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Abstract. We use Sidon sets to present an elementary method to study some
combinatorial problems in finite fields. We obtain classic and more recent results
avoiding the use of exponential sums, the usual tool to deal with these problems.

1. Introduction

Sárközy ([12], [13]) proved the solubility of the equations x1x2 + x3x4 = 1 and x1x2 =
x3 + x4, xi ∈ Ai for arbitrary sets Ai ⊂ Fp when |A1||A2||A3||A4| À p3. It was extended
to any field Fq in [8]. The proof is based in estimates of exponential sums and they ask
in problem 3 of [2] for an elementary algebraic proof of the solubility of these equations.

Many others combinatorial problems in Fq have been studied in recent years: incidence
problems, sum-product estimates, distribution of small powers of a generator.

We present an elementary method to study these kind of problems. Our method is
simple, combinatorial and avoids the use of exponential sums, the usual tool to deal with
these problems. Beside quick and elementary proofs of known results we also provide some
new results.

The main tool in our approach are Sidon sets, which are important objects in combi-
natorial number theory.

2. Sidon sets

Let G be a finite abelian group. For any sets A, B ⊂ G and x ∈ G, we write rA−B(x)
for the number of representations of x = a − b, a ∈ A, b ∈ B and we have the familiar
identities ∑

x∈G

rA−B(x) = |A||B|(2.1)

∑
x∈G

r2
A−B(x) =

∑
x∈G

rA−A(x)rB−B(x).(2.2)

Definition 1. We say that a set A ⊂ G is a Sidon set if rA−A(x) ≤ 1 whenever x 6= 0.

By counting the number of differences a− a′, we can see that |A| < |G|1/2 + 1/2 when
A is a Sidon set. The most interesting Sidon sets are those with large cardinality. In
other words, those with |A| =

√
|G| − δ where δ is a small number. As usual we write

δ+ = max(0, δ).

We state our main theorem.

Theorem 2.1. Let A be a Sidon set in a finite abelian group G with |A| =
√
|G| − δ.

Then, for all B, B′ ⊂ G we have

(2.3) #{(b, b′) ∈ B ×B′, b + b′ ∈ A} =
|A|
|G| |B||B

′|+ θ(|B||B′|)1/2|G|1/4,

with |θ| < 1 + |B|
|G| δ+.
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Proof. Since A is a Sidon set then
∑
x∈G

rB−B(x)rA−A(x) = |A||B|+
∑

x6=0

rB−B(x)rA−A(x)(2.4)

≤ |A||B|+
∑

x6=0

rB−B(x) = |A||B|+ |B|2 − |B|.

Using this inequality and identities (2.1) and (2.2) we have

∑
x∈G

(
rA−B(x)− |A||B|

|G|
)2

≤
∑
x∈G

rB−B(x)rA−A(x)− |A|2|B|2
|G|(2.5)

≤ |B|(|A| − 1) + |B|2 |G| − |A|
2

|G| .

We observe that

#{(b, b′) ∈ B ×B′, b + b′ ∈ A} − |B||B′||A|
|G| =

∑

b′∈B′

(
rA−B(b′)− |A||B|

|G|
)

.

To finish the proof we first apply Cauchy’s inequality, then inequality (2.5) and finally

substitute |A| = |G|1/2 − δ.
∣∣∣∣∣

∑

b′∈B′

(
rA−B(b′)− |A||B|

|G|
)∣∣∣∣∣

2

≤ |B′|
(
|B|(|A| − 1) + |B|2 |G| − |A|

2

|G|
)

= |B′||B|
(
|G|1/2 − δ − 1 + |B|δ(2|G|

1/2 − δ)

|G|
)

< |B||B′||G|1/2

(
1 + 2max(0, δ)

|B|
|G|

)
.

¤

The Sidon sets we will consider satisfy δ ≤ 1 and |B| = o(|G|), so |θ| ≤ 1 + o(1).

2.1. Examples of dense Sidon sets. The three families of Sidon sets we will describe
next, have maximal cardinality in their ambient group G. Let g be a generator of Fq.

