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GENERALIZED SIDON SETS

JAVIER CILLERUELO, IMRE Z. RUZSA, AND CARLOS VINUESA

Abstract. We give asymptotic sharp estimates for the cardinality of a set of residue
classes with the property that the representation function is bounded by a prescribed
number. We then use this to obtain an analogous result for sets of integers, answering
an old question of Simon Sidon.

1. Introduction

A Sidon set A in a commutative group is a set with the property that the sums
a1 + a2, ai ∈ A are all distinct except when they coincide because of commutativity.
We consider the case when, instead of that, a bound is imposed on the number of such
representations. When this bound is g, these sets are often called B2[g] sets. This being
both clumsy and ambiguous, we will avoid it, and fix our notation and terminology
below.

Our main interest is in sets of integers and residue classes, but we formulate our
concepts and some results in a more general setting.

Let G be a commutative group.

Definition 1.1. For A ⊂ G, we define the corresponding representation function as

r(x) = ♯{(a1, a2) : ai ∈ A, a1 + a2 = x}.
The restricted representation function is

r′(x) = ♯{(a1, a2) : ai ∈ A, a1 + a2 = x, a1 6= a2}.
Finally, the unordered representation function r∗(x) counts the pairs (a1, a2) where
(a1, a2) and (a2, a1) are identified. With an ordering given on G (not necessarily in any
connection with the group operation) we can write this as

r∗(x) = ♯{(a1, a2) : ai ∈ A, a1 + a2 = x, a1 ≤ a2}.

These functions are not independent; we have always the equality

r∗(x) = r(x) − r′(x)

2
and the inequalities

r′(x) ≤ r(x) ≤ 2r∗(x).
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We have r(x) = r′(x) except for x = 2a with a ∈ A. If we are in this last case and there
are no elements of order 2 in G, then necessarily r(x) = r′(x) + 1, and the quantities
are more closely connected:

r′(x) = 2

⌊

r(x)

2

⌋

, r∗(x) =

⌈

r(x)

2

⌉

.

This is the case in Z, or in Zq for odd values of q. For even q this is not necessarily
true, but both for constructions and estimates the difference seems to be negligible, as
we shall see. In a group with lots of elements of order 2, like in Z

m
2 , the difference is

substantial.

Observe that r and r′ make sense in a noncommutative group as well, while r∗ does
not.

Definition 1.2. We say that A is a g-Sidon set, if r(x) ≤ g for all x. It is a weak

g-Sidon set, if r′(x) ≤ g for all x. It is an unordered g-Sidon set, if r∗(x) ≤ g for all x.

Note 1.3. When we have a set of integers C ⊆ [1, m], we say that it is a g-Sidon set
(mod m) if the residue classes {c (mod m) : c ∈ C} form a g-Sidon set in Zm.

The strongest possible of these concepts is that of an unordered 1-Sidon set, and this
is what is generally simply called a Sidon set. A weak 2-Sidon set is sometimes called
a weak Sidon set.

These concepts are closely connected. If there are no elements of order 2, then 2k-
Sidon sets and unordered k-Sidon sets coincide, in particular, a Sidon set is the same
as a 2-Sidon set. Also, in this case (2k + 1)-Sidon sets and weak 2k-Sidon sets coincide.
Specially, a 3-Sidon set and a weak 2-Sidon set are the same.

Our aim is to find estimates for the maximal size of a g-Sidon set in a finite group,
or in an interval of integers.

1.1. The origin of the problem: g-Sidon sets in the integers. In 1932, the analyst
S. Sidon asked to a young P. Erdős about the maximal cardinality of a g-Sidon set of
integers in {1, . . . , n}. Sidon was interested in this problem in connection with the
study of the Lp norm of Fourier series with frequencies in these sets but Erdős was
captivated by the combinatorial and arithmetical flavour of this problem and it was one
of his favorite problems; not in vain it has been one of the main topics in Combinatorial
Number Theory.

Definition 1.4. For a positive integer n

βg(n) = max |A| : A ⊂ {1, . . . , n}, A is a g-Sidon set.

We define β ′
g(n) and β∗

g (n) analogously.

The behaviour of this quantity is only known for classical Sidon sets and for weak
Sidon sets : we have β2(n) ∼ √

n and β3(n) ∼ √
n.

The reason which makes easier the case g = 2 is that 2-Sidon sets have the property
that the differences a − a′ are all distinct. Erdős an Turán [5] used this to prove that
β2(n) ≤ √

n+O(n1/4) and Lindström [9] refined that to get β2(n) ≤ √
n+n1/4 +1. For

weak Sidon sets Ruzsa [17] proved that β3(n) ≤ √
n + 4n1/4 + 11.
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For the lower bounds, the classical constructions of Sidon sets of Singer [20], Bose [1]
and Ruzsa [17] in some finite groups, Zm, give β3(n) ≥ β2(n) ≥ √

n(1 + o(1)). Then,

limn→∞
β2(n)√

n
= limn→∞

β3(n)√
n

= 1.

However for g ≥ 4 it has not even been proved that limn→∞ βg(n)/
√

n exists.

For this reason we write

βg = lim sup
n→∞

βg(n)/
√

n and β
g

= lim inf
n→∞

βg(n)/
√

n.

It is very likely that these limits coincide, but this has only been proved for g = 2, 3. A
wide literature has been written with bounds for βg and β

g
for arbitrary g. The trivial

counting argument gives βg ≤ √
2g while the strategy of pasting Sidon sets in Zm in

the obvious way gives β
g
≥
√

g/2.

The problem of narrowing this gap has attracted the attention of many mathemati-
cians in the last years.

