Synthesis of Aminocyclitols by Intramolecular Reductive Coupling of Carbohydrate Derived δ - and ϵ-Functionalized Oxime Ethers Promoted by Tributyltin Hydride or Samarium Diiodide ${ }^{\dagger}$

J osé Marco-Contelles,* Pilar Gallego, Mercedes Rodríguez-F ernández, Noureddine Khiar, \ddagger Christine Destabel, Manuel Bernabé, Angeles Martínez-Grau,§ and J ose Luis Chiara*

Instituto de Química Orgánica, C.S.I.C., J uan dela Cierva, 3, E-28006 Madrid, Spain
Received J une 3, $1997{ }^{8}$

Abstract

The intramolecular reductive coupling of a series of simple or polyoxygenated oxime ethers δ - or ϵ-functionalized with bromide, α, β-unsaturated ester, aldehyde, or ketone groups is reported. The cyclization of a nitrile-tethered aldehyde is also studied. These reductive couplings are promoted by tributyltin hydride or samarium diiodide. The reactions proceed under mild conditions, in good chemical yield, and with high stereoselectivity. When applied to highly functionalized substrates derived from carbohydrates, this approach provides a selective entry to enantiomerically pure aminocyclitols of varying regio- and stereochemistry. In particular, the reductive coupling reaction of carbonyl-tethered oxime ethers promoted by samarium diiodide can be performed in a one-pot sequence, following a Swern oxidation step, allowing the direct transformation of hydroxyl-tethered oxime ethers into the corresponding aminocyclitols. M oreover, the resultant O-benzylhydroxylamine products of these cyclizations can be further reduced in situ with excess samarium diiodide, in the presence of water, to the corresponding amino alcohols in excellent yields. Some transformations of these compounds are discussed.

Introduction

Polyhydroxylated aminocyclopentanes are structural motifs present in a growing number of natural products and pharmacol ogically important drugs that show interesting biological properties. Well known members of this group are the carbocyclic glycosidase inhibitors mannostatin A (1), ${ }^{1}$ trehazolin (2), ${ }^{2}$ allosamidin (3), ${ }^{3}$ and the carbocydic nucleosides aristeromycin (4), ${ }^{4}$ neplanocin A (5), ${ }^{5}$ and analogs such as epi-5'-nor-aristeromycin (6) ${ }^{6}$ (Figure 1). Polyhydroxylated aminocyclohexanes have

[^0]

Mannostatin A (1)

Allosamidin (3)

Neplanocin A (5)

Trehazolin (2)

Aristeromycin (4)

epi-5'-nor-Aristeromicin (6)

Figure 1. Aminocyclopentitol-derived natural products.
also attracted much attention due to their therapeutic applications. ${ }^{7}$ Different strategies have been employed for the synthesis of such densely functionalized carbocycles, ${ }^{1-3}$ but one of the most successful involves the transformation of carbohydrates. ${ }^{8}$ Following this ap-

[^1]
Scheme 1

proach, a series of carbocyclization methods have been developed, a particularly interesting process being the intramolecular trapping of a radical by an oxime ether ${ }^{9}$ or by a hydrazone. ${ }^{10}$ The efficiency of these reactions lies in the additional stabilization of the intermediate aminyl radical by a lone pair in the adjacent oxygen or nitrogen atom. ${ }^{11}$ Our particular effort in this area during the last few years has resulted in several new methodologies for the synthesis of enantiomerically pure pol yhydroxylated cyclopentanes and cyclohexanes using radical cyclizations promoted by tributyltin hydride ${ }^{12}$ or by samarium diiodide. ${ }^{13,14}$

In this paper we report in full our recent results in the field, showing the scope and generality of some of

[^2]δ-Bromide-tethered oxime ethers

α, β-Unsaturated estertethered oxime ether

Nitrile-tethered aldehyde

Ketone-tethered oxime ethers

19

Figure 2.
these protocols. In particular, we have investigated the carbocyclizations outlined in Scheme 1. To this end, we have prepared a series of simple or polyhydroxylated and enantiomerically pure oxime ethers (Figure 2), δ - or ϵ-functionalized with a bromide (7a-e, 8), an α, β unsaturated ester (9), an aldehyde (11-16), or a ketone group (17-20). All these compounds have been submitted to typical conditions for carbocyclization promoted by tributyltin hydride or samarium diiodide. The cyclization of a nitrile-tethered aldehyde (10) has been also investigated.

Results and Discussion

A. Tributyltin Hydride Cyclization of $\boldsymbol{\delta}$-Bromo

 Oxime Ethers. The 5-exo-trig free radical cyclization of 5-bromo-5-deoxy-D-ribose derivatives, using an α, β unsaturated ester as radical trap, was first reported by
${ }^{a}$ Reagents and conditions: (a) $\mathrm{BnONH}_{2} \cdot \mathrm{HCl}$, py, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, reflux (95%); (b) $\mathrm{MeONH}+\mathrm{HCl}, \mathrm{py}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, reflux (81%); (c)
t-BuMe ${ }_{2} \mathrm{SiCl}$, imidazole, DMF, it (41\%); (d) $\mathrm{Ac}_{2} \mathrm{O}$, py, it (76\%); (e) PhCOCl, py, rt (7a \rightarrow 7d: 54\%; $23 \rightarrow \mathbf{7 e}$: 78\%);

Wilcox in a seminal paper published in 1985. ${ }^{15}$ After this report, Bartlett ${ }^{9 b}$ described the use of oxime ethers as efficient radical traps, compared to aldehydes, ${ }^{16}$ for similar ring closures. These reports encouraged us to explore the synthesis and carbocyclization of 5 -bromo-5-deoxy-2,3-O-isopropylidened-ribose O-benzyl oxime ether derivatives. ${ }^{12}$ This protocol should provide a simple and ready access to chiral 4 -amino-1,2,3-cyclopentanetriols (B; Scheme 1), a structural motive found in interesting, recently discovered antiviral agents such us $6 .{ }^{6}$
Compound $7 \mathbf{a}^{12 b}$ and related 4-O-substituted derivatives ($\mathbf{7 b}-\mathbf{e})^{12 a}$ were prepared from commercially available D-ribonolactone derivative 21, following standard methodologies (Scheme 2). These compounds were obtained as inseparable mixtures of syn and anti isomers in 70:30 ratio, respectively, as determined by ${ }^{1} \mathrm{H}$ NMR $[\mathrm{H}-1$ (sym): $7.30 \mathrm{ppm}, \mathrm{d}, \mathrm{J}=7.3 \mathrm{~Hz} ; \mathrm{H}-1$ (anti): 6.80 ppm , $\mathrm{d}, \mathrm{J}=5.5 \mathrm{~Hz}$)].
With these precursors in hand, we tried the tributyltin hydride promoted cyclization. The reaction proceeded in moderate to good yield and excellent diastereoselectivity under standard conditions [for comparative purposes we have also included the data for compound 7a; see Table 1, entry 1]. For compounds 7b,c, exclusively exo-cyclized products 24b,c were obtained, with the O-alkylhydroxyamino group predominantly in trans relative orientation with respect to the vicinal alkoxy substituent. ${ }^{17 a}$ For compounds 7d or $\mathbf{7 e}$ (see Table 1, entries 4 and 5) the minor cis isomers $\mathbf{2 5 d}$ and $\mathbf{2 5 e}$ could be detected in an increased amount, but we were unable to isolate the major isomers pure. Compounds 24b and 24d/25d (91:9 mixture) were transformed by mild acid hydrolysis and sodium methoxide treatment, respectively, into 24a,

[^3]Table 1. Tributyltin Hydride Mediated Cyclization of Precursors 7a-e

a Product ratios computed from NMR analysis of crude mixtures. ${ }^{\mathrm{b}}$ I solated yield of cyclized products. ${ }^{\mathrm{c}}$ Reference 12 b .
confirming the assigned absolute configuration at $\mathrm{C}-4$ in these carbocycles.
Since we were unable to separate the syn and anti isomers of compounds $\mathbf{7 a}-\mathbf{e}$, we could not analyze independently the stereochemical outcome of their radical cyclization. In principle, each isomer could yield a different trans/cis ratio of cyclic products. However, according to previous reports, ${ }^{9 b}$ no significant differences should be expected between the cydizations of each oxime isomer. The stereochemical results obtained in the cyclization of these radical precursors can be rationalized in terms of the model proposed by Wilcox for the cydization of anal ogous α, β-unsaturated esters. ${ }^{15 a}$ According to Beckwith, ${ }^{18} 5$-hexenyl radical species prefer chairlike conformations in the transition state with most substituents in pseudoequatorial position. In our case, conformation S2 (Scheme 3) presents unfavorable 1,3-steric interactions between substituents at C-2 and C-4. This effect makes conformation $\mathbf{S 1}$ the most favorable and, accordingly, isomers 24a-e should be formed preferentially. Comparison of the cyclizations of compounds 7d and $\mathbf{7 e}$ with those of $7 \mathbf{7 a - c}$ suggest a probable influence of electronic effects of the aryl ester. ${ }^{12 a}$
From a practical perspective, the cyclization of precursor 7 a could be scaled up to $\sim 4 \mathrm{mmol}$ without loss of chemical yield ($\sim 80 \%$). ${ }^{12 b}$ With compound 24a in hand, we tried several chemical manipulations directed toward the synthesis of carbocydic nucleosides. Thus, treatment of 24a with a THF solution of $\mathrm{Sml}_{2}{ }^{19}$ at room temperature cleanly gave the amino alcohol 26 (Scheme 4). Unfortunately, subsequent reaction of 26 with 5 -amino-4,6dichloropyrimidine to give the carbocyclic nucleoside 27, ${ }^{20}$ followed by reaction with triethyl orthoformate and acid hydrolysis, afforded $\mathbf{2 8}^{20}$ in very poor overall yield (7\%), and this approach was abandoned.
(17) (a) This assignment was evident after ${ }^{1} \mathrm{H}$ NMR detailed analysis of these compounds: a ${ }^{3}{ }_{3,4}=0 \mathrm{~Hz}$ clearly suggested a trans relative stereochemistry for these carbons, establishing as R the absolute configuration at the new stereocenter. (b) The absolute configuration at the new stereocenters was established by detailed ${ }^{1} \mathrm{H}$ NMR and 2D NOESY studies (see the Supporting Information). (c) A detailed
 $=9.4 \mathrm{~Hz}$; this value strongly suggets a trans arrangement between these vicinal protons, establishing as R the absolute configuration at the new stereocenter.
(18) (a) Beckwith, A. L. J.; Schiesser, C. H. Tetrahedron 1985, 41, 3925. (b) Beckwith, A. L. J. Tetrahedron 1981, 37, 3073 and references therein.
(19) (a) Chiara, J. L.; Destabel, C.; Gallego, P.; Marco-Contelles, J . J. Org. Chem. 1996, 61, 359. (b) Keck, G. E.; McHardy, S. F.; Wager, T. T. Tetrahedron Lett. 1995, 36, 7419.

Scheme 3

Scheme 4

Scheme 5

At this point, we considered the use of Sml_{2} as reductive promotor in these carbocyclizations (Scheme 5). Intramolecular Barbier-type reactions promoted by samarium diiodide are known ${ }^{14}$ but, to our knowledge, have never been applied to such highly functionalized substrates as those derived from sugars. Besides, the first examples of aza-Barbier couplings promoted by samarium diiodide have been reported recently, but only for simple substrates. ${ }^{10 b, c}$ Two questions attracted also our interest at this point: (a) Will cyclization compete favorably with other possible side-reactions such as the
(20) 27: yellowish foam; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.16(\mathrm{~s}, 1 \mathrm{H}), 4.83$ (d, J $=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{~m}, 2 \mathrm{H}), 4.29(\mathrm{~m}, 2 \mathrm{H}), 3.50(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 2.54(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 2.25-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.54(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H})$. 28: white solid; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.28$ and $8.23(2 \mathrm{~s}, 2 \mathrm{H}), 5.18(\mathrm{~m}, 1 \mathrm{H}), 4.71(\mathrm{~m}, 2 \mathrm{H})$, $4.33(\mathrm{t}, \mathrm{J}=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{~m}, 2 \mathrm{H})$.

27

28

Scheme 6

Scheme 7

β-elimination $\mathbf{M} \rightarrow \mathbf{P}$ (Scheme 5) that could take place after reduction of the initial radical \mathbf{L} to an organosamarium intermediate M?; (b) is the stereochemical outcome of the cyclization dependent on the reagent $\mathrm{Bu}_{3} \mathrm{SnH}$ or Sml_{2} used for the reaction? Both questions have been answered, and our results are as follows.

First of all, we observed that cyclization with the bromide precursors did not proceed in the absence of HMPA. ${ }^{10 \mathrm{~b}}$ After extensive experimentation, compound 7a gave in the best conditions a mixture of products 29, 24a, and 30 (Scheme 6). Compound 30 is the reduced, uncyclized material accompanied with minor amounts of the cyclized trans isomer 24a and epoxide 29, isolated as a syn/anti mixture of oxime ethers, but diastereomerically pure at C-4. ${ }^{21}$ We then turned our attention to precursor 7d, where epoxide formation would be prevented. Under the same experimental conditions, we isolated the cyclic product 24d as a single diastereoisomer together with almost an equimol ar amount of the reductive elimination product 31 (Scheme 7). Although no epoxide was formed, elimination of the benzoate group upon reduction of the initial radical by Sml_{2} competes with cyclization. Very significantly, performing the reaction at $-78{ }^{\circ} \mathrm{C}$ prevents formation of 31 giving a mixture of cyclized products 24d/25d in very poor yield (16\%) and lower stereoselectivity (70/30, respectively).

From these experiments we conclude that the tinmediated radical cyclization of 5-bromo-oxime ethers derived from carbohydrates is clearly superior to the corresponding Sml_{2}-mediated reaction. In the latter case, side reactions such as reductive elimination of the alkoxide group at C-4, epoxide formation, or simple dehalogenation of the substrate compete with cyclization. Thelow yield of carbocycles is probably due also to partial $\mathrm{N}-\mathrm{O}$ reductive cleavage by excess Sml_{2} (see below). ${ }^{22}$ These problems probably could be overcome if precursors with an iodide instead of bromide group were used. However, this possibility was discarded since, in our previous experience, this type of compound is rather

[^4]
unstable, and the chemical yields in the $\mathrm{Bu}_{3} \mathrm{SnH}$ mediated cyclization are considerably lower. ${ }^{12 b}$

Finally, we performed a comparative study of the $\mathrm{Bu}_{3} \mathrm{SnH}$ and Sml_{2} mediated ring closure of compound 8, a D -ribose derivative with a slightly different arrangement of protecting groups. This substrate was obtained from the protected D-ribonolactone $\mathbf{3 2}^{23}$ after standard manipulations, and it was submitted to cyclization as shown in Scheme 8. The samarium diiodide ring closure gave, in 40% total yield (61% taking into account the recovered starting material), the major trans product $\mathbf{3 6 a}{ }^{17 c}$ with traces of the cis isomer 36b. The analogous cyclization with tributyltin hydride gave compounds 36a/ 36b in a 1.8:1 ratio, in 80% yield. Finally, samarium diiodide reductive cleavage of the $\mathrm{N}-\mathrm{O}$ bond ${ }^{19}$ followed by acetylation in situ gave a mixture of silyl-migrated compounds 37 (78\%) which, after desilylation and acetyIation, gave finally the acetamide 38.
B. Samarium Diiodide Cyclization of Oxime Ethers δ-Functionalized with an $\alpha_{n} \beta$-Unsaturated Ester. Although the Sml_{2} cyclization of sugar-derived α, β-unsaturated esters tethered to carbonyl groups is known, ${ }^{24}$ the similar protocol using oxime ethers has not been described yet. ${ }^{25}$ This process, if successful, would result in a simple entry into branched aminocyclitols of type D from acyclic sugar derivatives C (Scheme 1).

To this end, we prepared the precursor 9 from alcohol 35 by standard manipulations (Scheme 9). Compound

[^5]
Scheme 9

9 was obtained as the E isomer at the $\mathrm{C}=\mathrm{C}$ double bond and as a mixture of syn/anti oxime isomers in 3:1 ratio, respectively. We were unable to separate these isomers that were submitted together to cyclization. When a solution of 9 in THF was added to Sml_{2} (3 mol equiv) in THF and HMPA (15 mol equiv) at room temperature, compound 39 was formed after 3 h in 52% yield, as a single isomer. ${ }^{17 b}$ When the reaction was performed at $-40^{\circ} \mathrm{C}$, a mixture of products resulted from which 39 could be isolated in a lower yield, together with other uncharacterized products. Although no mechanistic studies were performed, we hypothesize that this reaction takes place via a homoenolate reactive species \mathbf{Q} (Scheme 9), formed after one- (radical-anion) or two- (dianion) electron transfers from Sml_{2}, that attacks the oxime ether. Some reports are also in support of this hypothesis. ${ }^{26}$
C. Samarium Diiodide Mediated Cyclization of Oxime Ethers δ - or ϵ-F unctionalized with a Carbonyl Group. We have previously reported on a new approach to highly functionalized chiral aminocyclopentitols via the intramolecular reductive cross-coupling of oxime ethers with aldehydes or ketones prepared from readily available carbohydrate precursors. ${ }^{13 c}$ We now report in full our recent results using this strategy, including an example of cyclization to give a sixmembered ring. The first example of intramolecular reductive cross-coupling of oxime ethers with carbonyl compounds was described by Corey. ${ }^{27}$ More recently, this reaction has been performed using electroreduction ${ }^{28}$ or tributyltin hydride. ${ }^{29}$ Samarium diiodide has also been used for the intermolecular coupling of aldehydes and ketones with O-benzylformaldoxime ${ }^{30}$ and, more recently, for the corresponding intramolecular coupling with diphenylhydrazones. ${ }^{10 \mathrm{~b}, \mathrm{c}}$ In both cases, the addition of HMPA was found to be essential for a successful reaction. Although the reported intermolecular cross-coupling with O-benzylformaldoxime failed completely with other aldoximes, we set out to study an intramolecular version of this reaction with the hope that its lower entropic barrier could make the process feasible. This process could provide a straightforward access to branched (F)

[^6]
Scheme 10

40: $R^{1}=R^{3}=H, R^{2}=R^{4}=O B n$
17 (81\%)
41: $R^{1}=R^{4}=O B n, R^{2}=R^{3}=H$
18 (88\%)
42: $R^{1}=R^{4}=H, R^{2}=R^{3}=O B n$
19 (69\%)
and unbranched ($\mathbf{H}, \mathrm{n}=1$) aminocyclopentitols and to aminoinositols ($\mathbf{H}, \mathrm{n}=2$) from precursors \mathbf{E} and \mathbf{G} (Scheme 1). These precursors can be easily prepared in two steps from readily available O-protected sugar hemiacetals by condensation with O-benzylhydroxylamine and subsequent oxidation of the released hydroxyl group, as discussed below.

C1. Samarium Diiodide Mediated Cyclization of Sugar-Derived Oxime Ethers with a δ-Carbonyl Group. The ketone/oxime ether cross-coupling was studied first. Starting from readily available sugar lactols 40-42,31 three substrates $17-19$ were prepared by condensation with O-benzylhydroxylaminefollowed by PCC oxidation of the released hydroxyl group at C-5. These substrates differed in the configuration at C-2 (sugar numbering), the center adjacent to the oxime ether group, and at C-4, the center adjacent to the carbonyl group (Scheme 10).

When a 0.02 M solution of ketone $\mathbf{1 7}$, derived from D-glucose, in THF was added to Sml_{2} in THF (2.5 mol equiv, 0.1 M) and t-BuOH (2.5 mol equiv) at $-25^{\circ} \mathrm{C}$, the reductive coupling took place smoothly to afford the branched aminocyclopentitol 43 as a single diastereoisomer in good yield (Scheme 11). ${ }^{17 \mathrm{~b}}$ Interestingly, this coupling proceeds in the absence of HMPA, in contrast to the analogous intermolecular case ${ }^{30}$ and to the corresponding coupling of hydrazones. ${ }^{10 \mathrm{~b}}$ It is also noteworthy that a single diastereoisomer is obtained out of four possible stereochemical results. A similar approach has been reported very recently using a tributyltin hydrideinduced reductive coupling of the corresponding O methyloxime derivative of 17. ${ }^{29 b}$ In this case, a mixture of two diastereoisomeric aminocyclopentitols was obtained in 68% yield and 1.4:1 ratio. The minor isomer corresponds to that obtained by us using Sml_{2}.

