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Abstract

Let p be a large prime number, K, L, M, X be integers with 1 < M < p and
ged(A,p) = 1. The aim of our paper is to obtain sharp upper bound estimates for
the number I2(M; K, L) of solutions of the congruence

zy =X (mod p), K+1<z<K+M, L+1<y<L+M
and for the number I3(M; L) of solutions of the congruence
zyz=X (modp), L+1<uzyz<L+ M. (1)

Using the idea of Heath-Brown from [6], we obtain a bound for I5(M; K, L), which
improves several recent results of Chan and Shparlinski [3]. For instance, we prove that
if M < p'/4, then I(M; K, L) < MW,

The problem with I3(M; L) is more difficult and requires a different approach.
Here, we connect this problem with the Pell diophantine equation and prove that for
M < p'/® one has Is(M; L) < M°D) . Our results have applications to some other
problems as well. For instance, it follows that if 7y, 75,73 are intervals in [, of length
|Z;| < p'/%, then

T1 - T - T = (|Ta] - | To] - |Z5])' .

MSC Classification: 11A07, 11B75
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1 Introduction

In what follows, p denotes a large prime number, K, L, M, X are integers with 1 < M < p

and ged(A, p) = 1. By z,y, z we denote variables that take integer values. The notation B

denotes such a quantity that for any ¢ > 0 there exists ¢ = c(¢) > 0 such that B°(Y) < cB®.
Let I,(M; K, L) be the number of solutions of the congruence

zy=X (mod p), K+1<az<K+M, L+1<y<L+M
and let I3(M; L) be the number of solutions of the congruence
zyz =X  (mod p), L+1<uz,y,z<L+ M.

Estimates of incomplete Kloosterman sums implies that

LMK, 1) = 2+ 0 205, )

In particular, if M/(p**(logp)?) — oo as p — 0o, one gets that

M2
This asymptotic formula also holds when M /p** — oo as p — oo (see [5]). The problem of
upper bound estimates of Io(M; K, L) for smaller values of M has been a subject of the work
of Chan and Shparlinski [3]. Using Bourgain’s sum-product estimate [1], they have shown
that there exists an effectively computable constant 1 > 0 such that for any positive integer

M < p, uniformly over arbitrary integers K and L, the following bound holds:
M2
L(M;K,L) < — + M,
p

In the present paper we obtain the following upper bound estimates for Io(M; K, L).

Theorem 1. Uniformly over arbitrary integers K and L, we have

NfA/3+o(1)

LMK L) < —— 55—+ MW, (3)
p
When K = L, we have
3/2+0(1)
L(M; L, L) < ——5— + M. (4)
p

In particular, if M < p/* then I,(M; K, L) < M°W.
Theorem 1 together with (2) easily implies the following consequence, which improves
upon the mentioned result of Chan and Shparlinski.

Corollary 1. Uniformly over arbitrary integers K and L, we have
M2
L(M;K,L) « — + M*5t®),
p

If K = L, then
MZ
L(M;L,L) € — + M3/t
p



The proof of Theorem 1 is based on an idea of Heath-Brown [6]. The problem with
I3(M; L) is more difficult and requires a different approach. Here, we shall connect this
problem with the Pell diophantine equation and establish the following statement.

Theorem 2. Let M < p'/8. Then, uniformly over arbitrary integer L, we have
I3(M; L) < M°W. (5)

From Theorem 2 we can easily derive a sharp bound for the cardinality of product of
three small intervals in F7.

Corollary 2. Let Z,T,,13 be intervals in Fy of length |Z;] < p'/8. Then
T - Lo - T = (1T0] - 1T - 1Z5)) o).

Theorems 1 and 2 have also applications to the problem on concentration points on
exponential curves as well. Let ¢ > 2 be an integer of multiplicative order ¢, and let M < t.
Denote by J,(M; K, L) the number of solutions of the congruence

y =ag® (mod p); reK+1,K+ M|, ye[L+1,L+ M].