For example, while for g = 4 the trivial upper bound gives β4 ≤
√

8, it was proved
in [2] that β4 ≤

√
6, which was refined to β4 ≤ 2.3635... in [15] and to β4 ≤ 2.3218... in

[7].

On the other hand, Kolountzakis [8] proved that β
4
≥

√
2, which was improved to

β
4
≥ 3/2 in [3] and to β

4
≥ 4/

√
7 = 1.5118... in [7].

We describe below the progress done for large g:

βg√
g

≤
√

2 = 1.4142... (trivial)

≤ 1.3180... (J. Cilleruelo - I. Z. Ruzsa - C. Trujillo, [3])
≤ 1.3039... (B. Green, [6])
≤ 1.3003... (G. Martin - K. O’Bryant, [12])
≤ 1.2649... (G. Yu, [22])
≤ 1.2588... (G. Martin - K. O’Bryant, [13])

limg→∞
β

g√
g

≥ 1/
√

2 = 0.7071... (M. Kolountzakis, [8])

≥ 0.75 (J. Cilleruelo - I. Z. Ruzsa - C. Trujillo, [3])
≥ 0.7933... (G. Martin - K. O’Bryant, [11])

≥
√

2/π = 0.7978... (J. Cilleruelo - C. Vinuesa, [4]).

Our main result connects this problem with a quantity arising from the analogous
continuous problem, first studied by Schinzel and Schmidt [18]. Consider all nonnegative
real functions f satisfying f(x) = 0 for all x /∈ [0, 1], and

∫ 1

0

f(t)f(x − t) dt ≤ 1

for all x. Define the constant σ by

(1.1) σ = sup

∫ 1

0

f(x) dx

where the supremum is taken over all functions f satisfying the above restrictions.
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Theorem 1.5.

lim
g→∞

β
g√
g

= lim
g→∞

βg√
g

= σ.

In other words, the theorem above says that the maximal cardinality of a g-Sidon set
in {1, . . . , n} is

βg(n) = σ
√

gn(1 − ε(g, n))

where ε(g, n) → 0 when both g and n go to infinity.

Schinzel and Schmidt [18] and Martin and O’Bryant [13] conjectured that σ =
2/
√

π = 1.1283..., and an extremal function was given by f(x) = 1/
√

πx for 0 < x ≤ 1.
But recently this has been disproved [14] with an explicit f which gives a greater value.
The current state of the art for this constant is

1.1509... ≤ σ ≤ 1.2525...

both bounds coming from [14].

The main difficulty in Theorem 1.5 is establishing the lower bound for lim
β

g√
g
. Indeed

the upper bound lim
βg√

g
≤ σ was already proved in [4] using a result of Schinzel and

Schmidt from [18]. We include however a complete proof of the theorem.

The usual strategy to construct large g-Sidon sets in the integers is pasting large
Sidon sets modulo m in a suitable form. The strategy of pasting g-Sidon sets modulo m
had not been tried before since there were no large enough known g-Sidon sets modulo
m.

Precisely, the heart of the proof of this theorem is the construction of large g-Sidon
sets modulo m.

1.2. g-Sidon sets in finite groups.

Definition 1.6. For a finite commutative group G write

αg(G) = max |A| : A ⊂ G, A is a g-Sidon set.

We define α′
g(G) and α∗

g(G) analogously. For the cyclic group G = Zq, with an abuse
of notation, we write αg(q) = αg(Zq).

An obvious estimate of this quantity is

αg(q) ≤
√

gq.

Our aim is to show that for large g for some values of q this is asymptotically the correct
value. More exactly, write

αg = lim sup
q→∞

αg(q)/
√

q.

The case g = 2 (Sidon sets) is well known, we have α2 = 1. It is also known [17] that
α3 = 1. Very little is known about αg for g ≥ 4.

For g = 2k2, Martin and O’Bryant [11] generalized the well known constructions of

Singer [20], Bose [1] and Ruzsa [17], obtaining αg ≥
√

g/2 for these values of g.

We are unable to exactly determine αg for any g ≥ 4, but we will find its asymptotic
behaviour. Our main result sounds as follows.
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Theorem 1.7. We have

αg =
√

g + O
(

g3/10
)

,

in particular,

lim
g→∞

αg√
g

= 1.

In Section 2, as a warm-up, we give a slight improvement of the obvious upper
estimate.

In Section 3 we construct dense g-Sidon sets in groups Z
2
p. In Section 4 we use this

to construct g-Sidon sets modulo q for certain values of q.

Section 5 is devoted to the proof of the upper bound of Theorem 1.5. In Section 6
we prove the lower bound of Theorem 1.5 pasting copies of the large g-Sidon sets in
Zq which we constructed in Section 4. In these two sections, we connect the discrete
and the continuous world, combining some ideas from Schinzel and Schmidt and some
probabilistic arguments used in [4].

2. An upper estimate

The representation function r(x) behaves differently at elements of 2 · A = {2a : a ∈
A} and the rest; in particular, it can be odd only on this set. Hence we formulate our
result in a flexible form that takes this into account.

Theorem 2.1. Let G be a finite commutative group with |G| = q. Let k ≥ 2 and l ≥ 0
be integers and A ⊂ G a set such that the corresponding representation function satisfies

r(x) ≤
{

k, if x /∈ 2 · A,
k + l, if x ∈ 2 · A.

We have

(2.1) |A| <
√

(k − 1)q + 1 +
l

2
+

l(l + 1)

2(k − 1)
.

Corollary 2.2. Let G be a finite commutative group with |G| = q, and let A ⊂ G be a

g-Sidon set. If g is even, then

|A| ≤
√

(g − 1)q + 1.

If g is odd, then

|A| ≤
√

(g − 2)q +
3

2
+

1

g − 2
.