Under the same conditions, ketone $\mathbf{1 8}$ derived from D-mannose afforded a mixture of three aminocyclopentitols 44a-c ${ }^{17 \mathrm{~b}}$ (Scheme 11) in 15:3:1 ratio, ${ }^{32}$ respectively, and in good yield. The major diastereoisomer 44a could be isolated from this mixture in 60% yield by column chromatography. Under the same conditions, ketone 19 derived from D-galactose afforded a cyclopentylhydroxylamine 45 (Scheme 11) in moderate yield. ${ }^{17 b, 33}$ It should be noted that compounds 43-45 can be readily converted,

[^7]Scheme 11

45
Scheme 12

46

48

by hydrogenolysis, into isomers of trehazolamine, the aminocyclopentitol aglycon of the trehalase inhibitor trehazoline (2). Thus, this sequence provides an efficient and very short entry into different enantiomerically pure analogues of this interesting aminocyclopentitol from readily available starting materials. It should be stressed that the fully functionalized cyclopentanes $\mathbf{4 3}$ and 44a-c are obtained in just five steps from free D-glucose and d-mannose, respectively.

We have also observed that the stereochemistry of the cyclic products is independent of the geometry of the starting oxime ether.9b Although syn/anti mixtures of oximes have been used in all cases, a single stereochemical outcome was obtained in one instance (cyclization of 17). In the case of 17, the syn-isomer could be isolated and submited to cyclization separatedly, with the same stereochemical outcome as when a mixture enriched in the anti-isomer (anti/syn $=76: 24$) was used. In most cyclizations (see below), the major isomer shows a trans relationship between the hydroxyl and the O-benzylhydroxylamino groups, and also between the latter and the alkoxy group at C-2 (starting sugar numbering).

In order to explore the scope of the method we also examined the performance of aldehydes derived from sugars. For this purpose, alcohols 35 (Scheme 8), 47, and 49 (Scheme 12) were prepared by straighforward synthetic procedures using the known intermediates $\mathbf{4 6}^{24 a}$

Scheme 13a

and 48. ${ }^{34}$ These alcohols were isolated as inseparable mixtures of syn and anti oximes.

I nitially, Swern oxidation of 35 derived from d-ribose and reductive cyclization of the isolated intermediate aldehyde gave a mixture of products from which the major cyclopentane (50a) could be isolated in only 32\% overall yield from 35 (Scheme 13). However, the overall yield was greatly improved when theSwern oxidation and the Sml_{2} cyclization wereperformed in a onepot sequence, thus avoiding the isolation of the intermediate aldehyde. ${ }^{35}$ Under these conditions, compound 35 gave a mixture of cyclopentanes $\mathbf{5 0 a}-\mathbf{d} .{ }^{17 b}, 36$ The formation of compound 50d was unexpected and probably could arise from an intermediate (methylthio)methyl ether formed with the excess of Swern reagent after cyclization. Simple treatment of compopund 50a with formaldehyde in the presence of citric acid gave quantitatively compound 50d, thus confirming the assigned structure.

When compound 47 derived from D-arabinose was subjected to this one-pot procedure, a nonseparable mixture of two cyclopentanes 51a, $\mathbf{b}^{17 \mathrm{~b}}$ was obtained in 8:1 ratio, ${ }^{32}$ respectively, and good overall yield (Scheme 13). Using the same procedure, the more conformationally labile precursor 49, derived from D-xylose, produced an almost equimolar mixture of two cyclopentane diasteroisomers 52a,b ${ }^{17 \mathrm{~b}}$ (Scheme 13).

C2. Samarium Diiodide Mediated Cyclization of Simple Oxime Ethers $\boldsymbol{\delta}$ - or ϵ-F unctionalized with a Carbonyl Group. The above results moved us to

[^8]Scheme 14 ${ }^{\text {a }}$

${ }^{a}$ Reagents and conditions: (a) DIBALH, toluene, $-78^{\circ} \mathrm{C}$; (b) $\mathrm{BnONH}_{2} \cdot \mathrm{HCl}, \mathrm{py}, \mathrm{MeOH}, 60^{\circ} \mathrm{C}$; (c) i. $(\mathrm{COCl})_{2}, \mathrm{DMSO}$, THF, $-78^{\circ} \mathrm{C}$. ii. $i-\mathrm{Pr}_{2} \mathrm{NEt},-78^{\circ} \mathrm{C} \rightarrow 21^{\circ} \mathrm{C}$. iii. Sml_{2} (4 equiv), t-BuOH (2.5 equiv), THF, $-78^{\circ} \mathrm{C} \rightarrow 21^{\circ} \mathrm{C}$.

${ }^{a}$ Reagents and conditions: (a) i. $\left(\mathrm{Bu}_{3} \mathrm{Sn}\right)_{2} \mathrm{O}$, toluene, $110^{\circ} \mathrm{C}$. ii. BnBr , $\mathrm{Bu}_{4} \mathrm{NBr}(60 \%)$; (b) PDC, $3 \AA \mathrm{MS}, \mathrm{NaOAc}, \mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \%)$; (c) $\mathrm{BnONH}_{2} \cdot \mathrm{HCl}$, py, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (93\%); (d) PDC, $3 \AA \mathrm{MS}, \mathrm{NaOAc}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (71\%); (e) Sml_{2} (3 equiv), t - BuOH (2.5 equiv), $-78^{\circ} \mathrm{C} \rightarrow-40^{\circ} \mathrm{C}$ (62: $42 \%, 63: 18 \%$).
explore also the corresponding cyclization of compounds 14, 15, and 20 (Figure 2) in order to extend this methodology to simple deoxygenated substrates. Compound 54 , precursor of 14 , was prepared from δ-valerolactone (53) by DIBALH reduction followed by oxime ether formation (Scheme 14). Using the previous serial oxidation-reductive cyclization conditions, compound 54 gave exclusively amino al cohol 55 in 49\% yield. A 6-exo cyclization was also tried with aldehyde 15. However, when compound 56, precursor of 15, was submitted to the same experimental conditions, a complex mixture of products resulted from which we could not isolate any carbocyclic compound (Scheme 14).

The cyclization of a 3,4,5-trideoxy-analog (20) of ketones 17-19 was investigated. This precursor was prepared from 1,2,6-hexanetriol (58) as shown in Scheme 15. Using our standard conditions for carbocyclization, we obtained the expected carbocycle 62 in moderate yield with minor amounts of 63 resulting from reductive elimination of the benzyloxy group (Scheme 15). Curiously enough, this side reaction was not observed in the cyclization of the corresponding sugar derivatives. The only diastereoisomers isol ated in the cyclizations of these simple precursors have the hydroxyl and the O-benzylhydroxylamino groups in trans relative orientation, which is also the general tendency found for the corresponding polyhydroxylated precursors derived from sugars.

C3. Samarium Diiodide Mediated Cyclization of Sugar-Derived Oxime Ethers with an ϵ-Aldehyde Group. In spite of the precedent deceiving result for aldehyde 15 (Figure 2), we prepared a sugar derivative having a similar oxime ether ϵ-functionalized with an

Scheme 16a

aldehyde, but adding some conformational constraints in order tofavor the cyclization. Our selected precursor was compound 16 (Figure 2), readily obtained from d-glucose as previously described. ${ }^{37}$ Dess-Martin oxidation ${ }^{38}$ of the primary hydroxyl of $\mathbf{6 4}$ gave the intermediate aldehyde 16 (Scheme 16). After extensive experimentation, we found conditions for a successful cyclization reaction. When a 0.02 M solution of purified $\mathbf{1 6}$ in THF was added to a solution of Sml_{2} in THF at $-45^{\circ} \mathrm{C}$, compounds 65a-c were formed in good overall yield but with rather poor diastereoselection, as determined by ${ }^{1} \mathrm{H}$ NMR of the crude reaction mixture (Scheme 16). We were able to separate and purify each diastereomer. These compounds were transformed into derivatives 66a-c and 67 after reaction with 1,1'-thiocarbonyldiimidazole. The analysis of their ${ }^{1} \mathrm{H}$ NMR spectra hel ped to confirm the assignment of the stereochemistry. ${ }^{17 b}$ This aldehyde/ oxime ether cyclization is important because it opens the way for a new and exciting method for the preparation of aminoinositols in enantiomerically pure form from sugars. This result complements our previous observations on Sml_{2}-induced pinacol coupling for the direct transformation of an alditol-derived 1,6-diol into an inositol derivative. ${ }^{13 a, b}$

C4. Sequential Carbonyl-Oxime Ether Cyclization and $\mathrm{N}-\mathrm{O}$ Reductive Cleavage Promoted by Samarium Diiodide. As we have seen above, the cyclic O-benzylhydroxylamine products could further react in situ with excess Sml_{2} by reduction of the $\mathrm{N}-\mathrm{O}$ bond ${ }^{19}$ to give the corresponding primary amine thus further enhancing the utility of this methodology. This has been demonstrated for the cyclizations of $\mathbf{1 7}$ and $\mathbf{3 5}$ (Scheme 17). ${ }^{39}$ The N-O reductive cleavage reaction is accelerated by addition of

[^9]Scheme 17a

68

69
${ }^{a}$ Reagents and conditions: (a) (i) SmI_{2} (6 equiv), THF, $-25^{\circ} \mathrm{C}$. (ii) $\mathrm{H}_{2} \mathrm{O}$ (25 equiv), $\quad-25^{\circ} \mathrm{C} \rightarrow 22^{\circ} \mathrm{C}$; (b) $\mathrm{Ac}_{2} \mathrm{O}$, py; (c) (COCl) ${ }_{2}$, DMSO, $\mathrm{Et}_{3} \mathrm{~N},-78^{\circ} \mathrm{C} \rightarrow$ $22^{\circ} \mathrm{C}$; (d) TBAF, THF.
water (20-25 mol equiv). ${ }^{40}$ This one-pot two-step sequence takes place in excellent yield in the case of $\mathbf{1 7} \rightarrow$ 68 and can be combined with a preceding Swern oxidation step allowing the direct transformation of a 5-hy-droxy-oxime ether into a 2-aminocyclopentitol in a strikingly good overall yield, as exemplified for 35. In the latter case, the sequence of Swern oxidation, reductive carbocyclization and $\mathrm{N}-\mathrm{O}$ reductive cleavage produced an inseparable mixture of two products (4:1 ratio) in a remarkable 86\% overall yield, which resulted from partial silyl migration to nitrogen during the reductive cleavage step. ${ }^{41}$ Desilylation of the mixture with TBAF in THF and in situ acetylation afforded 69 as a single product in 92\% yield.

Although we have not performed mechanistic studies, it seems reasonable that the samarium diiodide-promoted $\mathrm{C}=\mathrm{O} / \mathrm{C}=\mathrm{NOR}$ cross-coupling reaction is initiated by single electron transfer to the carbonyl with generation of a ketyl radical-anion which then adds to the $\mathrm{C}=\mathrm{N}$ double bond. The process is completed by reduction of the resultant intermediate aminyl radical and protonation. ${ }^{42}$ It seems likely that cyclization does not require prior activation of the oxime ether by intramolecular chelation to the Lewis acidic $\mathrm{Sm}(\mathrm{III})$ ion in the intermediate radical, at difference with what is thought to occur in intramolecular pinacol coupling reactions promoted by samarium diiodide. ${ }^{43}$ Thus, electronic repulsion between the oxygen of the ketyl radical-anion and the nitrogen atom of the oxime could account for the preferred trans relative arrangement of the hydroxyl and the hydroxylamino groups in the cyclic products. The same transselectivity has been observed for the corresponding electrochemical reaction ${ }^{28 b}$ and also for the analogous coupling with diphenylhydrazones. ${ }^{10 b}$ Additionally, if the radical cyclization step is reversible, the observation that the stereochemistry of the cyclic products is independent of the oxime isomer used could be explained. However,

[^10]
Scheme 18a

${ }^{\text {a }}$ Reagents and conditions: (a) $\mathrm{HONH}_{2} \cdot \mathrm{HCl}, \mathrm{py}, \mathrm{CH}_{2} \mathrm{Cl}_{2}(84 \%$); (b) $\left(\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{O}\right.$, py (55%); (c) i. $(\mathrm{COCl})_{2}$, DMSO, THF, $-78^{\circ} \mathrm{C}$. ii. $\mathrm{Et}_{3} \mathrm{~N},-78^{\circ} \mathrm{C}$ to rt; (d) Sml_{2} (4 equiv), t - BuOH (2 equiv), THF $-40^{\circ} \mathrm{C}$ to $\mathrm{tt}(16 \%$ from 71$)$.
preferential reaction of one of the oxime isomers concomitant with a rapid isomerization under the slightly acidic reaction conditions could also account for the observed results. ${ }^{44}$ Another general stereochemical tendency observed in our radical cyclizations of oxime ethers derived from carbohydrates with bromide, α, β-unsaturated ester, and carbonyl functions is the preferred trans disposition of the hydroxylamine group and its vicinal alkoxy group in the cyclic products. Minimization of dipolar interactions and allylic-type 1,3-strain between the oxime and the α-alkoxy group in the transition state of the cyclization could account for this tendency. A similar effect in the ketyl radical-anion moiety explains also the preferred trans arrangement between the hydroxyl group and its vicinal alkoxy group in the cyclic products.
D. Samarium Diiodide Mediated Cyclization of δ-Nitrile-Tethered Aldehydes. To conclude the present study, we decided to investigate the reductive cyclization of carbonyl compounds with nitriles promoted by samarium diiodide, a process scarcely analyzed in the literature (Scheme 18).43a Our one-pot oxidation and samarium diiodide cyclization protocol from alcohol 71, via aldehyde 10, gave the unexpected α, β-unsaturated ketone 72 in poor yield (16\%). The formation of this adduct can be rationalized as shown in Scheme 18, through imine \mathbf{R} by β-elimination with excess $\mathrm{Et}_{3} \mathrm{~N}$ from the Swern oxidation step. Of the two possible acidic protons in α-position to the imine (or the corresponding ketone formed after hydrolysis), the one close to the silyloxy group is more prone to elimination because of its antiperiplanar orientation to the vicinal benzyloxy moiety. No attempts were made to optimize this cyclization and explore other less basic reaction conditions to avoid the eliminiation.

Conclusions

A stereoselective method for the preparation of chiral 4-amino-1,2,3-cyclopentanetriols by tributyltin hydride cyclization of 5-bromo-5-deoxy-2,3-O-isopropylidene-Dribose O-benzyl oxime ether derivatives has been achieved. The moderate yield in the cyclization is compensated for the good to excellent diastereosel ectivity of the reaction and ready availability of the radical precursors. Thetin-

[^11]mediated radical cyclization is clearly superior to the corresponding Sml_{2}-mediated reaction. In the latter case, side reactions such as reductive elimination, epoxide formation, or simple dehalogenation of the substrate compete with cyclization.

A new reductive coupling reaction has been uncovered. The intramolecular coupling of an α, β-unsaturated ester with an oxime ether can be promoted by samarium diiodide in the presence of HMPA. The reaction proceeds with good diastereoselection, although in moderate yield, affording a branched aminocyclopentitol from a readily prepared sugar precursor.
We have also shown that the intramolecular reductive coupling of carbonyl-tethered oxime ethers can be promoted by samarium diiodide under very mild conditions, in the absence of HMPA, in good chemical yield and stereoselectivity. Moreover, the reductive coupling reaction can be performed in a one-pot sequence with a prior Swern oxidation step, allowing the direct transformation of hydroxyl-tethered oxime ethers into the corresponding aminocyclitols, a process which is specially advantageous when the cyclization involves an aldehyde. The resultant cyclic hydroxylamine ethers can be efficiently converted in situ to the corresponding aminocyclitols by $\mathrm{N}-\mathrm{O}$ reductive cleavage promoted by excess samarium diiodide and water. These processes have been applied to highly functionalized substrates derived from carbohydrates, providing a short and selective entry to five- and sixmembered amino polyols of varying regio- and stereochemistry.

Experimental Section

General. NMR sepctra were recorded at 200 MHz or 300 MHz and at $30^{\circ} \mathrm{C}$. Tetrahydrofuran (THF) was distilled under argon from sodium-benzophenone, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and HMPA from CaH_{2}. All reactions were performed under argon with anhydrous freshly distilled solvents. Samarium diiodide was prepared immediately before use by adding $\mathrm{ICH} \mathrm{CH}_{2}$ in one portion to a suspension of samarium metal powder (1.2 equiv) in THF ($10 \mathrm{~mL} / \mathrm{mmol}$ of $\mathrm{ICH}_{2} \mathrm{CH}_{2} \mathrm{I}$) under argon, and stirring vigorously the resultant suspension for $1-2 \mathrm{~h} .{ }^{40 \mathrm{a}}$ All the cyclizations were performed in the presence of the slight excess of samarium metal used in the preparation of the reagent.

General Method for Tributyltin Hydride Mediated Carbocyclization of Bromides. Method A. To a solution of the radical precursor in toluene (0.03 M), that has been deoxygenated with argon for 1 h , a solution of tributyltin hydride (2 equiv) and AIBN (cat.) in toluene (8 M) was slowly added (via syringe pump) in the time indicated in each case. The flask was cooled, and the solvent was removed at reduced pressure. The residue was dissolved in $\mathrm{Et}_{2} \mathrm{O}$ and stirred overnight with a 20% aqueous KF solution. The organic phase was separated, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. Flash chromatography gave the products.

General Procedure for Ketone/Oxime Ether CrossCoupling. Method B. Toa solution of freshly prepared Sml_{2} ($0.1 \mathrm{M}, 3 \mathrm{~mol}$ equiv) in THF and t-BuOH (5 mol equiv) at -25 ${ }^{\circ} \mathrm{C}$ was added dropwise a solution of the keto-oxime $(0.025 \mathrm{M}$, 1 mol equiv) in THF. After stirring for 1.5 h at $-25^{\circ} \mathrm{C}$, the reaction was quenched at this temperature by addition of aqueous saturated $\mathrm{NaHCO}_{3}(20 \mathrm{~mL} / \mathrm{mmol}$ of substrate) and EtOAc ($20 \mathrm{~mL} / \mathrm{mmol}$ of substrate). The mixture was vigorously stirred at room temperature for 0.5 h , the phases were separated, and the aqueous phase was extracted with EtOAc ($3 \times$). The combined organic extracts were washed with 10% aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(1 \times)$, and brine ($1 \times$) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed at reduced pressure, and the residue was purified by flash column chromatography.

