
Radiative corrections to the
polarizability tensor of an electrically
small anisotropic dielectric particle
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Abstract: Radiative corrections to the polarizability tensor of isotropic
particles are fundamental to understand the energy balance between
absorption and scattering processes. Equivalent radiative corrections for
anisotropic particles are not well known. Assuming that the polarization
within the particle is uniform, we derived a closed-form expression for the
polarizability tensor which includes radiative corrections. In the absence of
absorption, this expression of the polarizability tensor is consistent with the
optical theorem. An analogous result for infinitely long cylinders was also
derived. Magneto optical Kerr effects in non-absorbing nanoparticles with
magneto-optical activity arise as a consequence of radiative corrections to
the electrostatic polarizability tensor.
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17. R. Gómez-Medina and J. J. Sáenz “Unusually strong optical interactions between particles in quasi-one-
dimensional geometries,” Phys. Rev. Lett. 93, 243602 (2004).

18. S. Albaladejo, M. I. Marqués, M. Laroche and J. J. Sáenz “Scattering Forces from the Curl of the Spin Angular
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1. Introduction

Electromagnetic scattering from nanometer-scale objects has long been a topic of large interest
and relevance to fields from astrophysics or meteorology to biophysics and material science
[1, 2, 3, 4, 5, 6]. During the last decade nano-optics has developed itself as a very active field
within the nanotechnology community. Much of it has to do with plasmon (propagating) based
subwavelength optics and applications [7]. Also, isolated metallic particles supporting localized
plasmons have attracted a great deal of interest due to their ability to concentrate the electro-
magnetic field in subwavelength (some tens of nanometers) volumes. As a result, the studies
in the field often involve the contributions of small elements or particles where the dipole ap-
proximation may be sufficient to describe the optical response. Examples of applications are
on telecommunications [8, 9, 10], spontaneous emission rates and fluorescence [11, 12, 13],
sensors [14], energy harvesting[15, 16], optical forces and trapping [17, 18, 19, 20] or medical
therapy [21]. The capabilities and applicability of all these promising examples can be largely
enhanced if some degree of tunability is added. These capacities can be endorsed by exploiting
different x-optic effect (thermo-, electro-, magneto-, piezo-) where an external agent modifies
some elements of the dielectric tensor, εεε , in some extent [22, 23, 24] which, in general, will be
non-diagonal.

Most of the previous works on small anisotropic spherical particles, consider the dipolar
approximation (DA) in the electrostatic limit [25, 26, 27, 28, 29, 30, 31]. By taking into account
the fact that the polarization within the sphere is uniform, the polarizability is usually written
as [25]

ααα0 ≡ 3v(εεε − εhI)(εεε +2εhI)−1 (1)

being v = 4πa3/3 the particle volume (I = uxux +uyuy +uzuz is the unit dyadic) and εh the rela-
tive permittivity of the host medium at the point where the particle is placed. The host medium
is assumed to be isotropic. Different extensions, including anisotropic and bianisotropic non-
spherical particles, have been considered in the literature (for a short review see Ref. [32]).
However, in most of the cases, the energy balance between absorption and scattering has not
been considered. In particular, in absence of absorption, the polarizability tensor given by Eq.
(1) does not fulfil the Optical Theorem. For isotropic particles (where ααα = αI is a scalar quan-
tity), radiative corrections to the electrostatic polarizability [5, 6] solve the problem of energy
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conservation in absence of absorption. Even in the case of absorbing particles, extended ra-
diative corrections have been shown to be relevant to determine the effective permittivity of
metallic nanoparticle doped composites [33]. However, these corrections have not been consid-
ered in the context of scattering from small anisotropic particles.

In this work we analyze the polarizability of small dielectrically anisotropic particles in-
cluding radiative corrections. In Sec. 2 we describe the general properties of any polarizability
tensor consistent with the Optical Theorem. In Sec. 3 we derive a generalized polarizability
tensor equivalent to the extended polarizability tensor arising in the so-called “strong couple
dipole method ” (S-CDM) [34]. We show that, in absence of absorption, it is consistent with
the optical theorem. Equivalent results for cylinders are also derived in Sec. 3.2. These results
are of general applicability.