Indeed, these are cases k = g, l = 0 and k = g − 1, l = 1 of the previous theorem.

Corollary 2.3. Let A ⊂ Zq be a weak g-Sidon set. If q is even, then

|A| ≤
√

(g − 1)q + 2 +
3

g − 1
.

If q is odd, then

|A| ≤
√

(g − 1)q +
3

2
+

1

g − 1
.

To deduce this, we put k = g and l = 2 if q is even, l = 1 if q is odd.



6 JAVIER CILLERUELO, IMRE Z. RUZSA, AND CARLOS VINUESA

Proof. Write |A| = m. We shall estimate the quantity

R =
∑

r(x)2

in two ways.

First, observe that

r(x)2 − kr(x) = r(x) (r(x) − k) ≤
{

0, if x /∈ 2 · A,
l(k + l), if x ∈ 2 · A,

hence

R ≤ k
∑

r(x) + l(k + l) |2 · A| .

Since clearly
∑

r(x) = m2 and |2 · A| ≤ m, we conclude

(2.2) R ≤ km2 + l(k + l)m.

Write

d(x) = ♯{(a1, a2) : ai ∈ A, a1 − a2 = x}.
Clearly d(0) = m. We also have

∑

d(x) = m2, and, since the equations x + y = u + v
and x − u = v − y are equivalent,

∑

d(x)2 = R.

We separate the contribution of x = 0 and use the inequality of the arithmetic and
quadratic mean to conclude

R = m2 +
∑

x 6=0

d(x)2 ≥ m2 +
1

q − 1

(

∑

x 6=0

d(x)

)2

> m2 +
m2(m − 1)2

q
.

A comparison with the upper estimate (2.2) yields

m2(m − 1)2

q
< (k − 1)m2 + l(k + l)m.

This can be rearranged as

(m − 1)2 < (k − 1)q +
l(k + l)q

m
.

Now if m <
√

(k − 1)q, then we are done; if not, we use the opposite inequality to
estimate the second summand and we get

(m − 1)2 < (k − 1)q +
l(k + l)

√
q√

k − 1
.

We take square root and use the inequality
√

x + y ≤ √
x + y

2
√

x
to obtain

m − 1 <
√

(k − 1)q +
l(k + l)

2(k − 1)

which can be written as (2.1). �
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3. Construction in certain groups

In this section we construct large g-Sidon sets in groups G = Z
2
p, for primes p. We

shall establish the following result.

Theorem 3.1. Given k, for every sufficiently large prime p ≥ p0(k) there is a set A⊆Z
2
p

with kp − k + 1 elements which is a g-Sidon set for g = ⌊k2 + 2k3/2⌋.

Observe that the trivial upper bound in this case is

|A| ≤ √
gq ≤ kp

√

1 +
2√
k

< (k +
√

k)p.

Proof. Let p be a prime. For every u 6≡ 0 in Zp consider the set

Au =

{(

x,
x2

u

)

: x ∈ Zp

}

⊂ Z
2
p.

Clearly |Au| = p.

We are going to study the sumset of two such sets. For any a = (a, b) ∈ Z
2
p we shall

calculate the representation function

ru,v(a) = ♯{(a1, a2) : a1 ∈ Au, a2 ∈ Av, a1 + a2 = a}.
The most important property for us sounds as follows.

Lemma 3.2. If u + v ≡ u′ + v′ and
(

uvu′v′

p

)

= −1 then ru,v(x) + ru′,v′(x) = 2 for all x.

Proof. If a ≡ x + y and b ≡ x2

u
+ y2

v
, with uv 6≡ 0, then y ≡ a − x and we have

b ≡ x2

u
+ (a−x)2

v
. We can rewrite this equation as (u + v)x2 − 2aux + ua2 − buv ≡ 0.

The discriminant of this quadratic equation is ∆ ≡ 4uv((u + v)b − a2). The number of
solutions is

ru,v(a, b) =



















1 if
(

∆
p

)

= 0

2 if
(

∆
p

)

= +1 (∆ quadratic residue)

0 if
(

∆
p

)

= −1 (∆ quadratic nonresidue).

We can express this as

ru,v(a, b) = 1 +

(

∆

p

)

.

Now, since

∆∆′ ≡ 4uv((u + v)b − a2)4u′v′((u′ + v′)b − a2) ≡ 16uvu′v′((u + v)b − a2)2

we have
(

∆

p

)(

∆′

p

)

=

(

∆∆′

p

)

=

(

uvu′v′

p

)(

((u + v)b − a2)2

p

)

= −
(

((u + v)b − a2)2

p

)

.
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If (u + v)b − a2 ≡ 0, we have
(

∆
p

)

=
(

∆′

p

)

= 0. If not, we have
(

∆
p

)(

∆′

p

)

= −1. In

any case get
(

∆

p

)

+

(

∆′

p

)

= 0.

�

We resume the proof of the theorem.

We put

A =

t+k
⋃

u=t+1

Au.

and we will show that for a suitable choice of t this will be a good set.

Since (0, 0) ∈ Au for all u and the rest of the Au’s are disjoint, we have |A| =
k(p − 1) + 1.

We can estimate the corresponding representation function as

r(x) ≤
t+k
∑

u,v=t+1

ru,v(x)

(equality fails sometimes, because representations involving (0, 0) are counted once on
the left and several times on the right).

We parametrize the variables of summation as u = t + i, v = t + j with 1 ≤ i, j ≤ k.
So 2 ≤ i + j ≤ 2k and we can write i + j = k + 1 + l with |l| ≤ k − 1.

For fixed l, we have k − |l| pairs i, j (which means k − |l| pairs u, v). These pairs can

be split into two groups: n+ of them will have
(

uv
p

)

= 1 and n− will have
(

uv
p

)

= −1.