General Procedure for One-Pot Swern Oxidation/Sml $\mathbf{2}_{2}$ Coupling Sequence. Method C. To a solution of $(\mathrm{COCl})_{2}$ ($0.5 \mathrm{M}, 2 \mathrm{~mol}$ equiv) in THF at $-60^{\circ} \mathrm{C}$ was added dropwise a
solution of DMSO ($3 \mathrm{M}, 4 \mathrm{~mol}$ equiv) in THF. After stirring for 15 min at $-60^{\circ} \mathrm{C}$, a solution of the 5 -hydroxyoxime ether ($0.15 \mathrm{M}, 1 \mathrm{~mol}$ equiv) in THF was added dropwise via cannula. After stirring at $-60^{\circ} \mathrm{C}$ for $1 \mathrm{~h}, \mathrm{Et}_{3} \mathrm{~N}$ (5 mol equiv) was added, and the reaction was stirred at $-60^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$ for 3 h . The resultant solution was diluted with THF (final substrate concentration $=0.025 \mathrm{M}$) and added dropwise via cannula to a solution of freshly prepared $\mathrm{Sml}_{2}(0.1 \mathrm{M}, 3 \mathrm{~mol}$ equiv) in THF and t-BuOH (3 mol equiv) at $-25^{\circ} \mathrm{C}$. The reaction mixture was stirred at $-25^{\circ} \mathrm{C}$ for 1.5 h . The reaction was quenched and worked up as described in method B.
(1R ,2R ,3S,4R)-4-[(Benzyloxy)amino]-2,3-O-i sopro-pylidene-1,2,3-cyclopentanetriol (24a). This compound has been prepared as described. ${ }^{12 b}$ Compound 24a has been also obtained from 24d $+\mathbf{2 5 d}$ as follows. A mixture of 24d $+\mathbf{2 5 d}$ (9:1) ($339 \mathrm{mg}, 0.88 \mathrm{mmol}$) was treated with excess NaOMe in MeOH at rt for 2 h . The solvent was evaporated, the residue diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with brine and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. A compound ($100 \mathrm{mg}, 42 \%$) was isolated after flash chromatography (hexane/EtOAc 7:3) identical to 24a. ${ }^{12 b} \quad \mathrm{R}_{\mathrm{f}}=0.35$ (hexane/EtOAc 1:1); mp 47.5-49.5 ${ }^{\circ} \mathrm{C}$; $[\alpha]^{20}{ }_{\mathrm{D}}+9.8\left(\mathrm{c} 1, \mathrm{CHCl}_{3}\right)$; IR (KBr) v 3450, 1495, $1455 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.35-$ $7.27(\mathrm{~m}, 5 \mathrm{H}), 5.33(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.65(\mathrm{~s}, 2 \mathrm{H}), 4.39(\mathrm{dd}, \mathrm{J}=5.2$, $5.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{~d}, \mathrm{~J}=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.19$ (ddd, J $=5.2,7.6$, $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{dd}, \mathrm{J}=3.7,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $1.81(\mathrm{~m}, 2 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 1.16(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CHCl}_{3}\right) \delta$ $137.5,128.6,128.3,127.9,111.0,82.3,78.9,76.7,71.7,63.0$, 35.9, 26.9, 24.1. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}_{4}: \mathrm{C}, 64.51 ; \mathrm{H}, 7.52$; $\mathrm{N}, 5.01$. Found: C, $64.80 ; \mathrm{H}, 7.80 ; \mathrm{N}, 4.99$.
(1R,2R,3S,4R)4-[(Benzyloxy)amino]-1-O-(tert-butyl-dimetilsilyl-2,3-O-isopropylidene-1,2,3-cyclopentanetriol (24b). Compound $\mathbf{7 b}^{\mathbf{4 5}}$ ($783 \mathrm{mg}, 1.65 \mathrm{mmol}$) in dry benzene (166 mL) was treated according to method A with tributyltin hydride ($1.10 \mathrm{~mL}, 3.96 \mathrm{mmol}$) and AIBN (cat.) in benzene (5 mL); 6 h slow addition; 23 h at reflux. Flash chromatography (hexane/EtOAc 4:1) gave 24b ($346 \mathrm{mg}, 53 \%$): oil; $[\alpha]^{25} \mathrm{D}+14$ (c $3.2, \mathrm{CHCl}_{3}$); IR (film) $v 3250,1495 \mathrm{~cm}^{-1 ;}{ }^{1 \mathrm{H}}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.34-7.29(\mathrm{~m}, 5 \mathrm{H}), 4.66(\mathrm{~d}, \mathrm{~J}=12 \mathrm{~Hz}, 1 \mathrm{H})$, $4.64(\mathrm{~d}, \mathrm{~J}=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{t}, \mathrm{J}=5 \mathrm{~Hz}, 1 \mathrm{H}), 4.17-4.20$ $(\mathrm{m}, 2 \mathrm{H}), 3.35(\mathrm{~m}, 1 \mathrm{H}), 2.02$ (ddd, J $=13.5,7.1,5.5 \mathrm{~Hz}, 1 \mathrm{H})$, $1.60(\mathrm{~m}, 1 \mathrm{H}), 1.43,1.26(\mathrm{~s}, \mathrm{~s}, 3 \mathrm{H}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 137.5,129.4-127.9,110.9,81.9,80.0,72.8,76.6,63.2$, 34.78, 26.2, 24.5, 25.9. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{35} \mathrm{NSiO}_{4}: \mathrm{C}, 64.08$; H: 8.96; N, 3.55. Found: C, 61.38; H, 8.83; N, 3.12.
(1R,2R,3S,4R)1-O-Acetyl-4-[(benzyloxy)amino]-2,3-0-isopropylidene-1,2,3-cyclopentanetriol (24c). Compound $7 \mathbf{c}^{45}(540 \mathrm{mg}, 1.35 \mathrm{mmol})$, dissolved in benzene $(70 \mathrm{~mL})$, was treated according to method A with tributyltin hydride (0.9 $\mathrm{mL}, 3.24 \mathrm{mmol}, 2.4$ equiv), AIBN (cat.); slow addition for 5 h , 10 h at reflux. Flash chromatography (hexane/EtOAc 3:7) gave 24c (201 mg, 52\%): mp 45-47 ${ }^{\circ} \mathrm{C}$; $[\alpha]^{25} \mathrm{D}+35$ (c 1.4, CHCl_{3}); IR (film) $v 3300,1735 \mathrm{~cm}^{-1}{ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 7.30-7.27$ (m, 5 H), 4.93 (ddd, J $=5.1,6.1,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~d}, \mathrm{~J}=12 \mathrm{~Hz}$, $1 \mathrm{H}), 4.53(\mathrm{~d}, \mathrm{~J}=12 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{t}, \mathrm{J}=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{~d}$, $\mathrm{J}=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{~d}, \mathrm{~J}=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.99(\mathrm{~s}, 3 \mathrm{H}), 1.98$ ($\mathrm{m}, 1 \mathrm{H}$), 1.77 (ddd, J = 13.6, $0.7,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.35,1.16(\mathrm{~s}, \mathrm{~s}$, $3 \mathrm{H}, 3 \mathrm{H})$; MS (70 eV) m/z 321(M+, 3), 306 ($\mathrm{M}^{+}-15,1$), $91(100)$. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NO}_{5}$: C, 63.53; $\mathrm{H}, 7.21 ; \mathrm{N}, 4.36$. Found: C, 63.40; H, 6.98; N, 4.48.
(1R,2R,3S,4RS)-1-O-Benzoyl-4-[(benzyloxy)amino]-2,30 -isopropylidene-1,2,3-cyclopentanetriol (24d+25d). Compound $\mathbf{7 d}^{45}$ ($700 \mathrm{mg}, 1.52 \mathrm{mmol}$), dissolved in toluene (151 mL), was treated according to method A with tributyltin hydride ($0.98 \mathrm{~mL}, 3.6 \mathrm{mmol}, 2.4$ equiv), AIBN (cat.); slow addition for $5 \mathrm{~h} 30 \mathrm{~min}, 5 \mathrm{~h}$ at reflux. Flash chromatography (hexane/ EtOAc 7:3) gave a mixture of isomers 24d+25d ($339 \mathrm{mg}, 58 \%$; ${ }^{1}$ H NMR analysis of the crude reaction mixture showed that the ratio 24d/25d was 89:11, respectively; careful chromatography allowed us to isolate enriched fractions of 24d $+\mathbf{2 5 d}$ in 91:9 ratio): oil; IR (KBr) $v 3500-3200,1725 \mathrm{~cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ (major isomer 24d) 8.25-8.10 (m, 2H), 7.60-7.25 $(\mathrm{m}, 7 \mathrm{H}), 5.77(\mathrm{dt}, \mathrm{J}=5.6,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{t}, \mathrm{J}=5.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.70(\mathrm{~s}, 2 \mathrm{H}), 4.40(\mathrm{~d}, \mathrm{~J}=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{q}, \mathrm{J}=5.2 \mathrm{~Hz}$,
(45) See the Supporting Information.

1H), 2.26 (ddd, J = 13.3, 7, 6.4, 1H), 2.03 (dd, J = 6.4, 13 Hz , $1 \mathrm{H}), 1.41,1.26(\mathrm{~s}, \mathrm{~s}, 3 \mathrm{H}, 3 \mathrm{H})$. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NO}_{5}$: C, 68.91; H, 6.57; N, 3.65. Found: C, 66.42; H, 6.16; N. 3.96.
(1R,2R,3S,4RS)-1-O-Benzoyl-2,3-O-i isopropylidene-4-(methoxyamino)-1,2,3-cyclopentanetriol (24e+25e). Compound $7 \mathbf{e}^{45}$ ($999 \mathrm{mg}, 2.58 \mathrm{mmol}$), dissol ved in toluene $(130 \mathrm{~mL}$), was treated according to method A with tributyltin hydride ($1.67 \mathrm{~mL}, 6.21 \mathrm{mmol}$), AIBN (cat.); slow addition for $4 \mathrm{~h} ; 3 \mathrm{~h}$ at reflux. Flash chromatography (hexane/EtOAc 7:3) gave a mixture of isomers $\mathbf{2 4 e}+\mathbf{2 5 e}$ ($556 \mathrm{mg}, 71 \%$); ${ }^{1} \mathrm{H}$ NMR analysis of the crude reaction mixture showed that the ratio 24e/25e was 80:20, respectively; careful chromatography allowed us to isolate enriched fractions of $\mathbf{2 4 e}+\mathbf{2 5 e}$ in 88:12 ratio): oil; IR (film) $v 3250,3060,1720 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) δ (major isomer 24e) $8.01-8.00(\mathrm{~m}, 2 \mathrm{H}), 7.99-7.98(\mathrm{~m}, 1 \mathrm{H}), 7.38-7.33$ $(\mathrm{m}, 2 \mathrm{H}), 5.24(\mathrm{~m}, 1 \mathrm{H}), 4.79(\mathrm{t}, \mathrm{J}=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~d}, \mathrm{~J}=$ $5.6,1 \mathrm{H}), 3.48(\mathrm{~s}, 3 \mathrm{H}), 3.47(\mathrm{~m}, 1 \mathrm{H}), 2.21$ (ddd, J = 6.4, 9.8, $13.4 \mathrm{~Hz}, 1 \mathrm{H}$), 1.94 (ddt, J $=0.9,6.6,13.4 \mathrm{~Hz}, 1 \mathrm{H}$), $1.33,1.23$ ($\mathrm{s}, \mathrm{s}, 3 \mathrm{H}, 3 \mathrm{H}$). Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NO}_{5}: \mathrm{C}, 63.53 ; \mathrm{H}, 7.21$; N, 4.36. Found: C, 61.48; H, 7.33; N, 7.10.
(1R,2R,3S,4R)-4-Amino-2,3-O-isopropylidene-1,2,3-cyclopentanetriol (26). A 0.1 M sol ution of $\mathrm{Sml}_{2}(4.3 \mathrm{~mL}, 4.33$ mmol) in THF was added via cannula to a 0.05 M solution of 24a ($394 \mathrm{mg}, 1.41 \mathrm{mmol}$) in THF at rt. After stirring for 2 h , the reaction mixture was filtered through a small pad of silica, rinsing with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 4: 1$. The filtrate was concentrated at reduced pressure and the residue was purified by flashchromatography (EtOH/AcOEt 1:19 to 1:9), to give 26 (193 mg , 79%) as a waxy solid. $\mathrm{R}_{\mathrm{f}}=0.16$ (EtOAc/EtOH 4:1); $[\alpha]^{20}{ }_{\mathrm{D}}+3.7$ (c 0.2, EtOH); IR (film) $v 3400,1640 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (acetone$\left.\mathrm{d}_{6}\right): \delta 5.04(\mathrm{~d}, \mathrm{~J}=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{t}, \mathrm{J}=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.54$ (ddd, J $=4.9,5.3,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{~m}, 1 \mathrm{H}), 2,27$ (ddd, J = $4.3,4.9,13.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.21 (ddd, J $=6.6,9.0,13.4 \mathrm{~Hz}, 1 \mathrm{H}$), $1.45(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (DMSO-d ${ }_{6}$) δ 111.4, 82.0, 80.0, 69.7, 53.5, 34.5, $26.4,24.7$. This compound did not give correct microanalytical data.
Reaction of Oxime Ether 7a with Sml $\mathbf{2 .}^{\text {. To a solution }}$ of $7 \mathbf{a}^{45}(115 \mathrm{mg}, 0.22 \mathrm{mmol})$ in THF (11 mL) and HMPA (1.3 $\mathrm{mL}, 7.3 \mathrm{mmol}$) at $-40^{\circ} \mathrm{C}$ was added a 0.1 M solution of Sml_{2} ($1.5 \mathrm{~mL}, 1.46 \mathrm{mmol}$) in THF. After stirring at $-40^{\circ} \mathrm{C}$ to -5 ${ }^{\circ} \mathrm{C}$ for 3 h , the reaction mixture was added to saturated aqueous NaHCO_{3}. The aqueous phase was extracted with EtOAc ($3 \times 30 \mathrm{~mL}$), and the combined organic extracts were washed with 10% aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and brine. The solvent was evaporated at reduced pressure, and the residue was purified by flash-chromatography (hexane/EtOAc 4:1) to give 29 ($24 \mathrm{mg}, 27 \%$), 30 ($6 \mathrm{mg}, 7 \%$), and 24a ($7 \mathrm{mg}, 8 \%$). 29: oil; $\mathrm{E} / \mathrm{Z}=4: 1 ; \mathrm{IR}$ (film) $v 2995,1495,1450 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) δ E-isomer: $7.54(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{~s}, 2 \mathrm{H}), 4.83$ (dd, J $=6.5,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{ddd}, \mathrm{J}=2.5$, $3.9,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.82(\mathrm{dd}, \mathrm{J}=3.9,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{dd}, \mathrm{J}=$ $2.5,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.52(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H})$; Z-isomer: $6.95(\mathrm{~d}$, $\mathrm{J}=6,3 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{~s}, 2 \mathrm{H}), 4.80(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.47(\mathrm{~s}$, $3 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}) δ E-isomer: 146.4, 137.1, $128.4,128.2,128.0,110.4,77.8,76.3,75.2,49.4,45.5,27.5,25.1$. 30: white solid; only E-isomer; $\mathrm{mp} 54.5-57{ }^{\circ} \mathrm{C} ;[\alpha]^{20} \mathrm{D}+158$ (C $\left.0.2, \mathrm{CHCl}_{3}\right)$; IR (film) $v 3450,1380,1270 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ $\delta 7.38-7.34(\mathrm{~m}, 5 \mathrm{H}), 6.95(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{dd}, \mathrm{J}=$ $4.8,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{~m}, 2 \mathrm{H}), 4.30(\mathrm{dd}, \mathrm{J}=4.9,6.9 \mathrm{~Hz}, 1 \mathrm{H})$, 2.93 (ddq, J = 3.2, 4.9, $9.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{~d}, \mathrm{~J}=3.2 \mathrm{~Hz}, 1 \mathrm{H})$, $2.65(\mathrm{~d}, \mathrm{~J}=9.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.51(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H})$.

Reaction of Oxime Ether 7d with Sml ${ }_{2}$. Compound $\mathbf{7 d}{ }^{45}$ ($98 \mathrm{mg}, 0.21 \mathrm{mmol}$) was treated with Sml_{2} following the procedure described for 7a. Flash chromatography (hexane/ EtOAc 4:1) afforded 24d ($34 \mathrm{mg}, 42 \%$) and 31 ($21 \mathrm{mg}, 37 \%$). 31: colorless oil; $\mathrm{E} / \mathrm{Z}=9: 1 ; \mathrm{R}_{\mathrm{f}}=0.42$ (hexane/EtOAc 4:1); ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) δ (E -isomer) $7.38-7.35(\mathrm{~m}, 5 \mathrm{H}), 7.33(\mathrm{~d}, \mathrm{~J}=$ $3.6 \mathrm{~Hz}, 1 \mathrm{H}$), 5.72 (ddd, J $=6.3,10.5,16.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.40$ (dd, J $=1.5,16.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{dd}, \mathrm{J}=1.5,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~s}$, $2 \mathrm{H}), 4.72(\mathrm{~m}, 2 \mathrm{H}), 1.54(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}) δ (E-isomer) 148.7, 137.9, 133.0, 129.1, 128.9, 128.6, 119.8, 110.6, 79.8, 76.8, 76.6, 28.6, 26.1. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}_{3}: \mathrm{C}, 68.93 ; \mathrm{H}, 7.34 ; \mathrm{N}, 5.36$. Found: C, $68.83 ; \mathrm{H}$, 7.49; N, 5.64.

3,4-O-Benzylidene-2-O-(tert-butyldimethylsilyl)-d-ribose O-Benzyl Oxime Ether (35). To a solution of 3,4-O-
benzylidene-2-O-(tert-butyldimethylsilyl)- δ-d-ribonolactone 33^{23} ($1.4 \mathrm{~g}, 4.0 \mathrm{mmol}$), in toluene (50 mL) at $-78^{\circ} \mathrm{C}$, was added a 1 M solution of DIBALH in cyclohexane ($8.0 \mathrm{~mL}, 8.0 \mathrm{mmol}$) dropwise. The reaction mxture was stirred at this temperature for $1 \mathrm{~h}, \mathrm{MeOH}$ (35 mL) was added dropwise, and the mixture was allowed to warm tort. After stirring for 3 h , the resultant suspension was filtered through Celite, and the filter was washed with $\mathrm{MeOH}(3 \times 50 \mathrm{~mL})$. The filtrate was concentrated at reduced pressure, and the residue was purified by flash-chromatography (hexane/EtOAc 3:1), to give 34 [(1.4 g, 98\%); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.61-7.36(\mathrm{~m}, 5 \mathrm{H}), 5.81(\mathrm{~s}, 1 \mathrm{H}), 5.16$ (dd, J $=3.4,6.3 \mathrm{~Hz}, 1 \mathrm{H}$), 4.45 (dd, J $=2.9,7.9 \mathrm{~Hz}, 1 \mathrm{H}$), 4.38 $(\mathrm{m}, 1 \mathrm{H}), 3.90(\mathrm{dd}, \mathrm{J}=2.9,13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~m}, 2 \mathrm{H}), 2.75(\mathrm{~d}$, $\mathrm{J}=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.15(\mathrm{~s}, 6 \mathrm{H}) \mathrm{]}$. This compound ($1.35 \mathrm{~g}, 3.83 \mathrm{mmol}$) was treated with O-benzylhydroxylamine hydrochloride following the procedure applied for 7a. Flashchromatography (hexane/EtOAc 4:1) afforded 35 ($1.42 \mathrm{~g}, 81 \%$) as a white semisolid, inseparable 85:15 mixture of E / Z isomers, respectively. $\mathrm{R}_{\mathrm{f}}=0.21$ (hexane/EtOAc 4:1); IR (film) $v 3460$, $1460,1255,1090 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}\right) \delta 7.52-7.29(\mathrm{~m}, 11 \mathrm{H})$, 6.78 (d, J $=5.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Z}$-isomer), 5.82 (s, 1H), $5.09(\mathrm{~s}, 2 \mathrm{H})$, $4.65(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.41-4.24(\mathrm{~m}, 2 \mathrm{H}), 3.87-3.79(\mathrm{~m}, 2 \mathrm{H})$, $2.42(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.01(\mathrm{~s}, 3 \mathrm{H})$. Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{35} \mathrm{NO}_{5} \mathrm{Si}$: C, $65.60 ; \mathrm{H}, 7.72 ; \mathrm{N}, 3.06$. Found: C, 65.24; H, 7.92; N, 3.05.

3,4-0-Benzylidene-5-bromo-2-0-(tert-butyldimethylsi-lyl)-5-deoxy-D-ribose Oxime Ether (8). To a solution of 35 $(769 \mathrm{mg}, 1.68 \mathrm{mmol})$ and $\mathrm{Ph}_{3} \mathrm{P}(1.76 \mathrm{~g}, 6.72 \mathrm{mmol})$ in pyridine $(20 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{CBr}_{4}(1.11 \mathrm{~g}, 3.36 \mathrm{mmol})$. The solution was warmed to rt and then heated at reflux for 17 h . After cooling to rt, MeOH (15 mL) was added, and the solvent was removed at reduced pressure. Flash-chromatography of the residue (hexane/EtOAc 19:1) afforded 8 ($422 \mathrm{mg}, 48 \%$) as a colorless oil, inseparable 85:15 mixture of E / Z isomers. R_{f} $=0.27$ (hexane/EtOAc 19:1); IR (film) v 1465, 1255, 1090, 1020 $\mathrm{cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ (E-isomer) $7.55-7.30(\mathrm{~m}, 10 \mathrm{H}), 7.52$ $(\mathrm{d}, \mathrm{J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.88(\mathrm{~s}, 1 \mathrm{H}), 5.11(\mathrm{~s}, 2 \mathrm{H}), 4.62-4.52(\mathrm{~m}$, $2 \mathrm{H}), 4.31(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{dd}, \mathrm{J}=3.0,11.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.56(\mathrm{~m}, 1 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.01(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ (E-isomer) 149.5, 137.4, 136.4, 129.5, 128.4, 128.3, $128.2,128.0,126.9,103.8,79.8,78.7,76.2,69.2,31.5,25.7,18.5$, $-4.0,-4.1$. Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{BrNO}_{4} \mathrm{Si}: \mathrm{C}, 57.67$; $\mathrm{H}, 6.60$; N, 2.69. Found: C, 57.98; H, 6.90; N, 2.65 .