Chan and Shparlinski [3] used a sum product estimate of Bourgain and Garaev [2] to prove
that
Ja(M; K, L) < max{M10/11+0(1), M9/8+o(1)p—1/8}

as M — oo. From our Theorem 1 we shall derive the following improvement on this result.
Corollary 3. Let M < t. Uniformly over arbitrary integers K and L, we have
Jo(M; K, L) < (14 M34p=1/4 ppt/2+e),

In particular, if M < p'/3, then we have J,(M; K, L) < M/?+o(1),
Theorem 2 allows to strength Corollary 3 when M < p3/20.

Corollary 4. The following bound holds:
Jo(M; K, L) < (14 Mp~'/#)Mt/3te®),

In particular, if M < p'/®, then we have J,(M; K, L) < M/3+o(1),

2 Proof of Theorem 1

We will need the following lemma which is a simple version of a more precise result about
divisors in short intervals, see, for example, [4].

Lemma 1. For all positive integer n and m > \/n, the interval [m, m + n1/6] contains at
most two divisors of n,



Proof. Suppose that dy,dy, d3 € [m, m+ L] are three divisors of n. We claim that the number
dydads
(di, d2)(d1, d3)(do, d3)

is also a divisor of n. To see this, for a given prime ¢, let aq, as, a3, a such that ¢%||d;, + =
1,2,3 and ¢*||n. Assume that oy < s < a3 < a. The exponent of ¢ in the rational number r
is a1 + g + a3 — (min(aq, ag) + min(ay, ag) + min(ae, ag)) = ag —ag. Since 0 < az3 —a; < «
we have that r is an integer divisor of n.

On the other hand, since (d;, d;) < |d; — d;| < L we have

r =

m3 32
nzr> s > I5
and the result follows. O
Now we proceed to prove Theorem 1. Our approach is based on Heath-Brown’s idea
from [6]. We can assume that M is sufficiently large number. The congruence zy = A
(mod p), K+1<z< K+ M, L+1<y<L+ M is equivalent to
ry+ Kz +Ly=b (modp), 1<z,y<M, (6)

where b = X\ — K?. From the pigeon-hole principle it follows that for any positive integer
T < p there exists a positive integer ¢+ < T2 and integers ug, vy such that

tK=uo (modp), tL=vy (modp), |uol<p/T, ol <p/T.
From (6) we get that
try +uor +voy = by (mod p), 1<uz,y <M,
for some |by| < p/2. We write this congruence as an equation
try + uox + vy = by + zp, 1<z,y< M, z € Z. (7)
Comparing the minimum and maximum value of the left hand side we can see that

_ 2072
2] < txy + upx + voy — by <TM +2M+1.
P P T 2

We observe that for each given z the equation (7) is equivalent to the equation

(t$+U0)(t3j—|—’l)0) =n, 1<xy<M (8>

for certain integer n,. If n, = 0, then either tx +wuy = 0 or ty + vy = 0. Since A Z 0 (mod p),
in either case x and y are both determined uniquely. So, we can only consider those z for
which n, # 0.

e Case M < p'/*/4. In this case we take T = 8M. Then |z| < 1 and we have to consider
only the integer n, = ng in (8). Each solution of (8) produces two divisors of |ng,
|tz + ug| and |ty + vo|, one of them is greater than or equal to /|ng|. If |ng| < 236 M18
the number of solutions of (8) is bounded by the number of divisors of ng, which is
MM If |ng| > 236 M the positive integers |tx + uo| and |ty + vo| lie in two intervals
7, and Z, of length T2M < 26M? < |ng|'/8. If there were five solutions, we would have
three divisors greater of equal to y/|no| in an interval of length < |no|'/5. We apply
Lemma 1 to conclude that there are at most four solutions. Hence, in this case we have

L(M;K,L) < M°WY.



e Case M > p'/4/4. In this case we take T =~ (p/M)'/3. Thus |z| < M*/3/p'/3. For each
z the number of solutions of (8) is bounded by the number of divisors of n, which is
p°M = M°M Hence, in this case we get

NfA/3+o(1)
L(M;K,L) < T
Thus, we have proved that
4/3+0(1)
LMK, L) < —— 55—+ Mo
p

which proves the first part of Theorem 1.
The proof of the second part of Theorem 1 (corresponding to the case K = L) is similar,
with the only difference that we simply take t < T (instead t < T?) satisfying

tK =up (modp),  |uol <p/T.