Clearly

n+ + n− = k − |l|, n+ − n− =
∑

(

uv

p

)

.

Of these n+ +n− pairs we can combine min{n+, n−} into pairs of pairs with opposite

quadratic character, that is, with
(

uvu′v′

p

)

= −1. For these we use Lemma 3.2 to

estimate the sum of the corresponding representation functions ru,v + ru′,v′ by 2. For
the uncoupled pairs we can only estimate the individual values by 2. Altogether this
gives

∑

i+j=k+1+l

ru,v(x) ≤ 2(min{n+, n−}) + 2(max{n+, n−} − min{n+, n−})

= 2(max{n+, n−})
= n+ + n− + |n+ − n−|

= k − |l| +
∣

∣

∣

∣

∑

(

uv

p

)
∣

∣

∣

∣

.
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Adding this for all possible value of l, for a fixed t we obtain

r(x) ≤ k2 +
∑

|l|≤k−1

∣

∣

∣

∣

∣

∑

i+j=k+1+l

(

(t + i)(t + j)

p

)

∣

∣

∣

∣

∣

= k2 + St.

We are going to show that St is small on average. Since we need values with u, v 6≡ 0,
we can use only 0 ≤ t ≤ p − 1 − k; however, the complete sum is easier to work with.
Applying the Cauchy-Schwarz inequality we get

p−1
∑

t=0

St =
∑

t,l

∣

∣

∣

∣

∣

∑

i+j=k+1+l

(

(t + i)(t + j)

p

)

∣

∣

∣

∣

∣

≤

√

√

√

√2kp
∑

l,t

(

∑

i+j=k+1+l

(

(t + i)(t + j)

p

)

)2

≤
√

√

√

√2kp
∑

i+j=i′+j′

∑

t

(

(t + i)(t + j)(t + i′)(t + j′)

p

)

.

To estimate the inner sum we use Weil’s Theorem that asserts
∣

∣

∣

∣

∣

p−1
∑

t=0

(

f(t)

p

)

∣

∣

∣

∣

∣

≤ deg f
√

p

for any polynomial f which is not a constant multiple of a square. Hence

p−1
∑

t=0

(

(t + i)(t + j)(t + i′)(t + j′)

p

)

≤ 4
√

p

except when the enumerator as a polynomial of t is a square.

The numerator will be a square if the four numbers i, i′, j, j′ form two equal pairs.
This happens exactly k(2k − 1) times. Indeed, we may have i = i′, j = j′, k2 cases, or
i = j′, j = i′, another k2 cases. The k cases when all four coincide have been counted
twice. Finally, if i = j and i′ = j′, then the equality of sums implies that all are equal,
so this gives no new case. In these cases for the sum we use the trivial upper estimate
p.

The total number of quadruples i, i′, j, j′ is ≤ k3, since three of them determine the
fourth uniquely.

Combining our estimates we obtain

p−1
∑

t=0

St ≤
√

2p2k2(2k − 1) + 8p3/2k4.

This implies that there is a value of t, 0 ≤ t ≤ p − k − 1 such that

St ≤
√

2p2k2(2k − 1) + 8p3/2k4

p − k
< 2k3/2

if p is large enough. This yields that r(x) < k2 + 2k3/2 as claimed. �
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4. Construction in certain cyclic groups

In this section we show how to project a set from Z
2
p into Zq with q = p2s.

Theorem 4.1. Let A⊆Z
2
p be a g-Sidon set with |A| = m, and put q = p2s with a positive

integer s. There is a g′-Sidon set A′⊆Zq with |A′| = ms and g′ = g(s + 1).

Proof. An element of A is a pair of residues modulo p, which we shall represent by
integers in [0, p − 1]. Given and element (a, b) ∈ A, we put into A′ all numbers of the
form a + cp + bsp with 0 ≤ c ≤ s − 1. Clearly |A′| = sm.

To estimate the representation function of A′ we need to tell, given a, b, c, how many
a1, b1, c1, a2, b2, c2 are there such that

(4.1) a + cp + bsp ≡ a1 + c1p + b1sp + a2 + c2p + b2sp (mod p2s)

with (a1, b1), (a2, b2) ∈ A and 0 ≤ c1, c2 ≤ s − 1.

First consider congruence (4.1) modulo p. We have

a ≡ a1 + a2 (mod p),

hence a1 + a2 = a + δp with δ = 0 or 1. We substitute this into (4.1), substract a and
divide by p to obtain

c + bs ≡ δ + c1 + c2 + (b1 + b2)s (mod ps).

We take this modulo s:

c ≡ δ + c1 + c2 (mod s),

consequently δ + c1 + c2 = c+ηs with η = 0 or 1. Again substituting back, substracting
c and dividing by s we obtain

b ≡ η + b1 + b2 (mod p).

So (a, b) = (a1, b1) + (a2, b2) + (0, η) which means that for a, b, η given, we have ≤ g
possible values of a1, b1, a2, b2.

Now we are going to find the number of possible values of c1, c2 for a, b, c, η, a1, b1, a2, b2

given.

Observe that from these data we can calculate δ = (a1 +a2 −a)/p. For c1, c2 we have
the equation c1 + c2 = c − δ + ηs.

If η = 0, we have c1 ≤ c, at most c + 1 possibilities.

If η = 1, we have c1 + c2 ≥ c + s − 1, hence c − 1 < c1 ≤ s − 1, which gives at most
s − c possibilities.

Hence, if a, b, c, η are given, our estimate is g(c + 1) or g(s − c), depending on η.
Adding the two estimates we get the claimed bound g(s + 1). �

On combining this result with Theorem 3.1 we obtain the following result.