Example 1. Let p(x), r(x) be polynomials of degree ≤ 2 in Fq[X] such that p(x)− µr(x)
is not a constant for any µ ∈ Fq. The set

A = {(p(x), r(x)) : x ∈ Fq}
is a Sidon set in Fq × Fq. A special case is the set A = {(x, x2) : x ∈ Fq}.

We have to check that the relation (p(x1), r(x1))− (p(x2), r(x2)) = (e1, e2) determines
x1 and x2 when (e1, e2) 6= (0, 0). If p(x) is linear then from p(x1)− p(x2) = e1 we obtain
x1 = x2 + λ for some λ. Thus, r(x2 + λ)− r(x2) = e2 is a linear equation and we obtain
x2 and then x1. If p(x) is quadratic we consider µ such that p(x) − µr(x) is a linear
polynomial and we proceed as above.

Example 2. For any generator g of F∗q , the set

(2.6) A = {(x, gx) : x ∈ Zq−1}
is a Sidon set in Zq−1 × Fq.

From (x1, g
x1) − (x2, g

x2) = (e1, e2) 6= (0, 0) we have x1 − x2 ≡ e1 (mod q − 1) and
hence gx1 = ge1+x2 . Putting this in gx1 − gx2 = e2 we get gx2(ge1 − 1) = ge2 .

If e1 = 0 then e2 = 0 but we have assumed that (e1, e2) 6= (0, 0). If e1 6= 0 the last
equality determines x2, and then x1.
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Example 3. For any pair of generators g1, g2 of F∗q , the set

(2.7) A = {(x, y) ∈ Zq−1 × Zq−1 : gx
1 + gy

2 = 1}
is a Sidon set in Zq−1 × Zq−1. Since translations preserve Sidoness property, for any
λ 6= 0, the sets A = {(x, y) : gx

1 + gy
2 = λ} and A = {(x, y) : gx

1 − gy
2 = λ} are also Sidon

sets.

To see that A is a Sidon set we have to prove that (x1, y1)−(x2, y2) = (e1, e2), (e1, e2) 6=
(0, 0) determines x1, x2 under the conditions gx1

1 + gy1
2 = gx2

1 + gy2
2 = 1 in Fq. We observe

that x1 − x2 ≡ e1 (mod q − 1) and y1 − y2 ≡ e2 (mod q − 1) imply that gx1
1 = gx2+e1

1

and gy1
2 = gy2+e2

2 in Fq and we obtain gx2+e1
1 + gy2+e2

2 = gx2
1 + gy2

2 = 1 in Fq. Thus

(1− gy2
2 )ge1

1 + gy2+e2
2 = 1 and we obtain y2 and then x2, x1 and y1.

When q is a prime p we can identify Fp with Zp. We ilustrate in the pictures below the
three examples of Sidon sets described above.
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The Sidon sets above, with q, q − 1 and q − 2 elements respectively, have maximal
cardinality in their ambient groups. The values of δ = |G|1/2 − |A| are δ = 0, 1/2 − o(1)
and 1 respectively.

3. Equations in Fq

The strategy is to choose the Sidon set A and the sets B and B′ according with the
equation we want to study. We start with the easiest example which, however, we have
not seen in the literature.

Theorem 3.1. For any x ∈ Fq let X(x), Y (x) be any pair of subsets of Fq and put

T =
(∑

x |X(x)|
)(∑

x |Y (x)|
)
. Then, the number of solutions S of

x′ + y′ = (x + y)2, x′ ∈ X(x), y′ ∈ Y (y)

is

(3.1) S =
T

q
+ θ

√
qT , |θ| ≤ 1.

Proof. We consider the Sidon set A = {(x, x2) : x ∈ Fq} and the sets B = {(x, x′) :
x′ ∈ X(x)} and B′ = {(y, y′) : y′ ∈ Y (y)}. We observe that (x, x′) + (y, y′) ∈ A ⇐⇒
x′ + y′ = (x + y)2. Thus S = |{(b, b′) ∈ B × B′ : b + b′ ∈ A}| and we apply Theorem
2.1. ¤

Corollary 3.1. Let A1, A2, A3, A4 ⊂ Fq and put T = |A1||A2||A3||A4|. Then, the number
of solutions of the equation

(3.2) x1 + x2 = (x3 + x4)
2, xi ∈ Ai
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is

(3.3) S =
T

q
+ θ

√
qT , |θ| ≤ 1.