Cyclization of Oxime Ether 8. With $\mathrm{Bu}_{3} \mathrm{SnH}$. Compound $8(365 \mathrm{mg}, 0.71 \mathrm{mmol})$ in toluene (35 mL) was treated according to method A with tributyltin hydride ($0.46 \mathrm{~mL}, 1.70$ mmol) and AIBN (cat.) in benzene (2 mL); 3 h slow addition; 3 h at reflux. Flash-chromatography (hexane/EtOAc 100:0 to $85: 15$) afforded 36 ($159 \mathrm{mg}, 51 \%$) and 36b ($89 \mathrm{mg}, 29 \%$). With $\mathbf{S m l}_{2}$. Compound $\mathbf{8}(53 \mathrm{mg}, 0.10 \mathrm{mmol})$ in THF (5 mL) was treated with SmI_{2} as indicated for 7a. Flash-chromatography (hexane/EtOAc 9:1) afforded unreacted 8 (19 mg) and 36a (18 $\mathrm{mg}, 40 \%, 61 \%$ based on recovered 8). The ${ }^{1} \mathrm{H}$ NMR of the crude showed also the presence of traces of 36b. 36a: Colorless oil; $\mathrm{R}_{\mathrm{f}}=0.29$ (hexane/EtOAc 85:15); $[\alpha]^{20} \mathrm{D}+92\left(\mathrm{c} 4.0, \mathrm{CHCl}_{3}\right) ; \mathrm{IR}$ (KBr) $v 3400,1460,1400,1250,1140 \mathrm{~cm}^{-1}$; 1 H NMR ($\left(\mathrm{CDCl}_{3}\right)$ $\delta 7.56-7.27(\mathrm{~m}, 10 \mathrm{H}), 5.90(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.70(\mathrm{~s}, 1 \mathrm{H}), 4.69(\mathrm{~s}$, $2 \mathrm{H}), 4.58(\mathrm{t}, \mathrm{J}=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{t}, \mathrm{J}=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.90$ (dd, J = 5.4 and $9.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.53 (ddd, J $=6.3,9.4,11.5 \mathrm{~Hz}$, 1 H), 2.10 (dd, J $=6.3,14.0 \mathrm{~Hz}, 1 \mathrm{H}$), 1.65 (ddd, J $=5.6,11.5$, $14.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.11(\mathrm{~s}, 3 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 137.6,136.8,129.3,128.3,128.2,127.8,127.0,104.2$, $79.1,77.7,76.8,73.5,63.9,31.1,25.6,16.2,-4.5,-4.8$. Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{NO}_{4} \mathrm{Si}$: C, $67.98 ; \mathrm{H}, 8.00 ; \mathrm{N}, 3.17$. Found: C, 67.69; H, 7.99; N, 3.42. 36b: $\mathrm{R}_{\mathrm{f}}=0.19$ (hexane/EtOAc 85: 15); $[\alpha]^{20}-108$ (c 1.5, CHCl_{3}); IR (film) $v 3400,1460,1400$, $1250,1220 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.61-7.28(\mathrm{~m}, 10 \mathrm{H}), 5.78$ $(\mathrm{s}, 1 \mathrm{H}), 4.67(\mathrm{~s}, 2 \mathrm{H}), 4.68-4.39(\mathrm{~m}, 4 \mathrm{H}), 2.04(\mathrm{dd}, \mathrm{J}=5.7,14.2$ $\mathrm{Hz}, 1 \mathrm{H}), 1.85(\mathrm{~m}, 1 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (CDCl ${ }_{3}$) $\delta 140.7,136.7,129.4,128.5,128.2,127.5$, 127.0, 126.9, 104.7, 80.0, 79.0, 78.1, 76.7, 65.2, 31.7, 25.8, 16.2, -4.6.

Reduction of 36a with $\mathbf{S m l}_{2}$. A solution of $\mathbf{3 6 a}$ (116 mg , 0.26 mmol) in THF (5 mL) was added to a 0.1 M solution of $\mathrm{Sml}_{2}(7.9 \mathrm{~mL}, 0.79 \mathrm{mmol})$ in THF at rt. Water $(0.10 \mathrm{~mL}, 5.26$ mmol) was added, and the mixture was stirred for $3.5 \mathrm{~h} . \mathrm{Ac}_{2} \mathrm{O}$
$(2 \mathrm{~mL})$ and pyridine $(4 \mathrm{~mL})$ were added at rt , and the mixture was stirred for 15 h . The reaction mixture was diluted with EtOAc (25 mL) and washed with aqueous saturated NaHCO_{3}. The aqueous phase was extracted with EtOAc $(3 \times 50 \mathrm{~mL})$, and the combined organic extracts were washed with 10% aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, and brine. The solvent was removed at reduced pressure and the crude was purified by flash-chromatography (hexane/EtOAc 1:4) affording 37 ($77 \mathrm{mg}, 78 \%$) as a white sol id, $5: 1$ mixture of regioisomers (see text). $R_{f}=0.12$ (hexane/EtOAc 2:3); IR (KBr) v 3500, 1655, 1580, $1470 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) δ (major product) 7.57-7.37 (m, 5H), 5.71 $(\mathrm{s}, 1 \mathrm{H}), 5.47(\mathrm{brd}, \mathrm{J}=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{t}, \mathrm{J}=5.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.41(\mathrm{t}, \mathrm{J}=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.12-4.05(\mathrm{~m}, 2 \mathrm{H}), 2.24(\mathrm{dd}, \mathrm{J}=6.1$, $14.0 \mathrm{~Hz}, 1 \mathrm{H}$), 1.97 ($\mathrm{s}, 3 \mathrm{H}$), 1.78 (ddd, J $=5.5,11.5,14.0 \mathrm{~Hz}$, $1 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.11(\mathrm{~s}, 6 \mathrm{H})$; (minor product) $5.74(\mathrm{~s}, 1 \mathrm{H})$, $2.10(\mathrm{~s}, 3 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.14(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ (major product) 170.3, 136.5, 129.4, 128.2, 127.0, 104.1, 78.3, 77.5, 76.3, 54.4, 32.2, 25.7, 18.2, -4.5, -4.8; (minor product) 128.4, 126.7, 79.3, 77.3, 76.7, 56.2, 30.9, 23.7. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{31} \mathrm{NO}_{4} \mathrm{Si}: \mathrm{C}, 63.63 ; \mathrm{H}, 8.29 ; \mathrm{N}, 3.70$. Found: $\mathrm{C}, 63.84$; H, 8.48; N, 3.72.
(1R,2R,3S,4R)-4-N-Acetyl-3-O-acetyl-1,2-O-benzylidene-1,2,3-cyclopentanetriol (38). To a solution of 37 ($62 \mathrm{mg}, 0.16$ mmol) in THF (5 mL) was added a 1.0 M sol ution of tetrabutylammonium fluoride ($0.49 \mathrm{~mL}, 0.49 \mathrm{mmol}$) in THF at rt. After stirring for $2 \mathrm{~h}, \mathrm{Ac}_{2} \mathrm{O}(2 \mathrm{~mL})$ and pyridine $(4 \mathrm{~mL})$ were added. The reaction mixture was stirred at rt for 5 h , and the solvent was removed at reduced pressure. The residue was suspended in EtOAc (30 mL) and water (25 mL). The phases were separated, and the aqueous phase was extracted with EtOAc ($3 \times 25 \mathrm{~mL}$). The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated at reduced pressure. Flashchromatography (EtOAc) of the residue afforded 38 (40 mg , 81%) as a white solid. $\mathrm{R}_{\mathrm{f}}=0.25$ (EtOAc); mp $188-190^{\circ} \mathrm{C}$; $[\alpha]^{22} \mathrm{D}+30\left(\mathrm{c} \mathrm{1.3}, \mathrm{CHCl}_{3}\right.$); IR (KBr) $v 3450,1735,1645,1560$ cm^{-1}; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.54-7.40(\mathrm{~m}, 5 \mathrm{H}), 5.74(\mathrm{~m}, 1 \mathrm{H}), 5.70$ $(\mathrm{s}, 1 \mathrm{H}), 4.84$ (ddd, J $=5.5,9.4,11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.69-4.56(\mathrm{~m}$, 3 H), 2.53 (dd, J = 6.9, $14.3 \mathrm{~Hz}, 1 \mathrm{H}$), $2.11(\mathrm{~s}, 3 \mathrm{H}), 1.97(\mathrm{~s}, 3 \mathrm{H})$, 1.61 (ddd, $\mathrm{J}=5.5,11.6,14.3 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 172.1, 170.9, 136.1, 130.3, 128.9, 127.5, 105.1, 78.1, 77.3, 76.9, 51.8, 34.1, 23.9, 21.3. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{NO}_{5}$: $\mathrm{C}, 62.03$; H, 6.29; N, 4.59. Found: C, 62.97; H, 6.25; N, 4.58.

Synthesis of Oxime Ether 9. To a solution of $(\mathrm{COCI})_{2}$ ($0.60 \mathrm{~mL}, 6.21 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(12 \mathrm{~mL})$ at $-60^{\circ} \mathrm{C}$ was added dropwise DMSO ($0.88 \mathrm{~mL}, 12.42 \mathrm{mmol}$). After stirring for 15 min at $-60^{\circ} \mathrm{C}$, a solution of $35(945 \mathrm{mg}, 2.07 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ was added dropwise. After stirring at -60 ${ }^{\circ} \mathrm{C}$ for $45 \mathrm{~min}, \mathrm{Et}_{3} \mathrm{~N}(4,3 \mathrm{~mL}, 31.05 \mathrm{mmol})$ was added dropwise and the reaction stirred at -60 to $0^{\circ} \mathrm{C}$ for 3 h . The reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ and washed with aqueous saturated $\mathrm{NH}_{4} \mathrm{Cl}$. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$, and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated at reduced pressure, affording the corresponding crude aldehyde 11. To a stirred solution of crude $\mathbf{1 1}$ in toluene (20 mL) at room temperature was added $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCO}_{2} \mathrm{Et}(1.80 \mathrm{~g}, 5.17 \mathrm{mmol})$. After stirring at $25^{\circ} \mathrm{C}$ for 16 h the mixture was heated at $70^{\circ} \mathrm{C}$ for 5 h until the reaction was complete. After cooling, the toluene was removed at reduced pressure, and the residue was purified by flash column chromatography (hexane/EtOAc 9:1) to afford 9 ($798 \mathrm{mg}, 73 \%$) as a col orless oil, mixture of two isomers. A fraction of pure major isomer (E oxime ether/E $\mathrm{C}=\mathrm{C}$) was obtained followed by mixed fractions of both isomers (E oxime ether/E C=C and Z oxime ether/E C=C). Major isomer (E oxime ether/E C=C): $\mathrm{R}_{\mathrm{f}}=0.28$ (hexane/EtOAc 9:1); IR (film): $1725,1660 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.49(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.27$ (m, 9H) , 7.06 (dd, J = 15.6, $5.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.12$ (dd, J = 15.6, $1.6 \mathrm{~Hz}, 1 \mathrm{H}$), $5.06(\mathrm{~s}, 2 \mathrm{H}), 4.89$ (ddd, J $=1.6,1.7,5.2 \mathrm{~Hz}, 1 \mathrm{H}$), $4.33(\mathrm{~m}, 2 \mathrm{H}), 4.19(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.28(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}$, $3 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}), 0.00(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ $\delta 165.8,149.8,142.2,137.5,136.2,129.5,128.3,128.2,127.8$, 127.0, 123.5, 104.0, 80.5, 77.2, 76.1, 69.6, 60.4, 25.8, 17.9, 14.2, $-3.8,-5.1 ;[\alpha]^{25} \mathrm{D}-33.9$ (c 1.3, CHCl_{3}). Anal. Calcd for $\mathrm{C}_{29} \mathrm{H}_{39} \mathrm{NO}_{6} \mathrm{Si}: \mathrm{C}, 66.12 ; \mathrm{N}, 2.66 ; \mathrm{H}, 7.67$. Found: C, 66.36; N , 2.70; H, 7.64.

Minor isomer (Z oxime ether/E $C=C$): $R_{f}=0.26$ (hexane/

EtOAc 9:1); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ (aromatic protons not included): 7.14 (dd, J $=6.3,15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}$, 1H), 6.11 (dd, J $=1.4,15.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.82(\mathrm{~s}, 1 \mathrm{H}), 5.10(\mathrm{~s}, 2 \mathrm{H})$, 4.79 (ddd, J $=1.3,1.4,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{~m}, 2 \mathrm{H}) ; 4.20(\mathrm{q}, \mathrm{J}=$ $7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.28(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.01(\mathrm{~s}, 3 \mathrm{H})$, $-0.02(\mathrm{~s}, 3 \mathrm{H})$.

Cyclization of Oxime Ether 9. A solution of compound 9 ($83 \mathrm{mg}, 0.16 \mathrm{mmol}$) in THF (8 mL) was added dropwise via cannula to a 0.1 M solution of $\mathrm{Sml}_{2}(4.8 \mathrm{~mL}, 0.48 \mathrm{mmol})$ in THF and HMPA ($0.42 \mathrm{~mL}, 2.4 \mathrm{mmol}$) at room temperature. The Sml_{2} was consumed immediately after finishing the addition. The reaction mixture was worked up as described in method B. Flash chromatography (hexane/EtOAc 4:1) of the crude afforded 39 as a colorless oil ($43 \mathrm{mg}, 52 \%$). $[\alpha]^{25} \mathrm{D}$ -25.9 (c 2.4, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR (acetone-d ${ }_{6}$) $\delta 7.50-7.28$ (m, $10 \mathrm{H}), 6.22(\mathrm{~d}, \mathrm{~J}=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.70(\mathrm{~s}, 1 \mathrm{H}), 4.68(\mathrm{~m}, 2 \mathrm{H}), 4.66$ (dd, J $=5.5,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.53$ (dd, J $=5.4,5.9 \mathrm{~Hz}, 1 \mathrm{H}$), 4.20 (dd, J $=5.4,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.96$ (ddd, $\mathrm{J}=2.9,9.3,11.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(, \mathrm{~J}=4.5,16.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.50$ (dd, J $=9.9,16.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.24(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~s}$, $9 \mathrm{H}), 0.12(\mathrm{~s}, 3 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 173.1, 137.9, 136.9, 129.2, 128.4, 128.3, 128.1, 127.7, 127.0, 126.6, 103.9, $78.4,78.0,76.571 .3,67.3,60.2,35.4,31.2,25.8,18.2,14.1,-4.6$, -4.9. Anal. Calcd for $\mathrm{C}_{29} \mathrm{H}_{41} \mathrm{NO}_{6} \mathrm{Si}: \mathrm{C}, 66.03 ; \mathrm{H}, 7.78 ; \mathrm{N}, 2.66$. Found: C, 65.88; H, 8.01; N, 2.58.

Synthesis of Oxime Ether 17. A suspension of 2,3,4,6-tetra-O-benzyl- α-D-glucopyranose (40$)^{31}$ ($990 \mathrm{mg}, 1.83 \mathrm{mmol}$) and O-benzylhydroxylamine hydrochloride ($352 \mathrm{mg}, 2.20$ mmol) in $\mathrm{MeOH}(12 \mathrm{~mL})$ and pyridine (1 mL) was heated at $60^{\circ} \mathrm{C}$ for 8 h . The solvent was removed at reduced pressure, and the residue was purified by flash column chromatography (hexane/EtOAc 3:1) to afford 1.13 g (96\%) of a mixture of oximes ($\mathrm{E} / \mathrm{Z}=3.3: 1$, by ${ }^{1} \mathrm{H} N M R$), as a colorless oil. A solution of this mixture ($980 \mathrm{mg}, 1.52 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ was added to a suspension of PCC ($1.29 \mathrm{~g}, 6.00 \mathrm{mmol}$), $\mathrm{NaOAC}(70$ $\mathrm{mg}, 0.81 \mathrm{mmol})$, and $3 \AA \mathrm{MS}(1 \mathrm{~g})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ at room temperature. After stirring for 2 h at room temperature, the mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(200 \mathrm{~mL})$, and the resultant suspension was filtered through a short column of silica, eluting thoroughly with $\mathrm{Et}_{2} \mathrm{O}$. The filtrate was concentrated at reduced pressure, and the crude was purified by flash col umn chromatography (hexane/EtOAc 6:1) to afford $\mathbf{1 7}$ (820 $\mathrm{mg}, 84 \%)$, as a colorless oil. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ E isomer: 7.54 $(\mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.4-7.1(\mathrm{~m}, 25 \mathrm{H}), 5.13(\mathrm{~s}, 2 \mathrm{H}), 4.73-$ 4.21 (series of $\mathrm{m}, 13 \mathrm{H}$), 4.18 ($\mathrm{d}, \mathrm{J}=3.3 \mathrm{~Hz}$), 4.07 (dd, J $=6.7$, 3.3 Hz); Z isomer: $7.4-7.1(\mathrm{~m}, 25 \mathrm{H}), 6.92(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz})$, 5.07 (s, 2 H), 5.04 (dd, J $=6.6,2.0 \mathrm{~Hz}$), $4.54-4.19$ (series of $\mathrm{m}, 13 \mathrm{H}), 4.14(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}), 4.06(\Psi \mathrm{t}, \mathrm{J}=4.6 \mathrm{~Hz})$; ${ }^{13} \mathrm{C} \mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right) \delta$ (aromatic carbons not included) E isomer: 207.7, 148.5, 82.7, 80.5, 76.3, 76.0, 74.5, 74.4, 74.0, 73.2, 71.6; Z isomer: 206.5, 150.7, 81.7, 79.7, 76.4, 74.3, 74.2, 73.7, 73.2, 72.6, 71.1. Anal. Calcd for $\mathrm{C}_{41} \mathrm{H}_{43} \mathrm{NO}_{6}: \mathrm{C}, 76.49 ; \mathrm{H}, 6.42 ; \mathrm{N}$, 2.18. Found: C, $76.30 ; \mathrm{H}, 6.25 ; \mathrm{N}, 1.98$.

Synthesis of Oxime Ether 18. Following the same procedure as for 17, compound $\mathbf{1 8}$ was obtained from 2,3,4,6-tetra-O-benzyl- α-D-mannopyranose (41) ${ }^{31}$ in 88% overall yield as a colorless oil. ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) (aromatic protons not included) $(\mathrm{E} / \mathrm{Z}=3: 1) \delta 7.39$ ($\mathrm{d}, \mathrm{J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{E}$ isomer), 6.81 (d, J $=7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Z}$ isomer), 5.14 (s, 2 H, E isomer), 5.13 (s, $1 \mathrm{H}, \mathrm{Z}$ isomer), 5.05 (dd, J $=7.3,6.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Z}$ isomer), $4.55-4.17$ (series of multiplets), 4.10 (dd, J $=7.6,3.3 \mathrm{~Hz}, \mathrm{E}$ isomer); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ (aromatic carbons not included) E isomer: 208.1, 148.4, 83.7, 80.3, 76.1, 75.7, 74.4, 74.2, 73.2, 70.6; Z isomer: 207.4, 149.7, 83.1, 80.1, 76.3, 74.1, 71.6, 70.3 . Anal. Calcd for $\mathrm{C}_{41} \mathrm{H}_{43} \mathrm{NO}_{6}$: C, 76.49; H, 6.42; $\mathrm{N}, 2.18$. Found: C, 76.21; H, 6.32; N, 2.22.