Theorem 4.2. For any positive integers k, s, for every sufficiently large prime p, there

is a set A⊆Zp2s with (kp − k + 1)s elements which is a ⌊k2 + 2k3/2⌋(s + 1)-Sidon set.
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Put q = p2s and g = ⌊k2 + 2k3/2⌋(s + 1). Thus,

αg(q)√
gq

≥ |A|√
gq

=
(kp − k + 1)s

√

⌊k2 + 2k3/2⌋(s + 1)p2s

≥ (kp − k)s
√

(k2 + 2k3/2)(s + 1)p2s

≥ p − 1

p
√

(1 + 2/
√

k)(1 + 1/s)
.

A convenient choice of the parameters is k = 4s2 (so s = Θ(g1/5)). Assuming that,
we get

αg(q)√
gq

≥ p − 1

p
· 1

1 + 1/s
.

Thus, the Prime Number Theorem says that

αg√
g

= lim sup
q→∞

αg(q)√
gq

≥ lim sup
p→∞

p − 1

p
· 1

1 + 1/s
= 1 + O(g−1/5),

which completes the proof of Theorem 1.7.

5. Upper bound

We turn now to the proof of Theorem 1.5, which says:

lim
g→∞

lim inf
N→∞

βg(N)
√

g
√

N
= lim

g→∞
lim sup

N→∞

βg(N)
√

g
√

N
= σ.

We will prove it in two stages:

Part A.

lim sup
g→∞

lim sup
N→∞

βg(N)
√

g
√

N
≤ σ.

Part B.

lim inf
g→∞

lim inf
N→∞

βg(N)
√

g
√

N
≥ σ.

For Part A we will use the ideas of Schinzel and Schmidt [18], which give a connection
between convolutions and number of representations, between the continuous and the
discrete world. For the sake of completeness we rewrite the results and the proofs in a
more convenient way for our purposes.

Remember from (1.1) the definition of σ:

σ = sup
f∈F

|f |1,

where F = {f : f ≥ 0, supp(f)⊆[0, 1], |f ∗ f |∞ ≤ 1}.
We will use the next result, which is assertion (ii) of Theorem 1 in [18] (essentially

the same result appears in [13] as Corollary 1.5):



12 JAVIER CILLERUELO, IMRE Z. RUZSA, AND CARLOS VINUESA

Theorem 5.1. Let σ be the constant defined above and QN = {Q ∈ R≥0[x] : Q 6≡
0, deg Q < N}. Then

sup
Q∈QN

|Q|1√
N
√

|Q2|∞
≤ σ,

where |P |1 is the sum and |P |∞ the maximum of the coefficients of a polynomial P .

Proof. First of all, observe that the definition of σ is equivalent to this one:

σ = sup
g∈G

|g|1
√

|g ∗ g|∞
,

where G = {g : g ≥ 0, supp(g)⊆[0, 1]}.

Given a polynomial Q = a0 +a1x+ . . .+aN−1x
N−1 in QN , we define the step function

g with support in [0, 1) having

g(x) = ai for
i

N
≤ x <

i + 1

N
for every i = 0, 1, . . . , N − 1.

The convolution of this step function with itself is the polygonal function:

g ∗ g(x) =

j
∑

i=0

aiaj−i

(

x − j

N

)

+

j−1
∑

i=0

aiaj−1−i

(

j + 1

N
− x

)

if x ∈
[

j

N
,
j + 1

N

)

for every j = 0, 1, . . . , 2N − 1, where we define aN = aN+1 = . . . = a2N−1 = 0.

So,

sup
x

(g ∗ g)(x) =
1

N
sup

0≤j≤2N−2

(

j
∑

i=0

aiaj−i

)

.

Since, obviously,
∫ 1

0
g(x) dx = 1

N

∑N−1
i=0 ai, we have:

|Q|1√
N
√

|Q2|∞
=

∫ 1

0
g(x) dx

√

supx(g ∗ g)(x)
≤ σ.

And because we have this for every Q, the theorem is proved. �

Now, given a g-Sidon set A ⊆ {0, 1, . . . , N − 1}, we define the polynomial QA(x) =
∑

a∈A xa, so Q2
A(x) =

∑

n r(n)xn. Then, Theorem 5.1 says that

σ ≥ |QA|1
√

|Q2
A|∞

√
N

≥ |A|
√

g
√

N
.

Since this happens for every g-Sidon set in {0, 1, . . . , N − 1}, we have that

βg(N)
√

g
√

N
≤ σ.

This proves Part A of Theorem 1.5, which is the easy part.
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Remark 5.2. In fact, not only Schinzel and Schmidt prove the result above in [18], but
they also prove (see Theorem 6.1) that

lim
N→∞

sup
Q∈QN

|Q|1√
N
√

|Q2|∞
= σ.

Newman polynomials are polynomials all of whose coefficients are 0 or 1. In [22], Gang
Yu conjectured that for every sequence of Newman polynomials QN with deg QN = N−1
and |QN |1 = o(N)

lim sup
N→∞

|QN |1√
N
√

|Q2
N |∞

≤ 1.

Greg Martin and Kevin O’Bryant [13] disproved this conjecture, finding a sequence
of Newman polynomials with deg QN = N − 1, |QN |1 = o(N) and

lim sup
N→∞

|QN |1√
N
√

|Q2
N |∞

=
2√
π

.

In fact, with the probabilistic method it can be proved without much effort that
there is a sequence of Newman polynomials, with deg QN = N − 1 and |QN |1 =
O(N1/2(log N)β) for any given β > 1/2, such that

lim sup
N→∞

|QN |1√
N
√

|Q2
N |∞

= σ.