3 An auxiliary statement

To prove Theorem 2 we need the following auxiliary statement.

Proposition 1. Let |A|,|B|,|C|,|D|,|E|,|F| < M°Y and assume that A = B> — 4AC is
not a perfect square (in particular, A #0). Then the diophantine equation

Az’ + Bry+Cy* + Dx+ Ey+ F =0 (9)
has at most M°Y) solutions in integers x,y with 1 < ||, |y| < MOW.
We shall need several lemmas.

Lemma 2. Let A be a positive integer that is not a perfect square and let (xo,yo) be a solution
of the equation the equation x> — Ay? = 1 in positive integers with the smallest value of xg.
Then for any other integer solution (x,y) there exist a positive integer n such that

2] + VAJy| = (z0 + VAyo)".
Lemma 2 is well-known from the theory of Pell’s equation.

Lemma 3. Let A be a squarefree integer, N is a positive integer. Then the congruence
22=A (mod N), 0< 2z < N —1 has at most N°Y) solutions.

Proof. Let J(N) be the number of solutions of the congruence in question and let N =
pit -+ pe® be a canonical factorization of N. Clearly, J(N) = J(p*)--- J(py*), where J(p®)
is the number of solutions of the congruence z? = A (mod p®), 0 < z < p® — 1. Since A is
squarefree, we have J(2%) <4 and J(p®) < 2 for odd primes p. The result follows. ]

Lemma 4. Let A, E be integers with |A|, |E| < MO such that A is not a perfect square.
Then the equation

P — AP =E, 1<uzy<MD

has at most M°Y solutions.



Proof. (1) We can assume that A is also a squarefree number. Indeed, let A = A; B?, where

Ay, By are nonzero integers, A; is squarefree and is not a perfect square. Then our equation
takes the form 22 — A|(Byy)? = E, 1 < z,y < M°W. Since By < M°W it follows that
indeed we can assume that A is squarefree.

(2) We can assume that in our equation ged(x,y) = 1. Indeed, if d = ged(z,y), then
d* | E. In particular, since E has M °(1) divisors, we have M°™) possible values for d. Besides,
(x/d)* + A(y/d)? = E/d?, where we have now ged(x/d,y/d) = 1. Thus, without loss of
generality, we can assume that ged(z,y) = 1. In particular, it follows that ged(y, E) = 1.

(3) Since A is not a perfect square, we have, in particular, that £ # 0.
(4) For any x,y € Z, with (y, F) = 1 there exists 1 < z < |E| such that z = zy (mod E).
Given 1 < z < |E], let K, be the set of all pairs (x,y) with

Ay =F, 1<z,y<MoW (2,y9)=1

such that z = zy (mod E).

If (z,y) € K., then (2y)> — Ay?> = 0 (mod E). Since (y, E) = 1, it follows that 2* = A
(mod E). Due to Lemma 3, the number of solutions of this congruence is at most |E|°1) =
M°®M) . Thus, we have at most M°") possible values for z. Therefore, it suffices to show that
|K.| = M°Y for any such z.

Let xg be the smallest positive integer such that

v — Ay =E. (20,%0) € K-.
Let (x,y) be any other solution from K,. Then,
vy — Ays =B, 2*— Ay*=E.
From this we derive that
(zox — Ayyo)? — Alzyo — woy)® = (25 — Ayg) (2 — Ay?) = B>, (10)
On the other hand, from (x¢, yo), (x,y) € K. it follows that
ro=2zyo (mod E), xz=zy (modFE)

Since 22 = A (mod E), we get zzy = 2%yys (mod E) = Ayy, (mod E). We also have
oy = xyp (mod E), as both hand sides are zyy, (mod E). Therefore,

ror — Ayoy =0 (mod FE), zyo—zoy = (mod F). (11)

From (10) and (11) we get that

2 2
Lor — Ayoy AP Ty
E E

and the numbers inside of parenthesis are integers.
Now there are two cases to consider:
(1) A> 0. In view of Lemma 2,

++/]A]

0T — Ayoy
FE

LYo — Loy

7 = (uo + /| Alvo)",




where (ug, vg) is the smallest solution to X? — AY? = 1 in positive integers, and n is some
non-negative integer.