2,3,4,6-Tetra-O-benzyl- $\boldsymbol{\beta}$-d-galactopyranose (42). Tо а solution of phenyl 2,3,4,6-tetra-O-benzyl-1-thio- β-d-galactopyranoside ${ }^{31}$ ($584 \mathrm{mg}, 0.92 \mathrm{mmol}$) in acetone (20 mL) at $-15^{\circ} \mathrm{C}$ were added $\mathrm{H}_{2} \mathrm{O}(18 \mu \mathrm{~L}, 1.02 \mathrm{mmol})$ and NBS ($210 \mathrm{mg}, 1.11$ mmol). After stirring at $-15^{\circ} \mathrm{C}$ for 1 h , the reaction mixture was partioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ and aqueous saturated $\mathrm{NaHCO}_{3}(30 \mathrm{~mL})$. The organic layer was separated, and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 30 \mathrm{~mL})$. The combined organic extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated at reduced pressure. Flash
chromatography of the residue (hexane/EtOAc 1:1) afforded 42 ($400 \mathrm{mg}, 80 \%$) as a colorless oil. $\mathrm{R}_{\mathrm{f}}=0.31$ (hexane/EtOAc 1:1); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.32(\mathrm{~m}, 20 \mathrm{H}), 5.26(\mathrm{~d}, \mathrm{~J}=3,5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.95-4.53(\mathrm{~m}, 6 \mathrm{H}), 4.42(\mathrm{~m}, 2 \mathrm{H}), 4.15(\mathrm{brt}, \mathrm{J}=6.6 \mathrm{~Hz}$, 1H), 4.02 (dd, J $=3.5,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{~m}, 2 \mathrm{H}), 3.89(\mathrm{dd}, \mathrm{J}=$ $2.7,9.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{dd}, \mathrm{J}=7.4,9.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{dd}, \mathrm{J}=$ $5.3,9.7 \mathrm{~Hz}, 1 \mathrm{H}$).

Synthesis of Oxime Ether 19. Following the same procedure as for 17, compound 19 was obtained from 42 in 69\% overall yield as a col orless oil, 3:1 mixture of E / Z-oximes, respectively. $\mathrm{R}_{\mathrm{f}}=0.35$ (hexane/EtOAc 4:1); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ δ E-isomer: $7.53(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.24(\mathrm{~m}, 25 \mathrm{H}), 5.11$ $(\mathrm{s}, 2 \mathrm{H}), 4.62-4.12(\mathrm{~m}, 13 \mathrm{H})$; Z-i somer: $6.94(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}$, 1H), $5.10(\mathrm{~s}, 2 \mathrm{H}), 5.01(\mathrm{dd}, \mathrm{J}=5.0$ y $6.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ (aromatic carbons not included) E-isomer: 206.8, 149.0, 81.8, 81.3, 76.7, 76.1, 74.3, 74.1, 73.2, 73.1, 71.3; Z-isomer: 151.1, 80.8, 80.4, 76.4, 74.5, 74.4, 72.9, 72.3, 71.7. Anal. Calcd for $\mathrm{C}_{41} \mathrm{H}_{41} \mathrm{NO}_{6}$: C, 76.49; H, 6.42; N, 2.18. Found: C, 76.46; H, 6.48; N, 2.34.

Cyclization of Oxime Ether 17. Following method B, oxime 17 ($640 \mathrm{mg}, 0.99 \mathrm{mmol}$) gave aminocyclitol 43 (520 mg , 81%): $R_{f}=0.26$ (hexane/EtOAc 2:1); $[\alpha]^{20} \mathrm{D}+20.6$ (c 1.6, $\left.\mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.40-7.22(\mathrm{~m}, 25 \mathrm{H}), 6.03(\mathrm{~d}, \mathrm{~J}=$ $6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.77-4.38(\mathrm{~m}, 10 \mathrm{H}), 4.13(\mathrm{dd}, \mathrm{J}=6.3,7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.86(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{t}, \mathrm{J}=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{~d}$, $\mathrm{J}=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{t}, \mathrm{J}=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{~d}, \mathrm{~J}=10.2$ $\mathrm{Hz}, 1 \mathrm{H}), 2.89(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 138.0(2 \mathrm{C}), 137.8$, 137.7, 128.4, 128.3, 128.0, 127.9 (2C), 127.7, 127.5, 86.9, 82.3, 82.1, 77.7, 76.1, 73.7, 73.2, 72.4 (2C), 71.7, 71.2. Anal. Calcd for $\mathrm{C}_{41} \mathrm{H}_{43} \mathrm{NO}_{6}$: $\mathrm{C}, 76.25 ; \mathrm{H}, 6.71 ; \mathrm{N}, 2.17$. Found: $\mathrm{C}, 76.17$; H, 6.83; N, 2.23.

Cyclization of Oxime Ether 18. Following method B, oxime 18 ($256 \mathrm{mg}, 0.40 \mathrm{mmol}$) gave aminocyclitol 44 a (154 mg , 60%) and an inseparable 3:1 mixture of 44b and 44c (38 mg , 15\%). 44a: $R_{f}=0.50$ (hexane/EtOAc 1:1); $[\alpha]^{20}{ }_{\mathrm{D}}$-32.0 (c 1.2, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.40-7.22(\mathrm{~m}, 25 \mathrm{H}), 6.43(\mathrm{~d}, \mathrm{~J}=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{~m}, 2 \mathrm{H}), 4.71-4.47(\mathrm{~m}, 8 \mathrm{H}), 4.17(\mathrm{dd}, \mathrm{J}=$ $0.8,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{dd}, \mathrm{J}=6.3,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $3.85(\mathrm{dd}, \mathrm{J}=4.3,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~d}, \mathrm{~J}=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.70$ $(d, \mathrm{~J}=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.64$ (ddd, J $=0.8,4.3,7.5 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 138.6,138.3$ (2C), 137.7, 137.5, 128.6, 128.4, 128.2, 128.1, 127.9, 127.8, 127.6, 127.4, 88.1, 80.3, 79.6, 76.1, 76.0, 73.7, 73.1, 72.3, 72.1, 71.5, 69.8. Anal. Calcd for $\mathrm{C}_{41} \mathrm{H}_{43} \mathrm{NO}_{6}$: C, $76.25 ; \mathrm{H}, 6.71 ; \mathrm{N}, 2.17$. Found: C, $76.41 ; \mathrm{H}$, 6.68; $N, 2.19$. 44b (as an inseparable mixture with 44c): R_{f} $=0.60$ (hexano/AcOEt 1:1); ${ }^{1}$ H NMR (acetone-d 6) $\delta 7.41-7.22$ $(\mathrm{m}, 25 \mathrm{H}), 6.41(\mathrm{~d}, \mathrm{~J}=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.91-4.48(\mathrm{~m}, 10 \mathrm{H}), 4.25$ (dd, J $=3.7,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{dd}, \mathrm{J}$ $=3.7,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{~d}, \mathrm{~J}=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, 3.57 (dd, 4.6, 10.5 Hz, 1H), $3.48\left(\mathrm{~d}, \mathrm{~J}=9.2 \mathrm{~Hz}, 1 \mathrm{H}\right.$); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 138.7,138.3,138.1,137.9,128.4,128.3,127.7,127.6$, 127.5 (2С), 84.0, 83.7, 75.8, 75.4, 74.4, 73.9, 73.6, 73.4, 72.4, 69.3. 44c (as an inseparable mixture with 44b): $R_{f}=0.60$ (hexane/EtOAc 1:1) ${ }^{1} \mathrm{H}$ NMR (acetone d_{6}) δ 7.41-7.22 (m, $25 \mathrm{H}), 6.39(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.91-4.48(\mathrm{~m}, 10 \mathrm{H}), 4.11(\mathrm{~d}, \mathrm{~J}$ $=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{dd}, \mathrm{J}=6.3,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{dd}, \mathrm{J}=$ $5.1,6.3 \mathrm{~Hz}, 1 \mathrm{H}$), $3.73(\mathrm{~s}, 1 \mathrm{H})$, 3.65 (dd, J $=5,1,8.9 \mathrm{~Hz}, 1 \mathrm{H}$), $3.62(d, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{~d}, \mathrm{~J}=9.1 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 128.6,128.1,128.0,127.9,127.8,82.5,81.4,79.7$, 76.6, 76.2, 74.0, 73.5, 72.0, 71.3, 66.2.

Cyclization of Oxime Ether 19. Following method B , oxime 19 ($112 \mathrm{mg}, 0.17 \mathrm{mmol}$) gave aminocyclitol 45 (57 mg , 51%) and a minor compound (28 mg , structure not determined), as colorless oils. 45: $\mathrm{R}_{\mathrm{f}}=0.21$ (hexane/EtOAc 4:1); $[\alpha]^{20}{ }_{\mathrm{D}}+21.6\left(\mathrm{c} 0.9, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: see Table 2; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 138.7,138.6,138.4,137.9,137.8,128.5,128.4$, 128.2, 128.1, 127.9, 127.8, 127.5, 127.4 (2C), 127.3, 87.1, 85.5, 82.2, 80.4, 75.7, 73.8, 73.6, 72.3, 72.0, 71.5, 69.8. Anal. Calcd for $\mathrm{C}_{41} \mathrm{H}_{43} \mathrm{NO}_{6}: \mathrm{C}, 76.25 ; \mathrm{H}, 6.71 ; \mathrm{N}, 2.17$. Found: C, 75.98; H, 7.00; N, 2.46. Minor compound: $\mathrm{R}_{\mathrm{f}}=0.19$ (hexane/EtOAc 4:1); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.30-7.05(\mathrm{~m}, 25 \mathrm{H}), 4.71-4.44(4 \mathrm{~m}$, $8 \mathrm{H}), 4.51(\mathrm{dd}, \mathrm{J}=5.2,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{t}, \mathrm{J}=5.1 \mathrm{~Hz}, 1 \mathrm{H})$, $3.93(\mathrm{~d}, \mathrm{~J}=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~d}, \mathrm{~J}=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~d}, \mathrm{~J}=$ $9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~d}, \mathrm{~J}=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR
$\left(\mathrm{CDCl}_{3}\right) \delta 138.5,138.2,137.7,137.5,128.4,128.3,128.2,128.0$, $127.8,127.6,127.5,87.9,84.3,83.0,81.7,81.4,73.6,73.3,72.4$, 71.8, 69.8.

Synthesis of O-(tert-Butyldimethylsilyl)-3,4-O-isopro-pylidene-D-arabinose O-Benzyl Oxime Ether (47). A solution of 3,4-O-isopropylidene2-O-(tert-butyld dimethylsilyl)-D-arabinose (46$)^{24 a}(1.52 \mathrm{~g}, 5.00 \mathrm{mmol})$ was treated with O-benzyl hydroxylamine hydrochloride as described for 35 , to give 47 ($1.70 \mathrm{~g}, 80 \%$) as a col orless oil, 9:1 mixture of E and Z oximes. $\mathrm{R}_{\mathrm{f}}=0.32$ (hexane/EtOAc 2:1); IR (film) $v 3475,1470$, $1460 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ (aromatic protons not included) E-isomer: $7.47(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{~s}, 2 \mathrm{H}), 4.43(\mathrm{t}, \mathrm{J}=$ $6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{~m}, 2 \mathrm{H}), 3.75-3.69(\mathrm{~m}, 2 \mathrm{H}), 2.39(\mathrm{~d}, \mathrm{~J}=6.5$ $\mathrm{Hz}, 1 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H})$, 0.03 (s, 3H); Z-isomer: 6.79 (d, J $=7.1 \mathrm{~Hz}, 1 \mathrm{H}$), $5.10(\mathrm{~s}, 2 \mathrm{H})$, 4.77 (dd, $\mathrm{I}=2.0,7.6 \mathrm{~Hz}, 1 \mathrm{H}$). Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{35} \mathrm{NO}_{5} \mathrm{Si}$: C, 61.56; H, 8.63; N, 3.42. Found: C, 61.81; H, 8.60; N, 3.17.

2,3,4-Tetra-O-benzyl-D-xylose O-Benzyl Oxime Ether (49). To a solution of $48^{34}(895 \mathrm{mg}, 2.13 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (20 mL) O-benzylhydroylamine hydrochloride ($849 \mathrm{mg}, 5.32 \mathrm{mmol}$) and pyridine ($0.52 \mathrm{~mL}, 6.39 \mathrm{mmol}$). After heating the reaction mixture at reflux for 15 h , it was partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (35 mL) and aqueous saturated NaHCO_{3}. Usual extractive workup and flash-chromatography (hexane/EtOAc 4:1) of the resultant residue afforded 49 ($940 \mathrm{mg}, 84 \%$) as a col orless oil, 3:1 mixture of E and Z oximes. $R_{f}=0.26$ (hexane/EtOAc 2:1); IR (film) $v 3450,1500,1455 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (CDCl_{3}) δ E-isomer: $7.48(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.25(\mathrm{~m}, 2 \mathrm{H}), 5.12(\mathrm{~s}, 2 \mathrm{H})$, $4.70-4.32(\mathrm{~m}, 9 \mathrm{H}), 4.24(\mathrm{dd}, \mathrm{J}=5.1,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.78-3.60$ (m, 3H), 1.91 (brt, J $=6.4 \mathrm{~Hz}, 1 \mathrm{H}$). Anal. Calcd for $\mathrm{C}_{33} \mathrm{H}_{35} \mathrm{NO}_{5}$: $\mathrm{C}, 75.40 ; \mathrm{H}, 6.71 ; \mathrm{N}, 2.67$. Found: $\mathrm{C}, 75.70 ; \mathrm{H}$, 6.92; N, 2.71.

Cyclization of Oxime Ether 35. Following method C, oxime 35 ($515 \mathrm{mg}, 1.12 \mathrm{mmol}$) gave aminocyclitols 50a (325 $\mathrm{mg}, 63 \%$), $50 \mathrm{~b}(26 \mathrm{mg}, 5 \%)$, $50 \mathrm{c}(10 \mathrm{mg}, 2 \%$), and $50 \mathrm{~d}(22 \mathrm{mg}$, 4\%). 50a: $\mathrm{R}_{\mathrm{f}}=0.34$ (hexane/EtOAc 7:3); $[\alpha]^{20}{ }_{\mathrm{D}}-77.2$ (c 2.4, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR (acetone-d ${ }_{6}$) $\delta 7.61-7.34(\mathrm{~m}, 10 \mathrm{H}), 6.22$ (br $\mathrm{s}, 1 \mathrm{H}), 5.76(\mathrm{~s}, 1 \mathrm{H}), 4.72(\mathrm{~s}, 2 \mathrm{H}), 4.57(\mathrm{dd}, \mathrm{J}=5.3,6.1 \mathrm{~Hz}$, $1 \mathrm{H}), 4.44(\mathrm{~d}, \mathrm{~J}=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{~d}, \mathrm{~J}=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.98$ (dd, J $=5.3,9.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.64 (dd, J $=4.3,9.9 \mathrm{~Hz}, 1 \mathrm{H}$), 0.89 $(\mathrm{s}, 9 \mathrm{H}), 0.13(\mathrm{~s}, 3 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 137.1$, $136.3,129.5,128.7,128.6,128.3,126.9,104.8,82.7,76.8,76.4$, 72.4, 70.3, 66.6, 25.8, 18.1, $-4.5,-4.9$. Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{35} \mathrm{NO}_{5} \mathrm{Si}: \mathrm{C}, 65.62 ; \mathrm{H}, 7.71 ; \mathrm{N}, 3.06$. Found: C, 65.64; H, 7.59; $\mathrm{N}, 2.99$. 50b: $\mathrm{R}_{\mathrm{f}}=0.21$ (hexane/EtOAc 7:3); $[\alpha]^{20}{ }_{\mathrm{D}}-52.2$ (c 1.3, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR (acetone-d ${ }_{6}$) $\delta 7.66-7.28(\mathrm{~m}, 10 \mathrm{H}), 6.25$ $(\mathrm{d}, \mathrm{J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.73(\mathrm{~s}, 1 \mathrm{H}), 4.75(\mathrm{~m}, 2 \mathrm{H}), 4.60(\mathrm{ddd}, \mathrm{J}=$ $0.8,5.0,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.49$ (dd, J $=5.0,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.43$ (ddd, $\mathrm{J}=1.0,1.8,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{~d}, \mathrm{~J}=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.17$ (ddd, $\mathrm{J}=1.8,3.8,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.47$ (ddd, J = $1.0,4.2,5.6 \mathrm{~Hz}, 1 \mathrm{H}$), $0.87(\mathrm{~s}, 9 \mathrm{H}), 0.15(\mathrm{~s}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 137.8, 136.1, 129.3, 128.4, 128.0, 127.8, 127.4, 106.8, 85.0, 79.2, $77.0,76.3,70.7,70.5,25.9,18.4,-4.4,-5.4 .50 c: R_{f}=0.18$ (hexane/EtOAc 7:3); $[\alpha]^{20} \mathrm{D}-39.7$ (c 0.3, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.53-7.29(\mathrm{~m}, 10 \mathrm{H}), 5.84(\mathrm{~s}, 1 \mathrm{H}), 4.78(\mathrm{~m}, 2 \mathrm{H}), 4.54$ (dd, J $=5.7,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{dd}, \mathrm{J}=4.9,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.99$ (dd, J = 4.9, $9.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.93 (dd, J $=5.7,9.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.20 $(\mathrm{t}, \mathrm{J}=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{~d}, \mathrm{~J}=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.13$ (s, 3H), $0.12(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 137.7,136.1,129.6$, 128.4, 128.2, 127.6, 126.9, 104.7, 78.5, 77.2, 76.7, 69.3, 66.6, 66.4, 25.8, 18.3, -4.6, -4.8. 50d: $\mathrm{R}_{\mathrm{f}}=0.34$ (hexane/EtOAc 4:1); $[\alpha]^{20}{ }_{\mathrm{D}}-66.3$ (c 1.2, CHCl_{3}); IR (film) v 1495, 1405, 1255, 1210; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 7.52-7.31(\mathrm{~m}, 10 \mathrm{H}), 5.57(\mathrm{~s}, 1 \mathrm{H}), 4.86$ $(\mathrm{d}, \mathrm{J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{~d}, \mathrm{~J}=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{~s}, 2 \mathrm{H}), 4.56$ $(\mathrm{d}, \mathrm{J}=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{dd}, \mathrm{J}=5.5,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~d}, \mathrm{~J}$ $=, 8.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{dd}, \mathrm{J}=4.4,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{dd}, \mathrm{J}=$ $4.4,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 0.94(\mathrm{~s}, 9 \mathrm{H}), 0.16(\mathrm{~s}, 3 \mathrm{H}), 0.11(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 137.3,136.6,129.4,128.9,128.6,128.3,128.0$, $127.8,126.9,105.5,90.1,82.5,82.2,81.6,77.7,75.3,74.6,25.8$, 18.3, -4.6, -4.9. Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{35} \mathrm{NO}_{5} \mathrm{Si}$: C, 66.49 ; H , 7.53; N, 2.98. Found: C, 66.61; H, 7.80; N, 3.06.