In particular, the number of solutions of

(3.4) x1 + x2 = z2, x1 ∈ A1, x2 ∈ A2, z ∈ Fq

is

(3.5) |A1||A2|+ θ
√
|A1||A2|q, |θ| ≤ 1.

Proof. Take X(x) =

{
A1, x ∈ A3

∅ otherwise
and Y (x) =

{
A2, x ∈ A4

∅ otherwise
in Theorem 3.1. For

the second part of the corollary, we observe that each solution of (3.4) corresponds to
exactly q solutions of (3.2) when we take X3 = X4 = Fq. ¤

Shkredov [14] used Weil’s bound for exponential sums with multiplicative characters
to prove the following theorem for q = p and the condition |X1||X2| > 20p.

Theorem 3.2. Let X1, X2 ⊂ Fq with |X1||X2| > 2q. Then there exist x, y ∈ Fq such that
x + y ∈ X1 and xy ∈ X2.

Proof. Actually, we will estimate the number of such pairs (x, y), which is the number of
solutions of the equation

(x1/2− z)(x1/2 + z) = x2, x1 ∈ X1, x2 ∈ X2, z ∈ Fq.

We observe that this equation is equivalent to the equation (x1/2)2 − x2 = z2. In order
to apply (3.4) we split X1 = X11 ∪X12 in such a way that the squares in each set are all
distinct and we apply (3.5) separately to A1 = {x2

1/2 : xi ∈ X11}, A2 = −X2 and to
A1 = {x2

1/2 : xi ∈ X12}, A2 = −X2. Then we obtain that the number of solutions of the

equation (x1/2)2 − x2 = z2, x1 ∈ X1, x2 ∈ X2, z ∈ Fq is |X11||X2|+ θ1

√
|X11||X2|q +

|X12||X2| + θ2

√
|X12||X2|q = |X1||X2| + θ

√
|X1||X2|q, |θ| ≤ √

2. Finally we observe
that this number is positive if |X1||X2| > 2q. ¤

In [12] and [13] Sárközy studied the number of solutions of the congruences x1x2 −
x3x4 ≡ λ (mod p) and x1x2 − x3 − x4 ≡ λ (mod p), xi ∈ Xi, using exponential sums. In
[8] these congruences were generalized to equations in finite fields. We show how they can
be deduced quickly as a consequence of Theorem 2.1.

Theorem 3.3. For any x ∈ F∗q let X(x), Y (x) be any pair of subsets of Fq and put

T =
(∑

x |X(x)|
)(∑

x |Y (x)|
)
. Then, the number of solutions S of the equation

x′ + y′ = xy, x′ ∈ X(x), y′ ∈ Y (y)

is

(3.6) S =
T

q
+ θ

√
qT , |θ| ≤ 1 + o(1).

Proof. We consider the Sidon set A = {(x, gx) : x ∈ Zq−1} and the sets B = {(log x, x′) :
x′ ∈ X(x)} and B′ = {(log y, y′) : y′ ∈ Y (y)}. We observe that (log x, x′) + (log y, y′) ∈
A ⇐⇒ x′ + y′ = glog x+log y = xy. Thus S = |{(b, b′) ∈ B × B′ : b + b′ ∈ A}| and then
we apply Theorem 2.1. ¤

Corollary 3.2. Let X1, X2 ⊂ F∗q and X3, X4 ⊂ Fq and put T = |X1||X2||X3||X4|. The
number of solutions of x1x2 = x3 + x4, xi ∈ Xi is

S =
T

q
+ θ

√
Tq, |θ| ≤ 1 + o(1).

Proof. We take X(x) and Y (y) as in Corollary 3.1 and use them in Theorem 3.3. ¤
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Corollary 3.3. Let X1, X2 ⊂ F∗q and X3, X4 ⊂ Fq and put T = |X1||X2||X3||X4|. The
number of solutions S of x2x3 − x1x4 = 1, xi ∈ Xi is

S =
T

q
+ θ

√
Tq, |θ| ≤ 1 + o(1).