Since the left hand side is of the order of magnitude A/°M) we have that n < log M =
M°®M) | Thus, there are M°1) possible values for n and, each given n produces at most 4 pairs
(x,y). This proves the statement in the first case.

(2) A < 0. Then we get that

ror — Ayoy

TYo — Toy
-1,0,1 - -1,0,1
E E{ 7a}a E E{ 7a}a

and the result follows.
O

The proof of Proposition 1. Now we can deduce Proposition 1 from Lemma 4. Multiply-
ing (9) by 4A, we get

(2Ax 4+ By + D)? — Ay* + (A4EA — 2BD)y + 4AF — D* =0,
where A = B? — 4AC. Multiplying by A we get,
(Ay+ BD —2EA)? — A2z + By + D) =T,

where T' = (BD — 2EA)? + A(4AF — D?). Now, since A is not a full square, and since
T,A < MPWY we have, by Lemma 4 and the condition |A|,|B|,|C|,|D|, |E|,|F| < M, that
there are at most M°") possible pairs (Ay + BD — 2EA,2x + By + D). Each such pair
uniquely determines y (since A # 0) and x. This finishes the proof of Proposition 1. O]

4 Proof of Theorem 2

In what follows, by v* we denote the least positive integer such that vvo* = 1 (mod p). We
rewrite our congruence in the form

(L+2)(L+y)(L+2)=X (modp), 1<z,y,2<M
which, in turn, is equivalent to the congruence
LPx+y+z)+Llay+az+yz)+ayz=X—L° (modp), 1<z,y,2<M.  (12)

Assume that M < p'/® and that p is large enough to satisfy several inequalities through
the proof. Let
k = max{1,2M?/p"/*}. (13)

Lemma 5. If L = uwv* for some integers u,v with |u| < M3/k and 1 < |v| < M?/k, then
the number of solutions of the congruence (12) is at most M°W).

Proof. The congruence (12) is equivalente to
vayz +w(zy +r2 +y2) Ful(z +y+2)=p (mod p),
where |p| < p/2 and p = Av? — udv*. The absolute value of the left hand side is bounded by
(VKM 4+ (M3 /) (M2 /1) (3MP) + (MP/RP(BM) < TMTJI? < TM /(M2 /p/1)?

7
= ZM3p1/2 <p/2.



Hence, the congruence (12) is equivalent to the equality
vieyz +uv(zy + vz +yz) Fut(c +y+2) = p.
Multiplying by v, we get
(vz +u)(vy + u)(ve +u) = vp + u?

The absolute value of the right and the left hand sides is < M°® | and besides it is distinct
from zero (since vu + u® = Mv® (mod p), and Av® #Z 0 (mod p). Therefore, the number of
solutions of the latter equation is bounded by M°" and the lemma follows. Il

Due to this lemma, from now on we can assume that L does not satisfy the condition of

Lemma 5, that is
L # wv”, lu| < M3/k,  |v] < M?/k. (14)

For0<r,s<3k—1land 0<t<k—1let S,z be the set of solutions (z,y, z) such that
rM (T+1)M
r+y+ze€ (T’ QT] ,
Ty + 12+ yz € (“‘,f , (5+2)M ]
M (t+1)M3]
ko k

xyz € (
Clearly, the number of solutions I3(M; L) of our congruence satisfies
I3(M; L) < 9Kk* max | S,

We fix one solution (zg,yo, 20) € Srst- Any other solution (z;,y;, z;) € S, satisfies the
congruence

AL + B, L+C; =0 (mod p) (15)
where
Ai :xi—i—yi—i—zi— (.Z‘o+y0+Zo),
B, = xyi + vz + vizi — (Toyo + Tozo + Yozo),
Ci = x¥i%i — ToYoo-
We have
|A;| < M/k, |Bi| < M?/k, |C;| < M?/k. (16)

A solution (x;,y;, z;) # (%o, Yo, 20) we call degenerated if A; = 0, and non-degenerated
otherwise.

The set of non-degenerated solutions.