Cyclization of Oxime Ether 47. Following method C, oxime 47 ($109 \mathrm{mg}, 0.27 \mathrm{mmol}$) gave an inseparable mixture of aminocyclitols 51a and 51b ($85 \mathrm{mg}, 78 \%$, 51a/51b $=8: 1$). Colorless oil; $\mathrm{R}_{\mathrm{f}}=0.32$ (hexane/EtOAc 2:1). Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{35} \mathrm{NO}_{5} \mathrm{Si}: \mathrm{C}, 61.58 ; \mathrm{H}, 8.61 ; \mathrm{N}, 3.42$. Found: C, 61.87; H,
8.78; $\mathrm{N}, 3.46$. 51a: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.38-7.31(\mathrm{~m}, 5 \mathrm{H}), 5.65$ (br s, 1H), 4.72 (m, 2H), 4.42 (ddd, J $=0.9,2.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}$), 4.32 (ddd, J $=0.9,2.8,7.0 \mathrm{~Hz}, 1 \mathrm{H}$), 4.07 (dd, J $=2.8,5.5 \mathrm{~Hz}$, 1 H), 3.96 (ddd, $\mathrm{J}=0.9,2.5,5.8 \mathrm{~Hz}, 1 \mathrm{H}$), $3.13(\mathrm{dt}, \mathrm{J}=0.9,1.0$, $5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 1 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{~s}$, $9 \mathrm{H}), 0.12(\mathrm{~s}, 3 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 37.7,128.5$, 128.4, 128.0, 111.4, 84.9, 84.6, 76.9, 76.5, 76.3, 73.2, 26.3, 25.7, 24.0, 17.9, -4.8, -5.1. 51b: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.38-7.31(\mathrm{~m}$, $5 \mathrm{H}), 5.65(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.73(\mathrm{~s}, 2 \mathrm{H}), 4.54(\mathrm{dd}, \mathrm{J}=5.6,5.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.29(\mathrm{~d}, \mathrm{~J}=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{~d}, \mathrm{~J}=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.75$ (dd, J = 5.6, 9.6 Hz, 1H), 3.37 (dd, J $=3.9,9.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.41 ($\mathrm{s}, 1 \mathrm{H}$), $1.44(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{~s}, 3 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H})$, 0.09 (s, 3H); $\left.{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(CDCl} 3\right) ~ \delta 128.2,127.7,111.4,82.9,76.2$, 72.3, 71.6, 67.3, 26.0, -5.3.

Cyclization of Oxime Ether 49. Following method C , oxime 49 ($63 \mathrm{mg}, 0.12 \mathrm{mmol}$) gave aminocyclitols 52 a (17 mg , 27\%) and 52b (13 mg, 21\%). 52a: colorless oil; $\mathrm{R}_{\mathrm{f}}=0.30$ (hexane/EtOAc 2:1); $[\alpha]^{20}{ }_{D}-7.1$ (c 2.1, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.40-7.28(\mathrm{~m}, 20 \mathrm{H}), 5.85$ (brs 1H), 4.77-4.50 (m, $8 \mathrm{H}), 4.08(\mathrm{~m}, 1 \mathrm{H}), 3.95$ (ddd, $\mathrm{J}=0.6,4.6,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.82$ (dd, J $=5.9,8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.81 (dd, J $=3.5,4.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.51 $(d d, J=5.7,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 138.2 (2C), 138.1, 137.3, 128.6, 128.5, 128.4, 128.3, 128.2, 127.9, 127.7, 127.6, 87.3, 86.7, 81.9, 76.5, 72.2, 72.0, 71.8, 65.1. Anal. Calcd for $\mathrm{C}_{33} \mathrm{H}_{35} \mathrm{NO}_{5}$: C, 75.40; H, 6.71; N, 2.66. Found: C, 75.10; H, 6.71; N, 2.86. 52b: white solid; mp 73$75{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.20$ (hexane/EtOAc 2:1); $[\alpha]^{20} \mathrm{D}-6.0\left(\mathrm{c} 0.7, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.33-7.10(\mathrm{~m}, 20 \mathrm{H}), 5.40(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.57$ $(\mathrm{m}, 3 \mathrm{H}), 4.38(\mathrm{~m}, 2 \mathrm{H}), 4.23(\mathrm{t}, \mathrm{J}=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{t}, \mathrm{J}=5.4$ $\mathrm{Hz}, 1 \mathrm{H}), 3.96(\mathrm{t}, \mathrm{J}=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{t}, \mathrm{J}=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.52$ $(\mathrm{t}, \mathrm{J}=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 138.4$, 138.2, 137.7, 128.7, 128.5, 128.4, 128.1, 128.0, 127.9, 127.7, 127.6, 85.7, 82.1, 81.4, 76.7, 72.2, 72.0, 70.8, 70.2. Anal. Calcd for $\mathrm{C}_{33} \mathrm{H}_{35} \mathrm{NO}_{5}$: $\mathrm{C}, 75.40 ; \mathrm{H}, 6.71 ; \mathrm{N}, 2.66$. Found: $\mathrm{C}, 75.53$; H, 6.44; N, 2.67.

Cyclization of 54. DMSO ($0.057 \mathrm{~mL}, 0.80 \mathrm{mmol}$) was added dropwise to a stirred solution of oxalyl chloride (0.035 $\mathrm{mL}, 0.40 \mathrm{mmol}$) in dry THF (1 mL) at $-78{ }^{\circ} \mathrm{C}$. The solution was stirred for 5 min and oxime $54^{45}(0.033 \mathrm{~g}, 0.16 \mathrm{mmol})$ in dry THF (1 mL) was added dropwise. The reaction mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for $1 \mathrm{~h} 50 \mathrm{~min}, \mathrm{Et}_{3} \mathrm{~N}(0.225 \mathrm{~mL}, 1.60$ mmol) was added, and the reaction mixture was stirred from $-78^{\circ} \mathrm{C}$ to $-50^{\circ} \mathrm{C}$ for 2.5 h . Dry THF (5 mL) was added to this mixture, and the crude aldehyde 14 was added dropwise over 30 min via cannula to a stirred solution of Sml_{2} in THF (0.1 M in THF, $7 \mathrm{~mL}, 0.70 \mathrm{mmol}$) and t-BuOH ($0.040 \mathrm{~mL}, 0.42$ mmol) at $-70^{\circ} \mathrm{C}$ under argon. The reaction mixture was stirred from $-70{ }^{\circ} \mathrm{C}$ to $-55^{\circ} \mathrm{C}$ for 1 h , and at rt for 45 min before being partioned between EtAOc (20 mL) and aqueous saturated $\mathrm{NaHCO}_{3}(15 \mathrm{~mL})$. The reaction was worked up as described in method B and the residue was purified by flash column chromatography (hexane/EtAOc 4:1 to 3:2) affording 55 ($16 \mathrm{mg}, 49 \%$ yield) as a pale yellow oil. $\mathrm{R}_{\mathrm{f}}=0.28$ (hexane/ EtOAc 3:2); IR (film) $v 3350,3030 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $7.36(\mathrm{~m}, 5 \mathrm{H}), 4.73(\mathrm{~s}, 2 \mathrm{H}), 4.08(\mathrm{br} \mathrm{q}, \mathrm{J}=6 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{dt}$, $\mathrm{J}=7,6 \mathrm{~Hz}, 1 \mathrm{H}), 1.22-2.04(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 138.0$, 128.9, 128.8, 128.7, 128.5, 78.1, 77.0, 69.3, 33.2, 27.7, 21.4. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}_{2}$: $\mathrm{C}, 69.54 ; \mathrm{H}, 8.27 ; \mathrm{N}, 6.76$. Found: C, 69.78; H, 8.17; N, 6.68.

1-O-Benzyl-1,2,6-hexanetriol (59). A mixture of $1,2,6-$ hexanetriol ($500 \mathrm{mg}, 3.73 \mathrm{mmol}$) in toluene (10 mL) and dibutyltin oxide ($700 \mathrm{mg}, 2.80 \mathrm{mmol}$) was heated at reflux in a Dean-Stark apparatus for 6 h . Benzyl bromide (1.8 mL , 15.1 mmol) and tetrabutylammonium bromide ($840 \mathrm{mg}, 2.61$ mmol) were added and the solution was heated at reflux for 5 h. The reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ and poured into aqueous $15 \% \mathrm{NaHCO}_{3}$. The phases were separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times$ 25 mL). The combined organic extracts were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed at reduced pressure and the residue was purified by flashchromatography (EtOAc) affording 59 ($504 \mathrm{mg}, 60 \%$) as a colorless oil. $\mathrm{R}_{\mathrm{f}}=0.31$ (EtOAc); IR (film) v 3400(br), 1125, $1030 \mathrm{~cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.32(\mathrm{~m}, 5 \mathrm{H}), 4.55(\mathrm{~s}, 2 \mathrm{H}), 3.82$ $(\mathrm{m}, 1 \mathrm{H}), 3.63(\mathrm{~m}, 3 \mathrm{H}), 3.50(\mathrm{dd}, \mathrm{J}=3.2,9.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{dd}$, $\mathrm{J}=7.9,9.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.84-1.38(\mathrm{~m}, 6 \mathrm{H})$.

6-O-Benzyl-5,6-dihydroxyhexanal O-Benzyl Oxime Ether (61). To a suspension of PDC ($843 \mathrm{mg}, 2.24 \mathrm{mmol}$), $\mathrm{NaOAc}\left(63 \mathrm{mg}, 0.75 \mathrm{mmol}\right.$), and $3 \AA \mathrm{MS}(350 \mathrm{mg})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(10 \mathrm{~mL})$ was added at rt a solution of 59 ($335 \mathrm{mg}, 1.49 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$. The mixture was stirred at rt for $5 \mathrm{~h}, \mathrm{Et}_{2} \mathrm{O}$ $(20 \mathrm{~mL})$ was added, and the suspension was filtered through a small pad of silica eluting with $\mathrm{Et}_{2} \mathrm{O}$. The filtrate was concentrated a reduced pressure and the residue was purified by flash-chromatography (hexane/EtOAc 3:1) affording 60 [($130 \mathrm{mg}, 40 \%$); IR (film) $v 3430,1725,1455 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 9.73(\mathrm{~m}, 1 \mathrm{H}), 7.32(\mathrm{~m}, 5 \mathrm{H}), 4.65(\mathrm{~m}, 2 \mathrm{H}), 4.00(\mathrm{~m}$, 1H), 3.79 (br s, 1H, OH), 2.59-1.37 (m, 6H)]. A solution of this compound ($120 \mathrm{mg}, 0.54 \mathrm{mmol}$) in $\mathrm{MeOH}(10 \mathrm{~mL}$) was treated with O-benzylhydroxylamine hydrochloride (173 mg , 1.08 mmol) and pyridine ($0.13 \mathrm{~mL}, 1.62 \mathrm{mmol}$) as described for 17. Flash-chromatography (hexane/EtOAc 7:3) afforded 61 ($166 \mathrm{mg}, 93 \%$) as a colorless oil, 56:44 mixture of E and Z oximes, respectively. $\mathrm{R}_{\mathrm{f}}=0.31$ (hexane/EtOAc 7:3); IR (film): 3450, 1500, $1220 \mathrm{~cm}^{-1}$; ${ }^{1 \mathrm{H}}$ NMR (CDCl_{3}) δ (E-isomer) $7.45(\mathrm{t}$, $\mathrm{J}=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{~m}, 10 \mathrm{H}), 5.07(\mathrm{~s}, 2 \mathrm{H}), 4.58(\mathrm{~s}, 2 \mathrm{H}), 3.81$ $(\mathrm{m}, 1 \mathrm{H}), 3.48(\mathrm{dd}, \mathrm{J}=3.9,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{~m}, 1 \mathrm{H}), 2.38(\mathrm{~d}$, $\mathrm{J}=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.22(\mathrm{q}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.78-1.40(\mathrm{~m}, 4 \mathrm{H})$; (Z-isomer) $7.37(\mathrm{~m}, 10 \mathrm{H}), 6.71(\mathrm{t}, \mathrm{J}=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{~s}, 2 \mathrm{H})$, $4.59(\mathrm{~s}, 2 \mathrm{H}), 3.85(\mathrm{~m}, 1 \mathrm{H}, 1 \mathrm{H}), 3.33(\mathrm{dd}, \mathrm{J}=8.0,9.1 \mathrm{~Hz}, 1 \mathrm{H})$, 2.49-2.38 (m, 3H), 1.78-1.40 (m, 4H). Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{NO}_{3}: \mathrm{C}, 73.35 ; \mathrm{H}, 7.71 ; \mathrm{N}, 4.28$. Found: C, 73.61; H , 7.47; N, 3.99.

1-(Benzyloxy)-6-[(benzyloxy)imino]-2-hexanone (20). To a suspension of PDC ($82 \mathrm{mg}, 0.38 \mathrm{mmol}$), $\mathrm{NaOAC}(11 \mathrm{mg}$, $0.13 \mathrm{mmol})$, and $3 \AA \mathrm{MS}(100 \mathrm{mg})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$ was added a solution of $\mathbf{6 1}(82 \mathrm{mg}, 0.25 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$. After stirring at rt for $8 \mathrm{~h}, \mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL}$) was added, and the suspension was filtered through a small pad of silica eluting with $\mathrm{Et}_{2} \mathrm{O}$ thoroughly. The filtrate was concentrated at reduced pressure, and the residue was purified by flashchromatography (hexane/EtOAc 7:3) affording 20 ($58 \mathrm{mg}, 71 \%$) as a colorless oil, $56: 44$ mixture of E and Z isomers. $R_{f}=0.37$ (hexane/EtOAc 3:7); IR (film) v 1750, 1495, 1370, $1210 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ (E-isomer) $7.40(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.31$ $(\mathrm{m}, 10 \mathrm{H}), 5.03(\mathrm{~s}, 2 \mathrm{H}), 4.58(\mathrm{~s}, 2 \mathrm{H}), 4.00(\mathrm{~m}, 2 \mathrm{H}), 2.48(\mathrm{dt}, \mathrm{J}=$ $3.6,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.37(\mathrm{dt}, \mathrm{J}=5.5,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.19(\mathrm{~m}, 1 \mathrm{H})$, 1.78 (dq, J = 3.0, $7.1 \mathrm{~Hz}, 2 \mathrm{H}$); Z-isomer: 6.65 (t, J $=5.6 \mathrm{~Hz}$, $1 \mathrm{H}), 5.08(\mathrm{~s}, 2 \mathrm{H}), 4.56(\mathrm{~s}, 2 \mathrm{H})$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{3}$: C, 73.80; H, 7.14; N, 4.31. Found: C, 74.06; H, 6.95; N, 4.19.

Reaction of $\mathbf{2 0}$ with $\mathbf{S m l}_{2}$. Oxime $\mathbf{2 0}(0.109 \mathrm{~g}, 0.33 \mathrm{mmol})$ in dry THF (10 mL) was added dropwise over 25 min to a stirred solution of Sml_{2} in THF (0.1 M in THF, $10 \mathrm{~mL}, 1.0$ mmol) and t-BuOH ($0.080 \mathrm{~mL}, 0.83 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$ under argon. The reaction mixture was stirred for 3.5 h from -78 to $-30^{\circ} \mathrm{C}$ and then filtered through a short silica gel column eluting with EtOAc/hexane ($1: 1$). The eluate was concentrated under reduced pressure. The crude product (0.12 g) was purified by flash column chromatography. Elution with hexane/EtOAc ($4: 1$) gave 62 ($0.046 \mathrm{~g}, 42 \%$) and 63 ($0.013 \mathrm{~g}, 18 \%$, as a $1: 2$ mixture of E / Z isomers). 62: Colorless oil; $R_{f}=0.38$ (hexane/EtOAc 7:3); IR (film) $v 3450,3040 \mathrm{~cm}^{-1}$; 1H NMR (200 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.52-2.20(\mathrm{~m}, 6 \mathrm{H}), 2.67(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.46(\mathrm{~m}$, $1 \mathrm{H}), 3.53(\mathrm{~d}, \mathrm{~J}=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~d}, \mathrm{~J}=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.55$ (s, 2 H), 4.66 (s, 2 H), 5.76 (br s, 1 H), 7.34 (br s, 10 H); ${ }^{13} \mathrm{C}$ NMR ($50.32 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.5,138.1,128.9,128.8,128.7$, $128.5,128.2,82.5,76.7,74.0,69.8,35.8,29.1,21.5$; MS (70 eV $\mathrm{m} / \mathrm{z} 328\left(\mathrm{M}^{+}+\mathrm{H}, 2\right), 91$ (100), 77 (4), 65 (5). Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{NO}_{3}: \mathrm{C}, 73.37 ; \mathrm{H}, 7.70 ; \mathrm{N}, 4.28$. Found: C, $73.60 ; \mathrm{H}$, 7.65; N , 4.28. 63: Colorless oil; $\mathrm{R}_{\mathrm{f}}=0.46$ (hexane/EtOAc 7:3); IR (film) $v 2920,1720 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42$ ($\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 0.5 \mathrm{H}, \mathrm{E}$), $7.34(\mathrm{~m}, 5 \mathrm{H}+2.5 \mathrm{H}, \mathrm{Z}$ and E), 6.67 (t, J $=5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Z}), 5.10(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Z}), 5.05(\mathrm{~s}, 1 \mathrm{HE}), 2.15-$ $2.49(\mathrm{~m}, 4 \mathrm{H}+2 \mathrm{H}, \mathrm{Z}$ and E$), 2.11(\mathrm{~s}, 3 \mathrm{H}+1.5 \mathrm{H}, \mathrm{Z}$ and E$)$, $1.72(\mathrm{~m}, 2 \mathrm{H}+1 \mathrm{H}, \mathrm{Z}$ and E$) ;{ }^{13} \mathrm{C}$ NMR $\left(50.32 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 207.8, 207.7, 151.3, 150.2, 137.7, 137.5, 128.3, 128.1, 128.0, 127.7, 127.5, 127.4, 127.2, 126.7, 75.6, 75.3, 42.5, 42.1, 29.5, 28.5, 29.7, 29.7, 20.1, 19.9. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}_{2}$: C , 71.21; H, 7.81; N, 6.39. Found: C, 71.39; H, 7.58; N, 6.12.