Proof. We take X(x) =

{
xX3, x ∈ X−1

1

∅ otherwise
and Y (y) =

{
−yX4, y ∈ X−1

2

∅ otherewise
in Theorem

3.3. In this way we obtain the number of solutions of the equation x−1
1 x−1

2 = x−1
1 x3 −

x−1
2 x4, which is equivalent to the equation of the corollary. ¤

Corollary 3.4. Let A1, A2 ∈ Fq. Then the number of solutions of

(3.7) 1 + x1x2 = z2, xi ∈ Ai, z ∈ F∗q
is |A1||A2|+ θ

√
|A1||A2|q for some |θ| ≤ 4.

Proof. We observe that there are two solutions of (3.7) for each solution of 1 + x1x2 =
r, r ∈ R = {x2 : x 6= 0}. Also we observe that each z ∈ R can be written in exactly
|R| ways as z = z1z2, z1, z2 ∈ R. We will estimate the number of solutions of 1 +
x1x2 = z1z2, x1 ∈ A1, x2 ∈ A2, z1, z2 ∈ R. Corollary 3.3 gives that this number is
|A1||A2||R|2

q
+ θ|R|

√
|A1||A2|q. Thus, the number of the solutions of (3.7) is

2

|R|
( |A1||A2||R|2

q
+ θ|R|

√
|A1||A2|q

)
.

¤

Theorem 3.4. For any x ∈ F∗q , let X(x), Y (x) be any pair of subsets of F∗q and put

T =
(∑

x |X(x)|
)(∑

x |Y (x)|
)
. The number of solutions of xy−x′y′ = 1, x′ ∈ X(x), y′ ∈

Y (y) is

S =
T

q
+ θ

√
Tq, |θ| ≤ 1 + o(1).

Proof. We consider the Sidon set A = {(x, y) : gx − gy = 1} ⊂ Zq−1 × Zq−1 and the sets
B = {(log x, log x′) : x′ ∈ X(x)} and B′ = {(log y, log y′) : y′ ∈ Y (y)}. It is clear that
S = |{(b, b′) ∈ B ×B′ : b + b′ ∈ A}|. Now we apply Theorem 2.1. ¤

We observe that this theorem also gives an alternative proof of Corollary 3.3 by taking
X(x) and Y (y) as in Corollary 3.1.

4. Sum-product estimates

Sometimes we are interested in estimating the number of elements of a Sidon set in a
set B. Of course, for an arbitrary set B we cannot say anything, since we can find large
sets B for which |A ∩B| = 0 and other sets for which |A ∩B| = |A|. However we get the
following lemma which is useful in some situations.

Lemma 4.1. Let A be a Sidon set in G with |A| = |G|1/2 − δ. For any B, B′ ⊂ G we
have

(4.1) |A ∩B| ≤ |B + B′||A|
|G| + θ

( |B + B′|
|B′|

)1/2

|G|1/4,

with |θ| ≤ 1 + max(0, δ) |B
′|

|G| .
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Proof. As a consequence of Theorem 2.1 we have

|B′||A ∩B| = |{(−b′, b + b′) : b ∈ B, b′ ∈ B′, −b′ + (b + b′) ∈ A}|
≤ {(b′, b′′) : b′ ∈ (−B′)× (B + B′), b′ + b′′ ∈ A}|

≤ |A||B′||B + B′|
|G| + θ

√
|B′||B + B′||G|1/4.

¤

The lemma above gives quick proofs of some sum-product estimates obtained in recent
years.

Theorem 4.1 (Garaev [3]). Let A1, A2 ⊂ F∗q and A3 ⊂ Fq. We have

max(|A1A2|, |A1 + A3|) ≥ C min
(√

|A1|q,
√
|A1|2|A2||A3|/q

)

with C =
√

5−1
2

+ O( |A2||A3|
q2 ).

Proof. Take A = {(x, gx) : x ∈ Zq−1}, B = (log A1)× A1 and B′ = (log A2)× A3. Since
all the elements (log a1, a1) are in A we have that |A ∩ B| = |A1|. On the other hand we
observe that |B + B′| = |A1A2||A1 + A3|. Lemma 4.1 implies the inequality

(4.2) |A1| ≤ |A1A2||A1 + A3|
q

+ θ

√
q
|A1A1||A1 + A3|

|A2||A3|

with |θ| ≤ 1 + |A2||A3|
q(q−1)

.