We shall show that there are at most M°" non-degenerated solutions. So that, let us
assume that there are at least several non-degenerated solutions. With this set of solutions we
shall form a system of congruence with respect to L, L?. Let us fix one solution (Ay, By, C}).
Note that the condition A; # 0 implies that A; Z 0 (mod p).

Case (1). If A;By # A, B; for some 4, then in view of inequalities (16) we also have that
A;By # A1B; (mod p). Solving the system of equations (15) corresponding to the indices i
and 1, we obtain that

L= (CiA; — AiCy)(AiBy — A1B;)"  (mod p) = wv™  (mod p),

8



L2 = (3101 - C1B1)<AzBl — AlBl)* (mod p) = UIU* (mod p),

where

u = CZAI - AiC’l, vV = AzBl - AlBi7 u’ == BZC’l — CzBl

From this we derive that
lu| < 2M*/K?, || < 2MP /K2, |v| < 2M3/K? (17)

and (uv*)? = L? (mod p) = v'v* (mod p). Hence, u? = u'v (mod p) and, using (17), (13),
we get |u?|, [u'v] < 4MB/k* < p/4, so that we actually have the equality u* = u'v.

Multiplying (12) by v, we get
vryz + u(ry + 1z +yz) +u' (v +y +2) =v(A— L) (mod p) (18)

Since 1 < z,y,z < M, the inequalities (17) give

6 6 2,1/2
lvzyz + u(ey + 2z +yz)+u'(r+y+2)| < 144 < 14M _Mp
k2 (2M2p_1/4)2 2

<p/2.

This converts the congruence (18) into the equality
vryz +u(zy + vz +yz) +u(r+y+2) =p

for some p < MOW and p = v(\ — L?) (mod p). We multiply this equality by v? and use
w'v = u?; we get that
(vr +u)(vy + u)(ve +u) = p* + u®. (19)

Since pv? 4+ u? # 0, the total number of solutions of the latter equation is < AM°W).

Case (2). If we are not in case (1), then for any index i one has Ay B; = A; By, which, in
turn, implies that we also have

AICi = AzCl (mod p)

In view of inequalities (16), we get that the latter congruence is also an equality, so that we
have

A1B; = A;B1, AC; = A Ch. (20)
From the first equation and the definition of A;, B;, C;, we get
zi(Av(zi +yi) — B1) = Bi(xi + yi — ao) — Airiyi + bo Ay, (21)
from the second equation we get
zi(Ayzyy; — Cy) = Cy(z; + y; — ag) + cod, (22)

where

ap = To + Yo + 20, bo = ToYo + Yozo + 20To, Co = ToYoZo-
Multiplying (21) by Ajz;y; — Cy, and (22) by Ai(x; + y;) — B, subtracting the resulting
equalities, and making the change of variables x; + vy; = w;, x;y; = v;, we obtain

(Bl (Uz — Clo) — Alvi + b()Al) (Alvi — Cl) = (Cl (UZ - ao) + C()Al) (Alul — Bl) .

9



We rewrite this equation in the form
Alvf + C’luf - Bluivi - (CLQCl - C()Al)ui - (boAl - CLQBl + 01)111‘ + boCl — CQBl = 0.

If B —4A,C is a full square (as a number), say R? then from (15) we obtain that
L= (=B + R)(24;)* = w* with |u| < |By| + |Bi| + /|4A:1C1] < AM?/k, |v| < 2M/k,
which contradicts our condition (14).

If B —4A,C is not a full square, then we are at the conditions of Proposition 1 and
we can claim that the number of pairs (u;,v;) is at most M°1). We now conclude the proof
observing that each pair u;, v; produces at most two pairs x;, y;, which, in turn, determines
2;. Therefore, the number of non-degenerated solutions counted in S, is at most M°™).

The set of degenerated solutions.

We now consider the set of solutions for which A; = 0. If B; # 0, then B; # 0 (mod p) and
thus we get L = —C;B; with |C;| < M3/k, |B;| < M?/k, which contradicts condition (14).
If B; = 0 then together with A; = 0 this implies that C; = 0. Thus,

T +Yi + 2 = ap = To + Yo + 2o,
Ty + Tizi + Yizi = bo = ToYo + Yozo + ZoTo,
TiYizi = Co = ToYo<o-
Hence,
(L +x) (L +yi) (L + 2z1) = (L + 20) (L + yo)(L + 20)-

The right hand side is not zero (since it is congruent to A (mod p) and ged(A, p) = 1). Thus,
the number of solutions of this equation is at most M°1). The result follows.