As an important application, we are going to restrict ourselves to the magneto-optical case
(Sec. 4), where the presence of a magnetic field alters some of the non-diagonal components of
the dielectric tensor (for an interesting discussion on the similarities and differences between
the polarizabilities of gyrotropic and chiral particles see ref. [28, 29]). Depending on the relative
orientation of the sample, incidence plane and magnetic-field the affected elements will vary,
conferring different effects. In the so-called “polar” configuration, where the magnetic field
is applied perpendicular to the sample plane and parallel to the light incidence plane and the
main effect is a rotation of the polarization state, it has been shown that the plasmon excitation
largely modifies the rotation [35, 36, 37] due to the strong enhancement and localization of the
EM field. As we will show, the polarizability given by Eq. (1) wrongly predicts the absence of
Kerr rotation for non-absorbing magneto-optical particles.

2. Optical Theorem for anisotropic Rayleigh particles

Let us consider a dielectric anisotropic particle with a permittivity tensor εεε(ω) and radius a
in an otherwise uniform medium with relative permittivity εh and refractive index nh =

√
εh.

For a linear non-magnetic material and harmonic fields, the electric displacement DDD inside the
particle is related to the electric field E through DDD = ε0εεε(ω)E and H = ε0c2BBB (being c the
vacuum’s speed of light). For small particles (a � λ ), the electromagnetic response is well
described by the dipolar approximation (DA): an external electric field E0 induce an electric
dipole p = ε0εhααα(ω)E0 where ααα(ω) is the polarizability tensor.

The optical theorem for anisotropic particles can be easily deduced from the Poynting’s the-
orem for harmonic fields [38]: The time-averaged rate of work done by the external field E0 in
a volume V must be equal to the sum of dissipated and radiated powers:

1
2

ℜ
{∫

V
JJJ∗ ·E0d3r

}
= Pdis +Prad = Pdis +

1
2

ℜ
{∮

s
Es ×H∗

s ·nnnds

}
(2)

where Es and Hs are the scattered fields. For dielectric particles, the current density, JJJ =−iωPPP,
is proportional to the polarization vector PPP. If the particle is uniformly polarized, PPP = p/v =
ε0εhαααE0/v, and we have

1
2

ωℑ
{

E†
0 ·p
}

= Pdis +
c
nh

k4

12πε0εh
|p|2 = (3)

1
2

ωε0εhℑ
{

E†
0αααE0

}
= Pdis +

c
nh

k4

12π
ε0εhE†

0ααα†αααE0 (4)

where k2 = εhω2/c2 = 2π/λ is the wave number and we have made use of the well known
result of the total power radiated by an oscillating dipole [38]. In absence of absorption,

k3

6π
E†

0ααα†αααE0 = ℑ
{

E†
0αααE0

}
= ℑ

{
E†

0

(
ααα†ααα†−1

)
αααE0

}
(5)
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which can be written as

ℑ
{

p†ααα−1
hhh p
}

= 0 ; ααα−1
hhh ≡

{
ααα†−1 − i

k3

6π
I
}

(6)

The matrix ααα−1
hhh must be Hermitian (i.e. ααα−1

hhh =
(
ααα−1

hhh

)†
) since the expression above must hold

for arbitrary p. In absence of absorption, the inverse of the polarizability tensor must then have
the following general expression:

ααα−1 = ααα−1
hhh − i

k3

6π
I (7)

being ααα−1
hhh an arbitrary hermitian matrix. Equation (7) represents the optical theorem for the

polarizability tensor of non-absorbing anisotropic particles.

2.1. Optical theorem in the presence of several scattering objects

Let us now consider E0 as the field generated by “fixed” external sources and the scattered field
for any other object in absence of the small particle. As a consequence of multiple scattering
effects, in the presence of other scattering objects or inhomogeneities in the host medium, the
actual polarizing field incoming towards the particle, Einc, is obviously different from E0. The
induced dipole can be written as

p = ε0εhαααEinc = ε0εhα̂αα E0 (8)

where ααα is the particle’s polarizability and α̂αα is a renormalized polarizability including all the
multiple scattering effects between the dipolar particle and the rest of the system.