Let α =
2+θ2−

√
4θ2+θ4

2
= (

√
5−1
2

)2 + O( |A2||A3|
q2 ) be the smallest solution of α =

(1−α)2

θ2 . If |A1A1||A1+A3|
q

< α|A1|, inequality (4.2) implies that |A1A2||A1 + A3| >
(1−α)2

θ2
|A1|2|A2||A3|

q
= α |A1|2|A2||A3|

q
. Thus, |A1A2||A1 + A3| ≥ α min(|A1|q, |A1|2|A2|A3|

q
).

¤

We can mimic the proof above to get the following sum-product estimates.

Theorem 4.2 (Garaev-Shen [6]). Let A1, A2, A3 ⊂ F∗q . We have

max(|(A1 + 1)A2|, |A1A3|) ≥ C min
(√

|A1|q,
√
|A1|2|A2||A3|/q

)

with C =
√

5−1
2

+ O( |A2||A3|
q2 ).

Proof. Consider the Sidon set A = {(x, y) : gx−gy = 1}, the sets B = log(A1+1)×log A1

and B′ = log A2 × log A3 and proceed as in the former proof. ¤

Theorem 4.3 (Solymosi [15], Hart-Li-Shen [9]). Let p(x), q(x) be polynomials in Fq[X] of
degree ≤ 2 such that p(x)−µq(x) is not a constant for any µ ∈ Fq. For any A1, A2, A3 ⊂ Fq

we have

max(|p(A1) + A2|, |q(A1) + A3|) ≥
√

5− 1

2
min

(√
|A1|q,

√
|A1|2|A2||A3|/q

)
.

Proof. Consider the Sidon set A = {(p(x), q(x)) : x ∈ Fq}, the sets B = p(A1) × q(A1)
and B′ = A2 ×A3 and proceed as above. We observe that in this case |θ| ≤ 1 and we can
remove the error term in the constant. ¤

Indeed Solymosi proved that if {(x, f(x)) : x ∈ Fq} ⊂ Fq × Fq is a Sidon set then

max(|A + A|, |f(A) + f(A)|) À min(
√
|A|q, |A|2/√q), but it can be proved that this set

is a Sidon set if and only if f(x) is a quadratic polynomial.



COMBINATORIAL PROBLEMS IN FINITE FIELDS AND SIDON SETS 7

It should be noticed that our method only works for sum-product estimates for large
sets. The study of sum-product estimates in finite fields for small sets was initiated in the
seminal paper [1] and we don’t see how to apply our method in these cases.

5. Distribution of Sidon sets in regular sets and applications

Many problems can be described by giving an asymptotic estimate of |A ∩ B| where
A is a Sidon set and B is a suitable set. For example, if A = {(x, x2) : x ∈ Zp} and
B = Zp × I, the quantity |A ∩ B| counts two times the number of quadratic residues
modulo p lying in I. We will see other examples in this section.

The expected number for |A∩B| when B is a regular set is |B||A|/|G|. Thus we write

EA(B) = |A ∩B| − |B||A|
|G| .

The next lemma and Lemma 4.1 will be the main tools to prove asymptotic estimates
for |A ∩ B| in some situations. For simplicity we consider only the three Sidon sets
described in section §2.

Lemma 5.1. Let A be one of the three Sidon sets described in section §2 and B ⊂ G.
For any set C ⊂ G, there exists c ∈ C such that

|EA(B)| ≤ 2
(
q
|B|
|C|

)1/2

+ |EA(Bc)|+ |EA(Bc)|

where Bc = B \ (B + c) and Bc = (B + c) \B.

Proof.

EA(B) = |A ∩B| − |A||B|
|G| =

1

|C|
∑
c∈C

(
|A ∩ (B + c)| − |A||B|

|G|
)

(5.1)

+
1

|C|
∑
c∈C

(
|A ∩B| − |A ∩ (B + c)|

)
.(5.2)

We observe that
∑

c∈C

(
|A∩ (B + c)|− |A||B|

|G|

)
= |{(b, c) ∈ B×C : b+ c ∈ A}|− |A||B||C|

|G| .