5 Proof of Corollaries

If M < p°/® then
M4/3+o(1)

P73
and the statement of Corollary 1 for Iy(M; K, L) follows from Theorem 1. If M > p*/® then,
p2(logp)? < M5t and the statement of Corollary 1 for I,(M; K, L) follows from (6).
Analogously we deal with I(M; K, K) considering the cases M > p*? and M < p*/3.

In order to prove Corollary 3, let k = J,(M; K, L) and let (z;,y;), ¢ = 1,...,k, be all
solutions of the congruence y = ag® (mod p) with z; € [K+1, K+M] and y; € [L+1, L+ M].
Since M < t, the numbers yi, ...,y are distinct. Since y;y; = ag® (mod p) for some z €
2K +2,2K + 2M], there exists a value A such that for at least k*/2M pairs (y;, y;) we have
y;y; = A (mod p). Hence, theorem 1 implies that

+ Mo(l) < M4/5+0(1)

2 3/2+40(1)
KoM e,
2M p1/2

and the result follows.

Corollary 4 is proved similar to Corollary 3. For any triple (¢, j,¢) we have y;y,y, = ag®
(mod p) for some z € [3K + 3,3K + 3M]|. Hence, there exists A Z 0 (mod p) such that the
congruence y;y;y, = A (mod p) has at least k*/3M solutions. Thus,

]{33

— < Mo(l)
3M 7

10



and the result follows in this case. If M > p'/®, then in the interval [L + 1, L + M] we can
find a subinterval of length p'/® which would contain at least k/(2Mp~'/®) members from
Y1, - -+, Yk. Thus, the preceding argument gives that

3
k
i)
-~ 7 < MO( )
3M 7

and the result follows.
Now we prove Corollary 2. Let W be the number of solutions of the congruence

xyz =2'y'2 (mod p), (z,2,y,y,2,2") €Ty x Ty x Ty x Ty X I3 X 3.

Then,

2 2 2

W= 33 )

A

x(y)

> x(2)

Applying the Holder’s inequality, we obtain

W< (%%:L;Il X(I)’6>1/3<%%:’£ X(v) 6>1/3'

6)1/3<% Z‘Z ()

X z€13

Thus,
W< W Wy,

where W; is the number of solutions of the congruence
ryz =2'y'Z (mod p), z,y,z2,y, 2 €.

According to Theorem 2, for each given triple (z/,4/, 2') there are at most |Z;]°!) possibilities
for (x,y,2). Thus, we have that W; < |Z;]3T°(). Therefore,

W < (|Th] - |Zo| - |Z5]) o).

Now, using the well known relationship between the cardinality of a product set and the
number of solutions of the corresponding equation, we get

T2 - |To)? - |Zs)?
w

Ty -1, - T3] > > (|| - |Zo] - |Zs)) oW

and the result follows.

6 Conjectures and Open problems

We conclude our paper with several conjectures and open problems.
Conjecture 1. For M < p'/? one has I,(M; K, L) < M°Y)
Conjecture 2. For M < p'/® one has Is(M; L) < MW

Conjecture 3. For M < p*/? one has J,(M; K,L) < M°W.

11



Conjecture 4. Let Iy,7,, Ty be intervals in F} of length |I;| < p'/®. Then
Ty - T, - T = (1T] - | Z] - 1 Zs))' .

Problem 1. From Theorem 1 it follows that if if M < p'/*, then I,(M;K,L) < MY,
Improve the exponent 1/4 to a larger constant.

Problem 2. From Theorem 1 it follows that if M < p'/3, then I,(M; L, L) < M°%Y. Improve
the exponent 1/3 to a larger constant.

Problem 3. Theorem 2 claims that if M < p'/%, then I3(M;L) < M°WY. Improve the
exponent 1/8 to a larger constant.
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