The field radiated from the dipole can be written in terms of the dyadic Green function
(Green tensor) of the system G. G(r,r0) connects an electric-dipole source p at a position r0

to the electric field at a position r through the relation E(r) = [k2/(ε0εh)]G(r,r0)p. The Green
tensor for a homogeneous system, G(r,r′), is defined as the solution of

∇∇∇×∇∇∇×G− k2
0εhG = Iδ (r− r0), (9)

with the outgoing-wave condition at infinity. In a homogeneous medium, it reads:

G(r,r0)|r�=r0 =
(

I+
∇∇∇∇∇∇
k2

)
eik|r−r0|

4π|r− r0| . (10)

The total Green function can be written as G(r,r0) = G(r,r0)+Gb(r,r0) where G is the source
term for the homogeneous system and the dyadic Gb describes the field scattered by any other
object in the system.

The total power radiated by the dipole is modified by the presence of other particles or
inhomogeneities and can be written as [39]

Prad =
ω3μ0

2
p† ·ℑ{G(r0,r0)} ·p (11)

For a non-absorbing particle, Eq. (4) then becomes

ℑ
{

E†
0α̂ααE0

}
= k2E†

0α̂αα† ·ℑ{G(r0,r0)} · α̂ααE0 (12)

As a consequence, the inverse of the renormalized polarizability tensor must then have the
following general expression:

α̂αα−1 = α̂ααhhh
−1 − ik2ℑ{G(r0,r0)} (13)
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being α̂ααhhh
−1

an hermitian matrix. This generalize the optical theorem in the presence of
several scattering objects. Notice that in absence of scattering objects, ℑ{G(r0,r0)} =
ℑ{G(r0,r0)} = k/(6π)I ( a well known result for the Green tensor in homogeneous media)
and we recover the results of Eq. (7),

ααα−1 = ααα−1
hhh − ik2ℑ{G(r0,r0)} . (14)

ααα and α̂αα are related through a simple self-consistent equation. The actual incoming field Einc

must be given by the sum of E0 and the field backscattered from the other objects in the system:

Einc(r0) = E0(r0)+
k2

ε0εh
Gb(r0,r0)p = E0(r0)+ k2Gb(r0,r0)αααEinc (15)

p = ε0εhααα
(
I− k2Gb(0)ααα

)−1
E0 = ε0εhα̂ααE0 (16)

From Eqs. (13) and (14) we then have

α̂αα−1 = ααα−1 − k2Gb(r0,r0) = ααα−1
hhh − ik2ℑ{G(r0,r0)}− k2Gb(r0,r0)

=
(
ααα−1

hhh − k2ℜ{Gb(r0,r0)}
)− ik2ℑ{G(r0,r0)} (17)

α̂ααhhh
−1 = ααα−1

hhh − k2ℜ{Gb(r0,r0)} (18)

3. Polarizability of anisotropic Rayleigh particles

We now present a simple extension of the electrostatic approach that leads in a natural way to
a polarizability consistent with Eq. (7). From Maxwell equations, the electric field follows the
wave equation

∇∇∇×∇∇∇×E− k2
0εhE = k2

0(εεε(r)− εhI).E (19)

where k0 = ω/c and εεε(r) = εεεΘ(a−|r− r0|) for a particle of radius a located at r = r0 (being
Θ the Heaviside step function). In scattering problems, the total field is usually written as the
sum of incoming E0 and scattered Escatt fields. By using the Green tensor, Eq. (19) can be
transformed into an integral equation

E(r) = E0(r)+ k2
0

∫
G(r,r′)(εεε(r′)− εhI)E(r′)d3r′ (20)

In the small particle limit, we can consider that the electric field inside Einside the particle is
approximately constant. The total field outside the particle can then be written as

E(r) ≈ E0(r)+ k2
0G(r,r0)v(εεε − εhI)Einside(r0)

= E0(r)+
k2

ε0εh
G(r,r0).p (21)

where v is the particle volume and the induced electric dipole, p is given by p = ε0εhv(εεε −
εhI)Einside ≡ ε0εhαααE0(r0). We can use Eq. (20) to obtain a self-consistent solution for Einside,