Then we apply Theorem 2.1 to bound the first sum by 2
(
q |B||C|

)1/2

.

For the second sum we observe that |A ∩ B| − |A ∩ (B + c)| = |A ∩ Bc| − |A ∩ Bc|.
Since |Bc| = |Bc| we get∣∣∣∣∣

1

|C|
∑
c∈C

(
|A ∩B| − |A ∩ (B + c)|

)∣∣∣∣∣ =

∣∣∣∣∣
1

|C|
∑
c∈C

(
|A ∩Bc| − |A||Bc|

|G| +
|A||Bc| − A ∩Bc|

|G|

∣∣∣∣∣

≤ 1

|C|
∑
c∈C

(
|EA(Bc)|+ |EA(Bc)|

)

≤ max
c∈C

(
|EA(Bc)|+ |EA(Bc)|

)
.

¤

In the special case when B is a subgroup we can take C = B and then Bc = Bc = ∅
for any c ∈ C. Thus, in this case we have

|EA(B)| ¿ q1/2.

We obtain as a corollary a well known result about the Fermat equation in finite fields.

Corollary 5.1. Let Q, Q′ be subgroups of F∗q . We have

|{(x, y) ∈ Q×Q′ : x + y = 1}| = |Q||Q′|
q

+ O(
√

q).

In particular, if p À (rs)2 the Fermat congruence xr + ys ≡ 1 (mod p) has nontrivial
solutions.
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Proof. Consider the Sidon set A = {(x, y) : gx + gy = 1} and take B = C = Q×Q′. ¤

In general, the strategy is to take a large set C such that |Bc| and |Bc| are small
compared with |B|. This is possible when B has some kind of regularity (subgroups,
cartesian product of arithmetic progressions, convex sets...). Then, we apply the lemma
above again. We illustrate what we mean with an example.

Theorem 5.1. Let I, J ⊂ Zp−1 be two intervals. For any positive integer r we have

{(x, y) ∈ I × J : gx − gy ≡ λ (mod p)} =
|I||J |

p
+ θr

(( |I||J |
p3/2

)1/r

+ 1
)√

p,

with |θr| ≤ 4r.

Proof. We proceed by induction on r. We consider the Sidon set A = {(x, y) : gx − gy =
λ} ⊂ Zp−1 × Zp−1 and the set B = I × J .

Lemma 4.1 applied to this case implies that

|A ∩B| ≤ |B + B|
p

+ 2

√
p
|B + B|
|B| ≤ 4|I||J |

p
+ 4

√
p.

Since |EA(B)| ≤ max( |B||A||G| , |A∩B|), we have that |EA(B)| ≤ 4|I||J|
p

+4
√

p, which proves

Theorem 5.1 for r = 1.

We consider the auxiliar set C = I ′×J ′ where I ′ = {0, . . . , bα|I|c} and J ′ = {0, . . . , bα|J |c}
for a suitable α. We observe that |C| ≥ α2|I||J |. Lemma 5.1 gives

|EA(B)| ≤ 2
p1/2

α
+ |EA(Bc)|+ |EA(Bc)|.

Now we observe that B + c is a small translation of the rectangle B = I×J . Thus we can
write Bc = B1∪B2 and Bc = B3∪B4 where the sets Bi are rectangles with |Bi| ≤ α|I||J |.

Thus,

|EA(B)| ≤ 2
p1/2

α
+ |EA(B1)|+ |EA(B2)|+ |EA(B3)|+ |EA(B4)|.

Assuming the statement of Theorem 5.1 for r and applying it for each Bi we get

|EA(B)| ≤ 2
p1/2

α
+ 4θr

((α|I||J |
p3/2

)1/r

+ 1
)√

p.