Our Theorem 1.5 says that given ε > 0, there exists a constant cε and a sequence of
polynomials, QN , with deg QN = N − 1 and |QN |1 ≤ cεN

1/2 such that

lim sup
N→∞

|QN |1√
N
√

|Q2
N |∞

≥ σ − ε.

Observe that this growth is close to the best possible, since taking |QN |1 = o(N1/2)

makes |QN |1√
N
√

|Q2
N |∞

→ 0.

6. Connecting the discrete and the continuous world

For Part B of the proof of Theorem 1.5 we will need another result of Schinzel and
Schmidt (assertion (iii) of Theorem 1 in [18]) which we state in a more convenient form
for our purposes:

Theorem 6.1. For every 0 < α < 1/2, for any 0 < ε < 1 and for every n > n(ε), there

exist non-negative real numbers a0, a1, . . . , an such that

(1) ai ≤ nα(1 − ε) for every i = 0, 1, . . . , n.

(2)
∑n

i=0 ai ≥ nσ(1 − ε).
(3)

∑

0≤i,m−i≤n aiam−i ≤ n(1 + ε) for every m = 0, 1, . . . , 2n.

Proof. We start with a real nonnegative function defined in [0, 1], g, with |g ∗ g|∞ ≤ 1
and |g|1 close to σ, say |g|1 ≥ σ(1 − ε/2).
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For r < s we have the estimation
(
∫ s

r

g(x) dx

)2

=

∫ s

r

∫ s

r

g(x)g(y) dx dy

=

∫ s+x

r+x

∫ s

r

g(x)g(z − x) dx dz(6.1)

≤
∫ 2s

2r

∫ s

r

g(x)g(z − x) dx dz ≤ 2(s − r)

which implies that

(6.2)

∫ s

r

g(x) dx ≤
√

2(s − r).

Trying to “discretize” our function g, we define for i = 0, 1, 2, . . . , n:

ai =
n

2L

∫ (i+L)/n

(i−L)/n

g(x) dx

where 1 ≤ L ≤ n/2 is an integer that will be determined later.

Estimation (6.2) proves that

(6.3) ai ≤
√

n/L for i = 0, 1, 2, . . . , n.

Now we give a lower bound for the sum
∑n

i=0 ai:
n
∑

i=0

ai =
n

2L

∫ 1

0

ν(x)g(x) dx,

where

ν(x) = ♯

{

i ∈ [0, n] :
i − L

n
≤ x ≤ i + L

n

}

= ♯ {i : max{0, nx − L} ≤ i ≤ min{n, nx + L}} .

Taking in account that an interval of length M has ≥ ⌊M⌋ integers and an interval
of length M starting or finishing at an integer has ⌈M⌉ integers, and since L ∈ Z and
1 ≤ L ≤ n/2, we have

ν(x) ≥







nx + L = 2L − (L − nx) if 0 ≤ x ≤ L/n
2L if L/n ≤ x ≤ 1 − L/n
n − nx + L = 2L − (L − n(1 − x)) if 1 − L/n ≤ x ≤ 1

and so
n
∑

i=0

ai ≥ n

∫ 1

0

g(x) dx − n

2L

∫ L/n

0

(L − nx)g(x) dx − n

2L

∫ 1

1−L/n

(L − n(1 − x))g(x) dx.

Now, using the fact that |g|1 ≥ σ(1 − ε/2) and estimation (6.2),

(6.4)
n
∑

i=0

ai ≥ nσ(1 − ε/2) −
√

2nL.
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Also, for every m ≤ 2n we give an upper bound for the sum
∑

0≤i,m−i≤n aiam−i. First
we write:

∑

0≤i,m−i≤n

aiam−i =
( n

2L

)2 ∑

0≤i,m−i≤n

∫ (m−i+L)/n

(m−i−L)/n

∫ (i+L)/n

(i−L)/n

g(x)g(y) dx dy.

Now, as in (6.1), we set z = x + y and we consider the set:

Si =

{

(x, z) :
i − L

n
≤ x ≤ i + L

n
and

m − i − L

n
≤ z − x ≤ m − i + L

n

}

.

Then,
∑

0≤i,m−i≤n

aiam−i =
( n

2L

)2 ∑

0≤i,m−i≤n

∫ ∫

Si

g(x)g(z − x) dx dz

and, defining µ(x, z) = ♯{max{0, m−n} ≤ i ≤ min{m, n} : i−L ≤ nx ≤ i+L and m−
i − L ≤ n(z − x) ≤ m − i + L},

∑

0≤i,m−i≤n

aiam−i =
( n

2L

)2
∫ ∫

µ(x, z)g(x)g(z − x) dx dz.

If we write h = i − nx then we are imposing −L ≤ h ≤ L and m − L − nz ≤ h ≤
m + L − nz, so

−L + max{0, m − nz} ≤ h ≤ L + min{0, m − nz},
and µ(x, z) ≤ λ(z), which is the number of h’s in this interval (it could be empty), and
this number is clearly ≤ 2L + 1. Also, for each fixed h, z moves in an interval of length
2L/n.

This means (remember that |g ∗ g|∞ ≤ 1)

∑

0≤i,m−i≤n

aiam−i ≤
( n

2L

)2
∫

λ(z)

∫

g(x)g(z − x) dx dz

≤
( n

2L

)2
∫

λ(z) dz

≤
( n

2L

)2 2L(2L + 1)

n

so the sum

(6.5)
∑

0≤i,m−i≤n

aiam−i ≤ n

(

1 +
1

2L

)

.