Einside = E0(r0)+ k2
0

(∫
G(r0,r′)d3r′

)
(εεε − εhI).Einside

= E0(r0)+ k2
0v〈G〉(εεε − εhI).Einside (22)

where 〈G〉 is the average of the Green tensor over the particle volume v. The self-consistent
internal field is then given by

Einside =
{

I− k2
0v〈G〉(εεε − εhI)

}−1
E0(r0). (23)
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Following the notation of Ref. [34], we can write

v〈G〉 ≡
(∫

G(r0,r′)d3r′
)

v→0
=
(
− 1

k2 LLL+MMM

)
(24)

where LLL is the (real) electrostatic depolarization dyadic [40, 41, 42] and the dyadic MMM corre-
sponds to the volume average of the non-singular part of the Green tensor. We can then rewrite
Eq. (23) as

Einside =
{

I− k2
0

(
− 1

k2 LLL+MMM

)
(εεε − εhI)

}−1

E0(r0), (25)

which is exactly the S-CDM internal field obtained in Ref. [34] for non magnetic particles. This
leads to the S-CDM polarizability

ααα = v(εεε − εhI)
{

I− k2
0

(
− 1

k2 LLL+MMM

)
(εεε − εhI)

}−1

(26)

It is of interest to rewrite MMM as the sum of real and imaginary dyadics, MMM = MMMR + iMMMI . Noticing
that, at lowest order, MMMI is given by ≈ ivℑ{G(r0,r0)} = ivk3/(6π) we have

ααα = αααhhh

{
I− i

k3

6π
αααhhh

}−1

(27)

αααhhh = v(εεε − εhI)
{

εhI+(LLL− k2MMMR)(εεε − εhI)
}−1

. (28)

Equations (27) and (28) apply to absorbing as well as nonabsorbing particles of arbitrary shape
as long as they are electrically small, i.e. as long as the electric field inside the particle is approx-
imately constant. Moreover, in absence of absorption, they exactly match the optical theorem
condition (Eq. (7)), i.e. the condition that absorption be absent requires that the polarizability
tensor αααhhh is Hermitian. The dielectric tensor evidently must have the same symmetry properties
εεε = εεε†.

3.1. Polarizability of anisotropic spheres

For a spherical particle [34, 40, 41] LLL = (1/3)I and MMMR = (a2/3)I+ . . . . We then have

LLL− k2MMMR =
1
3

{
1− (ka)2 + . . .

}
I. (29)

Keeping the zero order term in this expansion leads to the polarizability given by Eq. (27) with
αααhhh = ααα0 given by Eq. (1). In the isotropic case ααα0 = α0I we recover the well known Draine’s
result for the polarizability of a small (Rayleigh) particle with radiative corrections [5, 6].

Including the (ka)2 term in Eq. (29) we obtain

αααhhh ≡ 3v(εεε − εhI)(εεε +2εhI− (ka)2(εεε − εhI))−1 (30)

In the isotropic case, this result (together with Eq. (27)) leads to Lakhtakia’s S-CDM polariz-
ability (see Eq. (60) in Ref. [34]). Interestingly, including higher order terms in the expansion
of MMMI can unbalance the small particle approach leading to a polarizability tensor which does
not fulfil the Optical Theorem.
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3.2. Polarizability of anisotropic cylinders

A similar argument can be applied to the polarizability of dielectric anisotropic cylinders with
very small radius. We consider a long rod with its axis along the z-axis. We will restrict our-
selves to the case in which the external electromagnetic fields do not depend on z, i.e. E0(ρρρ)
(ρρρ = (x,y)) and the induced dipole (per unit length) is constant along the cylinder axis. The
Green dyadic is in this case:

G(ρρρ,ρρρ0)|ρρρ �=ρρρ0
=
(

I+
∇∇∇∇∇∇
k2

)
i
4

H0(k|ρρρ −ρρρ0)|) (31)

where H0 is the Hankel function of the first kind. Following the same steps as with spherical
particles we find the appropriate Optical Theorem for small cylinders

ααα−1 = −i
k2

8
(I+uzuz)+ααα−1

hhh (32)

where again ααα−1
hhh is an arbitrary hermitian matrix. The average of the Green dyadic over the

cylinder cross section, A = πa2, gives [41]