Taking α = 1
4r

(
p3/2

|I||J|

)1/(r+1)

we prove the statement of Theorem 5.1 for r + 1. ¤

It should be mentioned that, for the particular case |I| = |J |, Garaev [4] obtained the

error term O(|I|2/3 log2/3(|I|p−3/4 + 2) + p1/2). It can be checked that the error term in
Theorem 5.1 is smaller than Garaev’s error term. Actually, in the range p3 ¿ |I||J | ¿
p3(log p)log log p it is smaller than the error term O(p1/2 log2 p) established in [11].

For arbitrary intervals, Theorem 5.1 only gives Oε(p
1/2+ε) for any ε > 0, which is

slightly weaker than O(p1/2 log2 p), but our proof is elementary.

We can also get the same error term for similar problems as the problem of estimating
{x ∈ I : x2 ∈ J} or {x ∈ I : gx ∈ J} by considering other Sidon sets.

5.1. The difference set {gx − gy : 0,≤ x, y ≤ L}. Let g a primite root of Fp. Many
authors have studied the problem of determining the smallest number M such that {gx−
gy : 0 ≤ x, y ≤ M} = Zp. Odlyzco has conjectured that it is posible to take M ¿ p1/2+ε

but the exponent 3/4 seems to be the natural barrier for this problem with the known
methods.

From the result of Rudnick and Zaharescu [11] it follows that one can take any integer

M ≥ c0p
3/4 log p where c0 is a suitable constant. This result was improved to the range
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M > cp3/4 with c = 10 by M. Z. Garaev and K. L. Kueh [5], with c = 4 by S. V. Konyagin

[10] and with c = 25/4 by V. Garćıa [7]. We improve these results.

Theorem 5.2. Let g be a primitive root of Fp. If p is large enough then
{

gx − gy : 0 ≤ x, y <
√

2p3/4
}

= Fp.

Proof. Suppose λ 6∈ {gx − gy : 0 ≤ x, y ≤ M} and consider the Sidon set A = {(x, y) :
gx − gy = λ}. For each t ≥ 0 we write

B±t = [0, (M ± t)/2]2 ∪
(
(
p− 1

2
,
p− 1

2
) + [0, (M ± t)/2]2

and we apply Theorem 2.1 with B′ = B = Bt (for a suitable t we will choose later) to
obtain

S = |{(b, b′) ∈ Bt ×Bt, b + b′ ∈ A}| ≥ |A||Bt|2
|G| −

(
1 +

|Bt|
|G|

)
|Bt||G|1/4.

Thus

|Bt| ≤ |G|5/4

|A| − |G|1/4

(
1 +

|S|
|G|1/4|Bt|

)
.

Now we have to bound S. We also observe that (x, y) ∈ A ⇐⇒ (y, x) + ( p−1
2

, p−1
2

) ∈ A.
Thus A ∩ (B0 + B0) = ∅.

Actually if we take t = 0 we have S = 0, |B0| ≥ M2/2 and we can easily obtain that

M ≤ √
2p3/4(1 + o(1)). To remove the o(1) term we need to take a suitable t > 0.

We observe that Bt + B−t ⊂ B0 + B0. Thus, if b ∈ Bt, b′ ∈ B−t then b + b′ 6∈ A. After
this observation we have

S = |{(b, b′) : b, b′ ∈ (Bt \B−t) : b + b′ ∈ A}|
=

∑

b′∈(Bt\B−t)

|(Bt \Bt) ∩ (A− b′)|.

Notice that A− b′ contains at most an element in each row and in each column. Since
Bt \ B−t is the union of four rectangles of dimensions t × (M + t)/2, we conclude that
|(Bt \B−t) ∩ (A− b′)| ≤ 4t for any b′. Thus, S ≤ 4t|Bt \B−t| ≤ 8t2(M + t).

On the other hand we have |Bt| ≥ (M + t)2/2. Thus

(M + t)2 ≤ 2|G|5/4

|A| − |G|1/4

(
1 +

16t2(M + t)

|G|1/4|B|
)
≤ 2|G|5/4

|A| − |G|1/4

(
1 +

32t2

|G|1/4(M + t)

)

and

M + t ≤
(

2|G|5/4

|A| − |G|1/4

)1/2 (
1 +

16t2

|G|1/4(M + t)

)
.