Finally, looking at (6.3), (6.4) and (6.5), and choosing the integer L = ⌈n1−2α/(1−ε)2⌉
with 0 < α < 1/2, for sufficiently large n we’ll have:

ai ≤ nα(1 − ε) ,

n
∑

i=0

ai ≥ nσ(1 − ε) and
∑

0≤i,m−i≤n

aiam−i ≤ n(1 + ε).

�
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Remark 6.2. Now, we will construct random sets. We want to use the numbers
obtained in Theorem 6.1 to define probabilities, pi, and it will be convenient to know
the sum of the pi’s. This is the motivation for defining

pi = ai ·
σn1−α

∑n
i=0 ai

for i = 0, 1, . . . , n.

Now we fix α = 1/3, although any α ∈ (0, 1/2) would work. Then we have pi =

ai ·
σn2/3

∑n
i=0 ai

, so for any 0 < ε < 1 and for every n > n(ε), we have p0, p1, . . . , pn such

that:

pi ≤ 1 ,

n
∑

i=0

pi = σn2/3 and
∑

0≤i,m−i≤n

pipm−i ≤ n1/3 1 + ε

(1 − ε)2
.

In order to prove that the number of elements and the number of representations
in our probabilistic sets are what we expect with high probability, we’ll use Chernoff’s
inequality (see Corollary 1.9 in [21]).

Proposition 6.3. (Chernoff’s inequality) Let X = t1 + · · · + tn where the ti are

independent Boolean random variables. Then for any δ > 0

P(|X − E(X)| ≥ δE(X)) ≤ 2e−min(δ2/4,δ/2)E(X).(6.6)

Then, we have the next two lemmas which also appear in [4]:

Lemma 6.4. We consider the probability space of all the subsets A ⊆ {0, 1, . . . , n}
defined by P(i ∈ A) = pi. With the pi’s defined above, given 0 < ε < 1, there exists

n0(ε) such that, for all n ≥ n0,

P(|A| ≥ σn2/3(1 − ε)) > 0.9.

Proof. Since |A| is a sum of independent Boolean variables and E(|A|) =
∑n

i=0 pi =
σn2/3, we can apply Proposition 6.3 to deduce that for large enough n

P(|A| < σn2/3(1 − ε)) ≤ 2e−σn2/3ε2/4 < 0.1.

�

Lemma 6.5. We consider the probability space of all the subsets A ⊆ {0, 1, . . . , n}
defined by P(i ∈ A) = pi. Again for the pi’s defined above, given 0 < ε < 1, there exists

n1(ε) such that, for all n ≥ n1,

r(m) ≤ n1/3

(

1 + ε

1 − ε

)3

for all m = 0, 1, . . . , 2n

with probability > 0.9.

Proof. Since r(m) =
∑

0≤i,m−i≤n I(i ∈ A)I(m − i ∈ A) is a sum of Boolean variables
which are not independent, it is convenient to consider

r′(m)/2 =
∑

0≤i,m−i≤n
i<m/2

I(i ∈ A)I(m − i ∈ A)
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leaving in mind that r(m) = r′(m) + I(m/2 ∈ A).

From the independence of the indicator functions, and following the notation intro-
duced in Definition 1.1, the expected value of r′(m)/2 is

µm = E(r′(m)/2) =
∑

0≤i,m−i≤n
i<m/2

E(I(i ∈ A)I(m − i ∈ A))

=
∑

0≤i,m−i≤n
i<m/2

pipm−i ≤
n1/3

2
· 1 + ε

(1 − ε)2
,

for every m = 0, 1, . . . , 2n, for n large enough.

If µm = 0 then P(r′(m)/2 > 0) = 0, so we can consider the next two cases:

• If 1
3
· n1/3(1+ε)

2(1−ε)2
≤ µm, we can apply Proposition 6.3 (observe that ε < 2 and then

ε2/4 ≤ ε/2) to have

P

(

r′(m)/2 ≥ n1/3

2

(

1 + ε

1 − ε

)2
)

≤ P(r′(m)/2 ≥ µm(1 + ε))

≤ 2 exp

(

−ε2µm

4

)

≤ 2 exp

(

−n1/3ε2(1 + ε)

24(1 − ε)2

)

• If 0 < µm < 1
3
· n1/3(1+ε)

2(1−ε)2
then we define δ = n1/3

2µm

(

1+ε
1−ε

)2 − 1 (observe that δ ≥ 2

and then δ/2 ≤ δ2/4) and we can apply Proposition 6.3 to have

P

(

r′(m)/2 ≥ n1/3

2

(

1 + ε

1 − ε

)2
)

= P(r′(m)/2 ≥ µm(1 + δ))

≤ 2 exp

(

−δµm

2

)

= 2 exp

(

−n1/3

4

(

1 + ε

1 − ε

)2

+
µm

2

)

≤ 2 exp

(

−n1/3

4

(

1 + ε

1 − ε

)2

+
n1/3(1 + ε)

12(1 − ε)2

)

≤ 2 exp

(

−n1/3

6

(

1 + ε

1 − ε

)2
)
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Then,

P

(

r′(m)/2 ≥ n1/3

2

(

1 + ε

1 − ε

)2

for some m

)

≤ 4n

(

exp

(

−n1/3ε2(1 + ε)

24(1 − ε)2

)

+ exp

(

−n1/3

6

(

1 + ε

1 − ε

)2
))

which is < 0.1 for n large enough.

Remembering that r(m) = r′(m) + I(m/2 ∈ A),

P

(

r(m) ≥ n1/3

(

1 + ε

1 − ε

)2

+ I(m/2 ∈ A) for some m

)

< 0.1 for n large enough,

and finally

P

(

r(m) ≥ n1/3

(

1 + ε

1 − ε

)3

for some m

)

< 0.1 for n large enough.

