds
that we have

(5) α(P) ≥
(
2m
m

)
eTm

− 2(2m
m )

Tm+1
≥
(
2m
m

)
3Tm

when T is sufficiently large. In particular, on recalling that |S(P)| =
(
2m
m

)
, we obtain

that for any integer m ≥ 1, we have

(6) α(P) ≥ |S(P)|
3Tm

for all sufficiently large T and P any set of 2m prime numbers in [T, T + T/m].

Finally, for P as above and any X ≥ 1, let us set A = A(P) ∩ [1, X]. Since α(P) is the
asymptotic density of A(P), we have from (6) that |A| ≥ |S(P)|

4T m X , for all large enough
X and T . Clearly, each integer in A is of the form d(I)n, for some d(I) in S(P) and
an integer n, which must necessarily be ≤ X

T m , since A is in [1, X] and d(I) ≥ Tm.
Consequently, we have we have |A/A| ≤ |S(P)/S(P)|

T 2m X2, for all large enough X and
T . On comparing |A| and |A/A| by means of Lemma 3.1, we see that A meets the
conditions of Theorem 1.2 when m, T and X are all sufficiently large.

PROOF OF THEOREM 1.3. — The number of primitive integer points, that is, integer
points with coprime co-ordinates, in [1, γX]× [1, γY ] is ∼ 6

π2 γ
2XY as X , Y →∞. Thus

for any γ in (0, 1] and all sufficiently large X and Y , there is a subset S of the primitive
integer points in [1, γX]× [1, γY ] satisfying γ2

4
XY ≤ |S| ≤ γ2

2
XY . Let us take for C the

union of the sets d.S with d varying over the interval [1, 1
γ
], where each d.S is the set

of (da, db) with (a, b) varying over S. Then C is contained in [1, X] × [1, Y ]. Moreover,
the sets d.S are disjoint but Frac(d.S) = Frac(S), for each d, and |Frac(S)| = |S|. We
therefore have |C| = [ 1

γ
]|S| ≥ γ

8
XY but |Frac(C)| = |Frac(S)| = |S| ≤ γ2

2
XY .

4. GAPS IN PRODUCT SEQUENCES

We now deduce Theorem 1.4 from Theorem 1.1. Let A and B be sequences with upper
asymptotic densities α and β. Then there exist infinitely many real numbers X and
Y ≥ 1 such that |A ∩ (X

2
, X]| ≥ αX

4
and |B ∩ (Y

2
, Y ]| ≥ βY

4
. For such X and Y let us

apply Theorem 1.1 to the sets A = A ∩ (X
2
, X] and B = B ∩ (Y

2
, Y ]. We then have that

|A/B| � (αβ)1+εXY , where the implied constant depends on ε alone. Since A/B is a
subset of the interval [ X

2Y
, 2X

Y
], which is of length X

Y
, we deduce that there are distinct

a/b and a′/b′ in A/B such that

(1) 0 <

∣∣∣∣ab − a′

b′

∣∣∣∣� X/Y

(αβ)1+εXY
=

1

(αβ)1+εY 2
.
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Since |bb′| ≤ Y 2, it follows from (1) that difference between the distinct terms ba′ and
b′a of the product sequence A.B is� 1

(αβ)1+ε . Since there are infinitely many distinct X

and Y satisfying the required conditions, there are infinitely many such pairs of terms
in the product sequence A.B.
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