Synthesis and Reaction of Aldehyde 16 with Sml_{2}. To a suspension of Dess-Martin periodinane ${ }^{38}(1.00 \mathrm{~g}, 2.36 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$ was added a solution of $\mathbf{6 4}{ }^{37}(664 \mathrm{mg}, 1.82$
$\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.2 \mathrm{~mL})$ at rt . After stirring vigorously for $2 \mathrm{~h}, \mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ was added and the mixture was poured into 10 mL of saturated aqueous NaHCO_{3} containing 2.3 g of $\mathrm{Na}_{2} \mathrm{SO}_{3}$. The mixture was stirred for $5 \mathrm{~min}, \mathrm{Et}_{2} \mathrm{O}$ was added (20 mL), phases were separated, and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 30 \mathrm{~mL})$. The combined organic extracts were washed with 10 mL of aqueous saturated NaHCO_{3} and 10 mL of water and dried $\left(\mathrm{MgSO}_{4}\right)$. The solvent was removed at reduced pressure, and the residue was purified by flash-chromatography (hexane/EtOAc 5:1) affording 16 [(487 mg, 76\%) as a colorless oil, 3:1 mixture of E and Z isomers. ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.63(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}$, 1H, E-isomer), 9.56 (d, J $=3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Z}$-isomer), 7.41 (d, J = $6.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{E}$-isomer), 6.88 (d, J $=4.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Z}$-isomer)]. To a solution of 16 ($75.1 \mathrm{mg}, 0.21 \mathrm{mmol}$) in THF (10.5 mL) at $-45{ }^{\circ} \mathrm{C}$ was added dropwise a 0.1 M THF solution of $\mathrm{Sml}_{2}(6.0$ $\mathrm{mL}, 0.60 \mathrm{mmol}$), and the reaction was stirred at $-45^{\circ} \mathrm{C}$ to rt for 6 h . The reaction mixture was worked up as described in method B. The residue was purified by flash-chromatography (hexane/EtOAc 5:1 to 3:2) affording, in order of elution, 65a ($16.8 \mathrm{mg}, 22 \%$), 65b ($18.4 \mathrm{mg}, 24 \%$), and 65c ($15.3 \mathrm{mg}, 20 \%$). 65a: colorless oil; $\mathrm{R}_{\mathrm{f}}=0.36$ (hexane/EtOAc 7:3); $[\alpha]^{25} \mathrm{D}+7.1$ (c 0.2, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR (acetone-d ${ }_{6}$) $\delta 7.42-7.29(\mathrm{~m}, 5 \mathrm{H}), 6.40$ (d, J $=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{~s}, 2 \mathrm{H}), 4.35(\mathrm{dd}, \mathrm{J}=3,9,5.6 \mathrm{~Hz}, 1 \mathrm{H})$, $4.31(\mathrm{~m}, \mathrm{~J}=4.2,3.9,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{dd}, \mathrm{J}=8.3,5.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.04(\mathrm{~d}, \mathrm{~J}=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{dd}, \mathrm{J}=9.9,8.3 \mathrm{~Hz}, 1 \mathrm{H})$, $3.57(\mathrm{t}, \mathrm{J}=10.0,9.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{dd}, \mathrm{J}=10.0,4.2 \mathrm{~Hz}, 1 \mathrm{H})$, $1.28(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 137.0,128.7,128.6,128.3,111.9,109.5,80.8,78.7$, 76.7, 71.9, 68.1, 61.8, 28.1, 26.9, 26.9, 25.7. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{NO}_{6}: \mathrm{C}, 62.45 ; \mathrm{H}, 7.45 ; \mathrm{N}, 3.83$. Found: C, $62.25 ; \mathrm{H}$, 7.40; $\mathrm{N}, 3.64$. 65b: Colorless oil; $\mathrm{R}_{\mathrm{f}}=0.24$ (hexane/EtOAc $7: 3$); $[\alpha]^{25} \mathrm{D}-3.7$ (c 1.3, CHCl_{3}); IR (KBr) $v 3450,1495,1455$, $1220 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.37-7.35(\mathrm{~m}, 5 \mathrm{H}), 5.94(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 4.73(\mathrm{~s}, 2 \mathrm{H}), 4.41(\mathrm{dd}, \mathrm{J}=6.7,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{t}, \mathrm{J}=$ $8.0,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{dd}, \mathrm{J}=10.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{t}, \mathrm{J}=$ $3.9,3.8,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{t}, \mathrm{J}=10.4,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{dd}$, $\mathrm{J}=10.4,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{dd}, \mathrm{J}=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H})$, $1.44(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 138.1$, 129.5, 129.3, 129.0, 113.1, 111.3, 79.3, 78.1, 77.5, 77.3, 74.6, 71.4, 64.9, 27.9, 25.6. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{NO}_{6}$: $\mathrm{C}, 62.45$; H, 7.45; N, 3.83. Found: C, 62.41; H, 7.30; N, 3.82. 65c: White solid; $\mathrm{R}_{\mathrm{f}}=0.16$ (hexane/EtOAc 7:3); mp 102-104 ${ }^{\circ} \mathrm{C}$; $[\alpha]^{25} \mathrm{D}+35.6$ (c 1.4, CHCl_{3}); IR (KBr) $v 3450,1450,1375,1290$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.37-7.30(\mathrm{~m}, 5 \mathrm{H}), 6.10(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $4.76(\mathrm{~m}, 2 \mathrm{H}), 4.31(\mathrm{dd}, \mathrm{J}=7.5,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{dd}, \mathrm{J}=8.8$ $\mathrm{Hz}, 7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{dd}, \mathrm{J}=10.8,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{dd}, \mathrm{J}=$ $8.8,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.68$ (dd, J = 10.8, $7.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.40 (dd, J = $7.0,5.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.40 (brs , 1H), $1.51(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 1.40$ ($\mathrm{s}, 3 \mathrm{H}$), $1.33(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 137.2, 129.4, 128.7, 128.0, 112.9, 110.5, 78.1, 76.8, 76.7, 75.9, 74.8, 73.3, 60.2, 27.3, 27.0, 26.5, 24.5. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{NO}_{6}$: C, $62.45 ; \mathrm{H}, 7.45$; $\mathrm{N}, 3.83$. Found: C, 62.77; H, 7.28; N, 3.51.

Reaction of 65a with Thiocarbonyl Diimidazole. A solution of 65a ($51 \mathrm{mg}, 0.14 \mathrm{mmol}$) and 1,1'-thiocarbonyldiimidazole ($99 \mathrm{mg}, 0.56 \mathrm{mmol}$) in THF (14 mL) was heated at reflux for 21 h . The sol vent was removed at reduced pressure, and the residue was purified by flash-chromatography (hexane/ EtOAc 4:1) affording 66a ($31 \mathrm{mg}, 54 \%$) as a white solid. $\mathrm{R}_{\mathrm{f}}=$ 0.29 (hexane/EtOAc 4:1); mp 213-215 ${ }^{\circ} \mathrm{C}$; $[\alpha]^{25} \mathrm{D}+7.1$ (c 0.2 , CHCl_{3}); IR (KBr) $v 1475,1460,1390,1375 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.56-7.39(\mathrm{~m}, 5 \mathrm{H}), 5.23(\mathrm{~m}, 2 \mathrm{H}), 4.79(\mathrm{dd}, \mathrm{J}=9.4$, $5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{dd}, \mathrm{J}=7.5,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{dd}, \mathrm{J}=7.7$, $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{dd}, \mathrm{J}=9.4,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{dd}, \mathrm{J}=10.6$, $7.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.44 (dd, J = 10.6, $7.9 \mathrm{~Hz}, 1 \mathrm{H}$), 1.50 (s, 3H), 1.45 $(\mathrm{s}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 191.9, 133.9, 129.6, 129.0, 128.4, 113.3, 110.7, 81.2, 77.4, 76.6, 76.5, 75.4, 75.1, 60.5, 30.6, 26.9, 26.7, 24.4. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{NO}_{6} \mathrm{~S}: \mathrm{C}, 58.95$; H, 6.18; N, 3.44; S, 7.87. Found: C, $58.60 ; \mathrm{H}, 6.28$; N, 3.25; S, 7.57.

Reaction of 65b with Thiocarbonyl Diimidazole. A solution of $\mathbf{6 5 b}(42 \mathrm{mg}, 0.12 \mathrm{mmol})$ and 1, 1^{\prime}-thiocarbonyldiimidazole ($85 \mathrm{mg}, 0.48 \mathrm{mmol}$) in THF (10 mL) was heated at reflux for 26 h . The solvent was removed at reduced pressure, and the residue was purified by flash-chromatography (hexane/ EtOAc 3:1) affording 66b ($36 \mathrm{mg}, 76 \%$) as a white solid. $\mathrm{R}_{\mathrm{f}}=$ 0.30 (hexane/EtOAc 7:3); mp 222-224 ${ }^{\circ} \mathrm{C}$; $[\alpha]^{25} \mathrm{D}-50.1$ (c 0.6, CHCl_{3}); IR (KBr) $v 1460,1420,1375,1320 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right) \delta 7.60-7.30(\mathrm{~m}, 5 \mathrm{H}), 5.15(\mathrm{~m}, 2 \mathrm{H}), 4.71(\mathrm{dd}, \mathrm{J}=4.8$, $3.0 \mathrm{~Hz}, 1 \mathrm{H}$), 4.36 (dd, J $=8.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}$), 4.17 (dd, J = 12.2, $3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{dd}, \mathrm{J}=12.2,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{t}, \mathrm{J}=9.0$, $8.6 \mathrm{~Hz}, 1 \mathrm{H}$), $3.36(\mathrm{t}, \mathrm{J}=9.5,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.51(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~s}$, $3 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 192.5,135.0$, 130.5, 129.4, 128.9, 114.1, 113.6, 83.0, 78.4, 78.3, 76.5, 76.1, 72.0, 64.2, 29.1, 27.2, 27.1, 26.1. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{NO}_{6} \mathrm{~S}: \mathrm{C}, 58.95 ; \mathrm{H}, 6.18 ; \mathrm{N}, 3.44 ; \mathrm{S}, 7.87$. Found: C, 58.90; H, 6.07; N, 3.375; S, 7.78.

Reaction of 65c with Thiocarbonyl Diimidazole. A solution of 65 c ($41 \mathrm{mg}, 0.11 \mathrm{mmol}$) and 1, 1^{\prime}-thiocarbonyldiimidazole ($78 \mathrm{mg}, 0.44 \mathrm{mmol}$) in THF (10 mL) was heated at reflux for 24 h . The solvent was removed at reduced pressure, and the residue was purified by flash-chromatography (hexane/ EtOAc 4:1) affording 66c ($2 \mathrm{mg}, 4 \%$) as a white solid, and 67 ($30 \mathrm{mg}, 57 \%$) as a light yellow oil. 66c: $\mathrm{R}_{\mathrm{f}}=0.44$ (hexane/ EtOAc 7:3); mp 213-215 ${ }^{\circ} \mathrm{C} ;[\alpha]^{25} \mathrm{D}-4.5$ (c 0.1, CHCl_{3}); IR $(\mathrm{KBr}) v 1375,1320,1270,12351160 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ 7.56-7.31 (m,5H), $5.18(\mathrm{~m}, 2 \mathrm{H}), 4.71-4.48(\mathrm{~m}, 3 \mathrm{H}), 4.09$ (dt, $\mathrm{J}=9.6,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.85-3.75(\mathrm{~m}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 1.59(\mathrm{~s}$, $3 \mathrm{H}), 1.58(\mathrm{~s}, 3 \mathrm{H}), 1.56(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta 195.3,135.1,130.5,129.3,128.9,115.1,113.6,79.7,79.1,79.0$, 75.5, 75.3, 71.6, 61.6, 27.2, 27.1, 26.9, 24.0. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{NO}_{6} \mathrm{~S}: \mathrm{C}, 58.95 ; \mathrm{H}, 6.18 ; \mathrm{N}, 3.44 ; \mathrm{S}, 7.87$. Found: C, 58.77; H, 6.32; N, 3.38; S, 7.63. 67: $\mathrm{R}_{\mathrm{f}}=0.27$ (hexane/EtOAc 1:1); $[\alpha]^{25} \mathrm{D}-4.5\left(\mathrm{c} \mathrm{0.1}, \mathrm{CHCl}_{3}\right)$; IR (KBr) $v 1375,1320,1270$, $1235 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.56-7.31(\mathrm{~m}, 5 \mathrm{H}), 5.18(\mathrm{~m}$, $2 \mathrm{H}), 4.58(\mathrm{~m}, 3 \mathrm{H}), 4.09(\mathrm{dt}, \mathrm{J}=9.6,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3,78(\mathrm{~s}, 3 \mathrm{H})$, $1.59(\mathrm{~s}, 3 \mathrm{H}), 1.58(\mathrm{~s}, 3 \mathrm{H}), 1.56(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 195.3,135.1,130.5,129.3,128.9,115.1,113.6,79.7$, 79.1, 79.0, 75.5, 75.3, 71.6, 61.6, 27.2, 27.1, 26.9, 24.0. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{~S}: ~ \mathrm{C}, 58.09 ; \mathrm{H}, 6.15 ; \mathrm{N}, 8.84 ; \mathrm{S}, 6.74$. Found: C, 57.87 ; H, 6.04; N, 8.65; S, 6.55.

Compound 68. To a 0.1 M solution of $\mathrm{Sml}_{2}(6 \mathrm{~mL}, 0.60$ mmol) in THF at $-25^{\circ} \mathrm{C}$ was added dropwise a solution of $\mathbf{1 7}$ $(66 \mathrm{mg}, 0.10 \mathrm{mmol})$ in THF (2 mL). After stirring at $-25^{\circ} \mathrm{C}$ for 1, water ($50 \mu \mathrm{~L}, 2.8 \mathrm{mmol}$) was added and the reaction mixture was stirred at $-25^{\circ} \mathrm{C}$ to rt for 2 h . Pyridine (1 mL) and $\mathrm{Ac}_{2} \mathrm{O}(1 \mathrm{~mL})$ were added and the mixture was stirred at rt for 15 h . The reaction mixture was worked up as described in method B, and the product was purified by flash-chromatography (hexane/EtOAc 1:1) affording 68 ($49 \mathrm{mg}, 82 \%$) as a white solid. $\mathrm{R}_{\mathrm{f}}=0.24$ (hexane/EtOAc 2:1); mp 143.5-144.5 ${ }^{\circ} \mathrm{C} ;\left[\alpha{ }^{20} \mathrm{D}+2.7\left(\mathrm{c} 1.1, \mathrm{CHCl}_{3}\right) ;{ }^{1 \mathrm{H}} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.33(\mathrm{~m}, 20 \mathrm{H})\right.$, $5.99(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{~s}, 2 \mathrm{H}), 4.69(\mathrm{~s}, 2 \mathrm{H}), 4.62(\mathrm{~s}$, $2 \mathrm{H}), 4.40(\mathrm{~m}, 2 \mathrm{H}), 4.31(\mathrm{dd}, \mathrm{J}=7.0,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{t}, \mathrm{J}=$ $6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{dd}, \mathrm{J}=6.5,7.0 \mathrm{~Hz}$, 1 H), $3.48(\mathrm{~s}, 1 \mathrm{H}), 3.45(\mathrm{~d}, \mathrm{~J}=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.28(\mathrm{~d}, \mathrm{~J}=10.2$ $\mathrm{Hz}, 1 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 170.3,138.3,138.1$, 137.7, 137.1, 128.6, 128.4, 128.3, 128.1, 128.0, 127.9, 127.8, 127.7, 86.3, 83.4, 80.7, 76.0, 73.6, 73.0, 72.5, 72.1, 71.7, 60.8, 23.0. Anal. Calcd for $\mathrm{C}_{36} \mathrm{H}_{39} \mathrm{NO}_{6}$: C, 74.33; $\mathrm{H}, 6.76 ; \mathrm{N}, 2.41$. Found: C, 74.61; H, 7.01; N, 2.44.

Compound 69. To a solution of $(\mathrm{COCl})_{2}(51 \mu \mathrm{~L}, 0.58 \mathrm{mmol})$ in THF (1 mL) at $-60^{\circ} \mathrm{C}$ was added DMSO ($82 \mu \mathrm{~L}, 1.16 \mathrm{mmol}$) dropwise. After stirring at $-60^{\circ} \mathrm{C}$ for 15 min , a solution of 35 ($135 \mathrm{mg}, 0.29 \mathrm{mmol}$) in THF (2 mL) was added. The reaction mixture was stirred for 1 h at $-60^{\circ} \mathrm{C}, \mathrm{Et}_{3} \mathrm{~N}$ was added ($0.2 \mathrm{~mL}, 1.45 \mathrm{mmol}$), the cool ing bath was removed, and the reaction mixture was stirred at rt for 4 h . After diluting with THF (5 mL), the mixture was added dropwise via cannula to a 0.1 M solution of $\mathrm{Sml}_{2}(17.5 \mathrm{~mL}, 1.75 \mathrm{mmol})$ in THF at -25 ${ }^{\circ} \mathrm{C}$. The reaction was stirred for 1 h at $-25^{\circ} \mathrm{C}$, water $(50 \mu \mathrm{~L}$, 5.40 mmol) was added, the cool ing bath was removed, and the mixture was stirred at rt for 2 h . Pyridine (1 mL) and $\mathrm{Ac}_{2} \mathrm{O}$ $(1 \mathrm{~mL})$ were added and the mixture was stirred at rt for 15 h . The reaction mixture was worked up as described in method B, and the crude was purified by flash-chromatography (hex-
ane/EtOAc $1: 2$ to $1: 4$) affording 108 mg (86%) of a $5.4: 1$ mixture of silyl-migrated products. $\mathrm{R}_{\mathrm{f}}=0.52$ (hexane/EtOAc 1:4); IR (film) v 3320, 1760, 1750, 1655, 1560, 1380, 1230; ${ }^{1 H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ (major product) $7.58-7.37(\mathrm{~m}, 5 \mathrm{H}), 5.76(\mathrm{~s}, 1 \mathrm{H}), 5.52$ (d, J $=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~d}, \mathrm{~J}=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{ddd}, \mathrm{J}=$ $5.0,9.0,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{dd}, \mathrm{J}=4.9,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{~d}$, $J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{dd}, \mathrm{J}=4.9,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H})$, $2.00(\mathrm{~s}, 3 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.13(\mathrm{~s}, 6 \mathrm{H})$; (minor product) $5.81(\mathrm{~s}$, $1 \mathrm{H}), 5.01(\mathrm{~d}, \mathrm{~J}=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{dd}, \mathrm{J}=4.8,6.4 \mathrm{~Hz}, 1 \mathrm{H})$, 4.15 (dd, J = 4.8, $10.2 \mathrm{~Hz}, 1 \mathrm{H}$), $2.08(\mathrm{~s}, 3 \mathrm{H}), 0.94(\mathrm{~s}, 9 \mathrm{H}), 0.14$ (s, 6H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 169.6,169.2,135.6,129.6,128.3$, 127.0, 105.4, 81.1, 77.6, 75.4, 73.6, 53.6, 25.6, 23.3, 20.9, 18.1, -4.5, -4.9; EM (70 eV) m/ z: 379 (11), 378 (45), 273 (18), 272 (97), 188 (11), 170 (27), 158 (25), 129 (39), 116 (24), 105 (32), 96 (23), 75 (56), 73 (66), 59 (19), 43 (100). Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{33} \mathrm{NO}_{6} \mathrm{Si}: \mathrm{C}, 60.66 ; \mathrm{H}, 7.64 ; \mathrm{N}, 3.22$. Found: C, $60.42 ; \mathrm{H}$, 7.38; N, 3.09.

A portion of this mixture (16.0 mg) was dissolved in THF (1 mL), and it was treated with a 0.1 M solution of TBAF (0.12 $\mathrm{mL}, 0.12 \mathrm{mmol}$) in THF at rt . After stirring the mixture for 3 h , pyridine (0.2 mL) and $\mathrm{Ac}_{2} \mathrm{O}(0.1 \mathrm{~mL})$ were added, and the mixture was stirred for 16 h . The solvent was removed at reduced pressure, and the residue was purified by flashchromatography (EtOAc), affording 69 ($12 \mathrm{mg}, 90 \%$) as a white foam. $\mathrm{R}_{\mathrm{f}}: 0.33$ (EtOAc); mp $65-67^{\circ} \mathrm{C} ;[\alpha]^{20}{ }_{\mathrm{D}}-63.0$ (c 1.0, EtOH); IR (KBr) $v 3300,1750,1660,1550 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ $7.55-7.40(\mathrm{~m}, 5 \mathrm{H}), 5.83(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.75(\mathrm{~s}, 1 \mathrm{H}), 5.19$ (d, J $=4.6 \mathrm{~Hz}, 1 \mathrm{H}$), 5.11 (dd, J $=4.8,10.8 \mathrm{~Hz}, 1 \mathrm{H}$), 5.02 (ddd, $\mathrm{J}=4.6,8.2,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.77(\mathrm{dd}, \mathrm{J}=4.8,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.49$ $(\mathrm{d}, \mathrm{J}=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}), 1.99(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (CDCl_{3}) $\delta 171.5,169.9,169.1,134.9,130.0,128.5,127.0$, 105.8, 81.1, 75.7, 74.7, 73.1, 51.8, 23.2, 20.8; EM (70 eV) m/ z: 362 (2), 257 (10), 214 (12), 155 (12), 148 (11), 139 (20), 115 (15), 105 (22), 101838), 91 (13), 84 (17), 77 (12), 59 (15), 43 (100). Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{7} \cdot \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 56.68 ; \mathrm{H}, 6.08 ; \mathrm{N}$, 3.67. Found: C, 56.80; H, 5.64; N, 3.70.

Compound 70. To a solution of $\mathbf{3 4}(550 \mathrm{mg}, 1.56 \mathrm{mmol})$ in pyridine (10 mL) was added hydroxylamine hydrochloride (326 $\mathrm{mg}, 4.69 \mathrm{mmol}$), and the mixure was stirred at rt for 4 h . The reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(25 \mathrm{~mL})$, and the solution was washed with brine and dried $\left(\mathrm{MgSO}_{4}\right)$. The solvent was removed at reduced pressure, and the residue was purified by flash-chromatography (hexane/EtOAc 3:1) affording 70 ($480 \mathrm{mg}, 84 \%$) as a colorless oil, $4: 1$ mixture of E and Z oximes, respectively. $\mathrm{R}_{\mathrm{f}}=0.16$ (hexane/EtOAc 7:3); IR (film) $v 3350,1465,1415,1260 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) δ (E -isomer) $8.71(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.47(\mathrm{~m}, 1 \mathrm{H}), 7.45-7.36(\mathrm{~m}, 5 \mathrm{H}), 5.82(\mathrm{~s}, 1 \mathrm{H})$, $4.67(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{~m}, 2 \mathrm{H}), 3.87$ (brd, 2H), 2.71 (brt, 1H), $0.90(\mathrm{~s}, 9 \mathrm{H}), 0.13(\mathrm{~s}, 3 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H})$; (Z-isomer) 8.22 (br s, 1H), $6.82(\mathrm{~d}, \mathrm{~J}=6.2 \mathrm{~Hz}, 1 \mathrm{H})$. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{29} \mathrm{NO}_{5} \mathrm{Si}: \mathrm{C}, 58.81 ; \mathrm{H}, 7.97 ; \mathrm{N}, 3.81$. Found: C, 59.03; H, 7.77; N, 3.79.