�

Lemmas 6.4 and 6.5 imply that, given 0 < ε < 1, for n ≥ max{n0, n1}, the probability

that our random set A satisfies |A| ≥ σn2/3(1−ε) and r(m) ≤ n1/3
(

1+ε
1−ε

)3
for every m is

greater than 0.8. In particular, for every n ≥ max{n0, n1} we have a set A⊆{0, 1, . . . , n}
satisfying these conditions.

7. From residues to integers

In order to prove Part B of Theorem 1.5, we will also need the next lemma, which
allows us to “paste” copies of a g2-Sidon set in a cyclic group with a dilation of a
g1-Sidon set in the integers.

Lemma 7.1. Let A = {0 = a1 < . . . < ak} be a g1-Sidon set in Z and let C ⊆ [1, q] be

a g2-Sidon set (mod q). Then B = ∪k
i=1(C + qai) is a g1g2-Sidon set in [1, q(ak + 1)]

with k|C| elements.

Proof. Suppose we have g1g2 + 1 representations of an element as the sum of two

b1,1 + b2,1 = b1,2 + b2,2 = · · · = b1,g1g2+1 + b2,g1g2+1.

Each bi,j = ci,j + qai,j in a unique way. Now we can look at the equality modulo q to
have

c1,1 + c2,1 = c1,2 + c2,2 = · · · = c1,g1g2+1 + c2,g1g2+1 (mod q).

Since C is a g2-Sidon set (mod q), by the pigeonhole principle, there are at least
g1 + 1 pairs (c1,i1 , c2,i1), ..., (c1,ig1+1

, c2,ig1+1
) such that:

c1,i1 = · · · = c1,ig1+1
and c2,i1 = · · · = c2,ig1+1

.

So the corresponding ai’s satisfy

a1,i1 + a2,i1 = · · · = a1,ig1+1
+ a2,ig1+1

,
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and since A is a g1-Sidon set, there must be an equality

a1,k = a1,l and a2,k = a2,l

for some k, l ∈ {i1, . . . , ig1+1}.
Then, for these k and l we have

b1,k = b1,l and b2,k = b2,l,

which completes the proof. �

With all these weapons, we are ready to finish our proof.

Given 0 < ε < 1 we have that:

a) For every large enough g we can define n = n(g) as the least integer such that

g = ⌊n1/3
(

1+ε
1−ε

)3⌋, and such an n exists because n1/3
(

1+ε
1−ε

)3
grows more slowly

than n. Observe that n(g) → ∞ when g → ∞.
Now, by lemmas 6.4 and 6.5, there is g0 = g0(ε) such that for every g1 ≥ g0

we can consider n = n(g1) and we have a g1-Sidon set A⊆{0, 1, . . . , n} such that

|A|
√

g1

√
n + 1

≥ σ

√

n

n + 1
· (1 − ε)5/2

(1 + ε)3/2
.

b) By Theorem 4.2, there are g2 = g2(ε), s = s(ε) and a sequence q0 = p2
rs,

q1 = p2
r+1s, q2 = p2

r+2s, . . . (where pi is the i-th prime and r = r(ε)) such that
for every i = 0, 1, 2, . . . there is a g2-Sidon set Ai⊆Zqi

with

|Ai|√
g2qi

≥ 1 − ε.

So, given 0 < ε < 1:

1) For every g ≥ g0(ε)g2(ε) there is a g1 = g1(g) such that

g1g2 ≤ g < (g1 + 1)g2,

and we have n = n(g1) with g1 = ⌊n1/3
(

1−ε
1+ε

)3⌋ and a g1-Sidon set A⊆{0, 1, . . . , n}
with

|A|
√

g1

√
n + 1

≥ σ

√

n

n + 1
· (1 − ε)5/2

(1 + ε)3/2
.

2) For any N ≥ (n + 1)q0, there is an i = i(N) such that

(n + 1)qi ≤ N < (n + 1)qi+1,

and we have a g2-Sidon set (mod qi), Ai, with

|Ai|√
g2qi

≥ 1 − ε.
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Then, for any g and N large enough, applying Lemma 7.1 we can construct a g1g2-
Sidon set from A and Ai with |A||Ai| elements in [1, N ].

So we have that βg(N) ≥ βg1g2
(N) ≥ |A||Ai| and then

βg(N)
√

g
√

N
≥ βg1g2

(N)
√

(g1 + 1)g2

√

(n + 1)qi+1

≥ |A||Ai|√
g1g2

√

(n + 1)qi

√

g1

g1 + 1

√

qi

qi+1

≥ σ
(1 − ε)7/2

(1 + ε)3/2

√

n

n + 1

√

g1

g1 + 1

√

pr+i

pr+i+1
.

Finally, as a consequence of the Prime Number Theorem, this means that, given
0 < ε < 1, for g and N large enough

βg(N)
√

g
√

N
≥ σ

(1 − ε)9/2

(1 + ε)3/2

i. e.

lim inf
g→∞

lim inf
N→∞

βg(N)
√

g
√

N
≥ σ.
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[5] P. Erdős and P. Turán, On a problem of Sidon in additive number theory, and on some related

problems. J. London Math. Soc. 16, 212-215 (1941).
[6] B. Green, The number of squares and Bh[g] sets. Acta Arith. 100, 365-390 (2001).
[7] L. Habsieger and A. Plagne, Ensembles B2[2]: l’étau se resserre. Integers 2, Paper A2, 20
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Departamento de Matemáticas. Universidad Autónoma de Madrid, 28049 - Madrid,

Spain.

E-mail address : franciscojavier.cilleruelo@uam.es

Alfréd Rényi Institute of Mathematics, Budapest, Pf. 127, H-1364 Hungary.

E-mail address : ruzsa@renyi.hu
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