If M <
√

2(p − 1)3/4 we are done. Otherwise M ≥ √
2(p − 1)3/4 =

√
2|G|3/8. We write

also |A| = |G|1/2 − 1 and we choose t = [|G|1/4/32]. Then, assuming that |G| is large
enough we have

M ≤
(

2|G|5/4

|G|1/2 − |G|1/4 − 1

)1/2 (
1 +

16t2√
2|G|5/8

)
− t

≤
√

2|G|3/8 +
√

2|G|1/8 − |G|1/4

64
+

65

64
<
√

2|G|3/8 <
√

2p3/4.

¤
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6. A variant of the method

Suppose we want to study the distribution of the inverses of the elements of a small
interval in Fp. The set A = {(x, x−1) : x ∈ F∗p} ⊂ Fp × Fp is the natural set to deal with
this problem. Unfortunately, this set is not a Sidon set and we cannot apply Theorem 2.1
directly.

The result we obtain in this case is weaker than what is obtained using Kloosterman
sums. However our method is enough, for example, to prove that the set {x−1 : x ∈ I}
is well distributed in Fp when I is a not very small interval.

In the theorem below, using Kloosterman sums is possible to get the error term
O(

√
|A1||A2||A3||A4|q) and the exponent 5/6 can be substituted by 3/4.

Theorem 6.1. Let A1, A2, A3, A4 ⊂ Fq. The number of solutions of

(x1 + x2)(x3 + x4) = λ, xi ∈ Ai

is
|A1||A2||A3||A4|

q
+ O

(√
|A1||A2||A3||A4|q(1 + (|A1||A3|/q)1/4)

)
.

In particular, if I is an interval with |I| À p5/6 we have F ∗p ⊂ {xy : x, y ∈ I}.

Proof. The proof is similar for any λ 6= 0. Thus we assume that λ = 1 and we consider
the set A = {(x, x−1) : x ∈ F∗q}. We take B = A1 × A3, B′ = A2 × A4 and we write

E = S − |B||B||A|
|G| . Following the first steps of the proof of Theorem 2.1 we get

(6.1) E2 ≤ |B′|

|A||B|+

∑

x6=0

rA−A(x)rB−B(x)− |B|2||A|2
|G|


 .

Now we observe that the sum is equal to
∑

b 6=b′∈B rA−A(b − b′). Write b = (a1, a3) and

b′ = (a′1, a
′
3). Thus, the value of this sum is the number of solutions of

x− x′ = a1 − a′1, x−1 − (x′)−1 = a3 − a′3, x 6= x′, a1, a
′
1 ∈ A1, a3, a

′
3 ∈ A3

which is equivalent to the equation

1− 4(a1 − a′1)
−1(a3 − a′3)

−1 = (2x(a1 − a′1)
−1 − 1)2.

Since x runs over all x 6= 0, the number of solutions is exactly the number of solutions of

1− 4(a1 − a′1)
−1(a3 − a′3)

−1 = z2, a1, a
′
1 ∈ A1, a3, a

′
3 ∈ A3 z ∈ Fq.

We have seen in Corollary 3.4 that the number of solutions of

1− x1x2 = z2, x1 ∈ X1, x2 ∈ X2, z ∈ Fq

is |X1||X2|+ θ
√
|X1||X2|q. For each a′1, a

′
3 we apply this to the sets X1 = {4(a1− a′1)

−1 :

a1 ∈ A1 \ a′1} and X2 = {(a3 − a′3)
−1 : a3 ∈ A3 \ a′3} and we obtain that the number of

solutions of the equation is
∑

a′1∈A1, a3∈A′3

(
|X1||X2|+ θ

√
|X1||X2|q

)
≤ |A1|2|A3|2 + θ(|A1||A3|)3/2q1/2.

Putting this in (6.1) we have

E2 ≤ |B′|
(

(p− 1)|B|+ |A1|2|A3|2 + θ(|A1||A3|)3/2q1/2 − |A|2|B|2
|G|

)
.

Now we use that |B′| = |A2||A4|, |B| = |A1||A3|, |A| = p− 1, |G| = p2 to get

E2 ¿ |A1||A2||A3||A4|q
(
1 + (|A1||A3|/q)1/2

)
.

¤
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