Compound 71. To a solution of $\mathbf{7 0}(445 \mathrm{mg}, 1.22 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ were added pyridine ($0.60 \mathrm{~mL}, 7.32 \mathrm{mmol}$) and trifluoroacetic anhydride ($0.52 \mathrm{~mL}, 6.1 \mathrm{mmol}$) at rt . After stirring for 5 h at rt , the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the solution was washed with brine and dried (MgSO_{4}). The solvent was removed at reduced pressure, and the residue was purified by flash-chromatography (hexane/ EtOAc 4:1) affording $\mathbf{7 1}$ ($233 \mathrm{mg}, 55 \%$) as a colorless oil. $\mathrm{R}_{\mathrm{f}}=$ 0.28 (hexane/EtOAc 9:1); $[\alpha]^{20}$ D 29.3 (c $2.6, \mathrm{CHCl}_{3}$); IR (film) v 3450, 2340, 1455, $1410 \mathrm{~cm}^{-1}$; 1 H NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.53-7.39$ $(\mathrm{m}, 5 \mathrm{H}) 5.87(\mathrm{~s}, 1 \mathrm{H}), 4.82(\mathrm{~m}, 1 \mathrm{H}), 4.37(\mathrm{~m}, 2 \mathrm{H}), 3.93(\mathrm{~m}, 2 \mathrm{H})$, $2.12(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.93(\mathrm{~s}, 9 \mathrm{H}), 0.28(\mathrm{~s}, 3 \mathrm{H}), 0.20(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 135.8,129.7,128.5,126.5,118.4,103.6$, 78.5, 77.7, 62.0, 60.1, 25.5, 18.0, -4.9, -5.2. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{NO}_{4} \mathrm{Si}$: C, 61.85; H, 7.80; N, 4.01. Found: C, 62.04; H, 8.01; N, 3.96.

Cyclization of 71 through Oxidation- $\mathbf{S m l}_{2}$ Reductive Coupling Sequence. To a solution of $(\mathrm{COCl})_{2}(35 \mu \mathrm{~L}, 0.40$ mmol) in THF (1.5 mL) at $-60^{\circ} \mathrm{C}$ was added DMSO $(57 \mu \mathrm{~L}$, 0.80 mmol) dropwise. After stirring the mixture at $-60^{\circ} \mathrm{C}$ for 10 min , a solution of $\mathbf{7 1}(56 \mathrm{mg}, 0.16 \mathrm{mmol}$) in THF (3 mL) was added dropwise. The reaction mixture was stirred at -60 ${ }^{\circ} \mathrm{C}$ for $1 \mathrm{~h}, \mathrm{Et}_{3} \mathrm{~N}(0.34 \mathrm{~mL}, 2.40 \mathrm{mmol})$ was added, and the mixture was slowly warmed to rt for 5 h . The reaction mixture
was diluted with THF (3 mL), t-BuOH ($31 \mu \mathrm{~L}, 0.32 \mathrm{mmol}$) was added, and the resultant solution was added to a 0.1 M solution of Sml_{2} in THF ($6.5 \mathrm{~mL}, 0.65 \mathrm{mmol}$) at $-40^{\circ} \mathrm{C}$. The reaction mixture was stirred at $-40^{\circ} \mathrm{C}$ to $-20^{\circ} \mathrm{C}$ for 15 h . Thereaction was worked up as described in method B, and the product was purified by flash-chromatography (hexane/EtOAc 9:1 to 1:3) affording 72 ($6 \mathrm{mg}, 16 \%$) as a pale fellow oil. $\mathrm{R}_{\mathrm{f}}=0.15$ (hexane/ EtOAc 1:1); $[\alpha]^{20}{ }^{0}-16.1$ (c, $0.5, \mathrm{CHCl}_{3}$); IR (film) $v 3375,1730$, 1630, 1465, $1335 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 6.39(\mathrm{~d}, \mathrm{~J}=2.5$ $\mathrm{Hz}, 1 \mathrm{H}), 4.69(\mathrm{t}, \mathrm{J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H})$, 3.00 (br s, 2H), 0.96 (s, 9H), 0.24 (s, 3H), 0.22 (s, 3H); ${ }^{13} \mathrm{C}$ NMR (acetone $_{6}$) $\delta 206.5,135.1,122.6,80.7,73.7,25.8,19.2,-3.7$, -4.1.

Acknowledgment. Financial support from DGICYT (grants PB93-0127-C02-01, SAF 97-0048-C02-02 and SAF94-0818-C02-02), CICYT (grant CE93-0023), Co-
munidad Autónoma de Madrid (grant AE-0094/94), and the European Union (Human Capital and Mobility Programme; contract ERBCHRXCT 92-0027) is greatefully acknowledged. We thank Luis Martínez for preliminary experimental work in this subject.

Supporting Information Available: Experimental procedures and characterization data for compounds 7b-e, 23, 54, and 56, and tables of ${ }^{1} \mathrm{H}$ NMR and 2D NOESY cross-peak intensities for the carbocydic products 39, 43, 44a-c, 45, 50ad, 51a,b, 52a,b, 65a-c (8 pages). This material is contained in libraries on microfiche, immediately follows this article in the microfilm version of the journal, and can be ordered from the ACS; see any current masthead page for ordering instructions.
J O970987W

[^0]: * Corresponding authors. Phone: +34-1-5622900. Fax: +34-15644853. E-mail (J LCh): iqolc22@resno.csic.es
 † Dedicated to the memory of Prof. Eldiberto Fernández-Alvarez (deceased August 23, 1996).
 \ddagger Present address: Instituto de Investigaciones Químicas (CSIC), Isla de la Cartuja, E-41092 Sevilla, Spain.
 § Present address: Departamento de Química Orgánica, Facultad de Química, Universidad Complutense, E-28040 Madrid, Spain.
 ${ }^{\otimes}$ Abstract published in AdvanceACS Abstracts, September 15, 1997
 (1) Recent syntheses: (a) K napp, S.; Dhar, T. G. M. J. Org. Chem. 1991, 56, 4096. (b) Trost, B. M.; Van Kranken, D. L. J. Am. Chem. Soc. 1993, 115, 444, and references cited therein. (c) King, S. B.; Ganem, B. J. Am. Chem. Soc. 1994, 116, 562, and references cited therein. (d) Li, C.; Fuchs, P. L. Tetrahedron Lett. 1994, 35, 5121. (e) Ogawa, S.; Kimura, H.; Uchida, C.; Ohashi, T. J. Chem. Soc., Perkin Trans. 1 1995, 1695, and references cited therein.
 (2) Recent syntheses of trehazoline and its aglycon: (a) K obayashi, Y.; Miyazaki, H.; Shiozaki, M. J. Org. Chem. 1994, 59, 813, and references therein. (b) Uchida, C.; Yamagishi, T.; Ogawa, S. J. Chem. Soc., Perkin Trans. 1 1994, 589, and references cited therein. (c) Knapp. S.; Purandare, A.; Rupitz, K.; Withers, S. G. J. Am. Chem. Soc. 1994, 116, 7461. (d) Ledford, B. E.; Carreira, E. M. J . Am. Chem. Soc. 1995, 117, 11811.
 (3) Recent syntheses of allosamidine and its aglycon: (a) Nakata, M.; Akazawa, S.; Kitamura, S.; Tatsuta, K. Tetrahedron Lett. 1991, 32, 5363. (b) Takahashi, S.; Terayama, H.; K uzuhara, H. Tetrahedron Lett. 1992, 33, 7565, and references cited therein. (c) Simpkins, N. S.; Stokes, S.; Whittle, A. J. Chem. Soc., Perkin Trans. 1 1992, 2471, and references cited therein. (d) Kitahara, T.; Suzuki, N.; K oseki, K.; Mori, K. Biosci., Biotechnol., Biochem. 1993, 57, 1906. (e) Maloisel, J .-L.; Vasella, A.; Trost, B. M.; Van Vranken, D. L. Helv. Chim. Acta 1992, 75, 1515. (f) Goering, B. K.; Ganem, B. Tetrahedron Lett. 1994, 35, 6997. (g) Blattner, R.; Furneaux, R. H.; Kemmit, T.; Tyler, P. C.; Ferrier, R.; Tidén, A.-K. J. Chem. Soc., Perkin Trans. 1 1994, 3411. (h) Griffith, D. A.; Danishefsky, S. J. Am. Chem. Soc. 1996, 118, 9526, and references cited therein. See also ref 1b.
 (4) For a review, see: Quinkert, E., Ed. Synform 1989, 7, 192.
 (5) For a review, see: Quinkert, E., Ed. Synform 1989, 7, 225.

[^1]: (6) (a) Siddiqi, S. M.; Chen, X.; Schneller, S. W. J. Med. Chem. 1994, 37, 1382. (b) Siddiqi, S. M.; Chen, X.; Schneller, S. W. J . Med. Chem. 1994, 37, 551, and references cited therein.
 (7) Aminoglycoside antibiotics; Umezawa, H., Hooper, I. R., Eds.; Springer-Verlag: New Y ork, 1982.
 (8) For a recent review on the use of carbohydrate templates for the preparation of carbocycles, see: Ferrier, R. J.; Middleton, S. Chem. Rev. 1993, 93, 2779.

[^2]: (9) (a) Hart, D. J.; Seely, F. L. J. Am. Chem. Soc. 1988, 110, 1631. (b) Bartlett, P. A.; McL aren, K. L.; Ting, P. C. J. Am. Chem. Soc. 1988, 110, 1633. For recent examples, see: Booth, S. E.; J enkins, P. R.; Swain, C. J.; Sweeney, J. B. J . Chem. Soc., Perkin Trans. 1 1994, 3499, and references cited therein.
 (10) (a) Kim, S.; Kee, I. S. Tetrahedron Lett. 1993, 34, 4213. (b) Sturino, C. F.; Fallis, A. G. J. Am. Chem. Soc. 1994, 116, 7447. (c) Sturino, C. F.; Fallis, A. G. J. Org. Chem. 1994, 59, 6514. (d) Bowman, W. R.; Stephenson, P. T.; Terrett, N. K.; Young, A. R. Tetrahedron Lett. 1994, 35, 6369.
 (11) Kim, S.; Yoon, K. S.; Kim, Y. S. Tetrahedron 1997, 53, 73.
 (12) (a) Marco-Contelles, J .; Martínez, L.; Martínez-Grau, A. Tetrahedron: Asymmetry 1991, 2, 961. (b) Marco-Contelles, J.; Ruiz, P.; Martínez, L.; Martínez-Grau, A. Tetrahedron 1993, 49, 6669. For a later report on exactly the same methodology, see: Ingall, A. H.; Moore, P. R.; Roberts, S. M. Chem. Commun. 1994, 83 (corrigendum: Chem. Commun. 1994, 675). (c) Marco-Contelles, J.; Sánchez, B. J . Org. Chem. 1993, 58, 4293. (d) Marco-Contelles, J .; Destabel, C.; Gallego, P.; Chiara, J. L.; Bernabé, M. J. Org. Chem. 1996, 61, 1354. (e) Marco-Contelles, J. In Carbohydrate Mimics: Concepts and Methods; Chapleur, Y., Ed.; VCH: Weinheim, in press.
 (13) (a) Chiara, J. L.; Martín-Lomas, M. Tetrahedron Lett. 1994, 35, 2969. (b) Chiara, J. L.; Valle, N. Tetrahedron: Asymmetry 1995, 6, 1547. (c) Chiara, J. L.; Marco-Contelles, J.; Khiar, N.; Gallego, P.; Destabel, C.; Bernabé, M. J. Org. Chem. 1995, 60, 6010. (d) Chiara, J. L.; Martínez, S.; Bernabé, M. J. Org. Chem. 1996, 61, 6488. (e) Chiara, J. L. In Carbohydrate Mimics: Concepts and Methods; ChapIeur, Y., Ed.; VCH: Weinheim, in press.
 (14) For recent reviews on applications of samarium diiodide in organic synthesis, see: (a) M olander, G. A. Chem. Rev. 1996, 96, 307. (b) Molander, G. A. Org. React. 1994, 46, 211. (c) Imamoto, T. Lanthanides in Organic Synthesis; Academic Press: London, 1994.

[^3]: (15) (a) Wilcox, C. S.; Thomasco, L. M. J . Org. Chem. 1985, 50, 546. For a similar cyclization using samarium diiodide, see: (b) Zhou, Z.; Bennett, S. M. Tetrahedron Lett. 1997, 38, 1153. See also: (c) RajanBabu, T. V. J. Org. Chem. 1988, 53, 4522.
 (16) Yeung, B, W.; Alonso, R.; Vité, G. D.; Fraser-Reid, B. J. Carbohydr. Chem. 1989, 8, 413, and references cited therein.

[^4]: (21) The last product probably arises from a samarium(III) alkoxide intermediate via intramolecular bromide displacement. This alkoxysamarium could be formed by deprotonation of 7a by the intermediate anions formed from 7a in the reaction, although direct reduction of the hydroxyl group of 7a by the $\mathrm{Sml}_{2} / \mathrm{HMPA}$ complex to the samarium(III) alkoxide with release of H_{2} cannot be discarded.
 (22) In fact, in these reactions we detect always benzyl al cohol that results from the $\mathrm{N}-\mathrm{O}$ reductive cleavage. The presence of HMPA made troublesome to isolate, for instance, the corresponding amino al cohol 26 (Scheme 4).

[^5]: (23) Shen, S. Y.; J ouillé, M. M. J. Org. Chem. 1984, 49, 2168. Bagget, N.; Buchanan, J . G.; Fatah, M. Y.; Lachut, C. H.; McCullough, K. J.; Webber, J. M.; J. Chem. Soc., Chem. Commun. 1985, 1826.
 (24) (a) Enholm, E. J .; Trivellas, A. J. Am. Chem. Soc. 1989, 111, 6463. (b) Enholm, E. J.; Satici, H.; Trivellas, A. J. Org. Chem. 1989, 54, 5841. (c) Enholm, E. J.; Trivellas, A. Tetrahedron Lett. 1994, 35, 1627. (d) Tadano, K.-i.; İsshiki, Y.; Minami, M.; Ogawa, S. J . Org. Chem. 1993, 58, 6266, and references cited therein.
 (25) Aurrecoechea has recently described a related aproach using α-benzotriazolylalkenylamines: (a) Aurrecoechea, J. M.; FernándezAcebes, A. Tetrahedron Lett. 1993, 34, 549. (b) Aurrecoechea, J. M.; López, B.; Fernández, A.; Arrieta, A.; Cossío, F. P. J . Org. Chem. 1997, 62, 1125.

[^6]: (26) Fry, A. J.; Little, R. D.; Leonetti, J. J . Org. Chem. 1994, 59, 5017.
 (27) Corey, E. J.; Pyne, S. G. Tetrahedron Lett. 1983, 2821.
 (28) (a) Shono, T.; Kise, N.; Fujimoto, T. Tetrahedron Lett. 1991, 32, 525. (b) Shono, T.; K ise, N.; Fujimoto, T.; Yamanami, A.; Nomura, R. J. Org. Chem. 1994, 59, 1730.
 (29) (a) Naito, T.; Tajiri, K.; Harimoto, T.; Ninomiya, I.; Kiguchi, T. Tetrahedron Lett. 1994, 35, 2205. (b) Kiguchi, T.; Tajiri, K.; Ninomiya, I.; Naito, T. Tetrahedron Lett. 1995, 36, 253.
 (30) Hanamoto, T.; Inanaga, J. Tetrahedron Lett. 1991, 32, 3555.

[^7]: (31) Lactols $\mathbf{4 0}$ and $\mathbf{4 1}$ were easily obtained in two steps from the corresponding free sugar: Decoster, E.; Lacombe, J.-M.; Strebler, J.L.; Ferrari, B.; Pavia, A. A. J. Carbohydr. Chem. 1983, 2, 329. Lactol 42 cannot be prepared using this methodology, and it was in turn obtained from the corresponding thiophenyl glycoside (Garegg, P. J.; Hultberg, H.; Lindberg, C. Carbohydr. Res. 1980, 83, 157) by oxidative hydrolysis with NBS in aqueous acetone: Groneberg, R. D.; Miyasaki, T.; Stylianides, N. A.; Schulze, T. J .; Stahl, W.; Schreiner, E. P.; Suzuki, T.; I wasbuchi, Y.; Smith, A. L.; Nicolaou, K. C. J. Am. Chem. Soc. 1993, 115, 7593 (for an analogous hydrolysis procedure, see: Motavia, M. S.; Marcussen, J .; M oller, B. L. J . Carbohydr. Chem. 1995, 14, 1279).
 (32) Determined from the ${ }^{1}$ H NMR of the crude reaction mixture.
 (33) A minor cyclopentane product was also isolated in this case (see Experimental Section and the Supporting Information), but its structure could not be fully determined.

[^8]: (34) Tejima, S.; Ness, R. K.; Kaufman, R. L.; Fletcher, H. G. Carbohydr. Res. 1968, 7, 485.
 (35) We have recently described a similar one-pot sequence consisting of a Swern oxidation and a Sml_{2}-induced pinacol coupling for the direct transformation of alditol-derived 1,6-diols into inositol derivatives: Chiara, J. L.; Martín-Lomas, M. Tetrahedron Lett. 1994, 35, 2969. Chiara, J. L.; Valle, N. Tetrahedron: Asymmetry 1995, 6, 18951898.
 (36) Performing the reaction in larger scale than in our preliminary communication ${ }^{13 c}$ allowed a more complete analysis of the different products formed.

[^9]: (37) Marco-Contelles, J .; Pozuelo, C.; J imeno, M. L.; Martínez, L.; Martínez-Grau, A. J. Org. Chem. 1992, 57, 2625.
 (38) Dess, D. B.; Martin, J. C.; J. Am. Chem. Soc. 1991, 113, 7277, and references cited therein.

[^10]: (39) To facilitate isolation, the crude reaction mixtures were treated with $\mathrm{Ac}_{2} \mathrm{O}$ and pyridine at room temperature affording the $\mathrm{N}, \mathrm{O}-$ diacetylated compounds. The tertiary hydroxyl of compound 68 is unreactive under these conditions, and when the acetylation was performed in the presence of catalytic DMAP a complex mixture of products resulted.
 (40) F or previous reports on Sml_{2}-promoted reactions in the presence of water, see for example: (a) Girard, P.; Namy, J. L.; Kagan , H. B. J . Am. Chem. Soc. 1980, 102, 2693. (b) Otsubo, K.; Inanaga, J.; Yamagushi, M. Tetrahedron Lett. 1986, 27, 5763. (c) Hasegawa, E.; Curran, D. P. J. Org. Chem. 1993, 58, 5008. (d) Kamoshi, Y.; Kudo, T. Chem. Lett. 1993, 1495. (e) Miyoshi, N.; Takeuchi, S.; Ohgo, Y. Chem. Lett. 1993, 2129. (f) Miyoshi, N.; Takeuchi, S.; Ohgo, Y. Heterocycles 1993, 36, 2383. (g) Hanessian, S.; Girard, C. Synlett 1994, 861; see also ref 19a.
 (41) The other minor carbocyclic products 50b-d were not isolated under these conditions.
 (42) Shono et al. ${ }^{28 b}$ have recently shown that oxime ethers are not electrochemically reducible under the same conditions as they are coupled to ketones, which led them to propose a similar mechanism for the corresponding electrochemical cross-coupling.
 (43) (a) Molander, G. A.; Kenny, C. J. Am. Chem. Soc. 1989, 111, 8236. (b) Chiara, J. L.; Cabri, W.; Hanessian, S. Tetrahedron Lett. 1991, 32, 1125.

[^11]: (44) In fact, experiments perfomed by Shono et al. ${ }^{28 b}$ may suggest that the reaction of the anti-form of simple oximes is faster than that of the syn-form under electrochemical conditions.