〈G〉A→0 �
{
− 1

2k2A
+ i

1
8

}
It + i

1
4

uzuz (33)

where It = (uxux +uyuy) is the transversal unit dyadic. Following the same steps as before we
finally have

ααα = ααα000

{
I− i

k2

8
(I+uzuz)ααα000

}−1

(34)

with

ααα000 = 2A(εεε − εhI)(It(εεε + εhI)+2uzuz)
−1 (35)

It is easy to check that the expression exactly match the optical theorem condition (Eq. (32))
provided ααα0 = ααα†

0. In the isotropic case ααα0 is diagonal with

α0zz = A(ε − εh) (36)

α0xx = α0yy = 2A
ε − εh

ε + εh
(37)

and we recover the well known result for the polarizability of a small (Rayleigh) cylinder with
radiative corrections (see for example [43, 44, 45]).

4. Magneto-Optical Kerr effect

As an important application, we will discuss the relevance of our results in the analysis of
light scattering from magneto-optical (MO) nanoparticles. Even for isotropic dielectrics, in the
presence of a static magnetic field H, the tensor εεε is not longer symmetrical. From the principle
of symmetry of the kinetic coefficients [46] εεε(H) = εεε(−H).

4.1. Magneto-Optical spheres. PMOKE

For MO spheres, we consider the so called polar magneto optical Kerr effect (PMOKE) config-
uration in which a constant magnetic field H = Hzuz is oriented in the direction of incidence of
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Fig. 1. (a) Sketch of the geometry for polar magneto optical Kerr effect (PMOKE) for
a spherical nanoparticle. (b) Sketch of the geometry for transverse magneto optical Kerr
effect (TMOKE) for a cylindrical nanoparticle.

an incoming electromagnetic plane wave E0 = uxE0eik0z (for simplicity we will consider here
εh = 1). The dielectric tensor can then be written as

εεε =

⎛
⎝ ε εxy 0

εyx ε 0
0 0 ε

⎞
⎠ . (38)

where εxy(Hz) = εyx(−Hz). In absence of absorption we further have εxy = ε∗yx. At lowest or-
der in the magnetic field we then have εxy = −εyx = −iQε where the magneto-optical Voigt
parameter Q is proportional either to mz the magnetization along the z-axis (being mz = ±1 at
saturation) in the case of a ferro- or antiferro-magnet or to Hz otherwise. The bare polarizability
is then given by

α0xx = α0yy = 3vε0
(ε −1)(ε +2)−Q2ε2

(ε +2)2 −Q2ε2 (39)

α0yx = α∗
0xy = i 3vε0

3Qε
(ε +2)2 −Q2ε2 (40)

α0zz = 3vε0
ε −1
ε +2

(41)

We shall focus on the properties of the backscattered reflected field. In that case the presence
of the magnetic field in polar configuration induces a modification of the polarization state of
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the outgoing field with respect to the incident one, known as Kerr rotation. The complex Kerr
rotation φ = θ + iϕ (θ is the rotation and ϕ is the ellipticity) can be defined in terms of the
ratio between y and x components of the specular reflected field (see Figure 1a). In the limit
|Rxy| � |Rxx|, we have

Ryx

Rxx
=

αyx

αxx
=
∣∣∣∣Ryx

Rxx

∣∣∣∣eiδ ≈ θ + iϕ (42)

In absence of absorption, α0yx is imaginary and the electrostatic approximation (without ra-
diative corrections) predicts zero rotation (θ = 0) for polar configuration. However, the actual
expression of Eq. (42) is given by

Ryx

Rxx
=
{

3Qε
(ε −1)(ε +2)−Q2ε2 sinδ

}
eiδ (43)

with

1
tanδ

= −C

(
1−
∣∣∣∣α0yx

α0xx

∣∣∣∣
2
)

, C ≡ k3
0

6πε0
α0xx (44)

In the limit Q2ε2 � (ε −1)(ε +2) and C � 1, we then have

ϕ ≈ 3
ε +2

ε
ε −1

Q (45)

θ ≈ − 2
(ε +2)2 (k0a)3εQ (46)

These results show that radiative corrections induce a small rotation in polar configurations that
is proportional to (a/λ )3.

4.1.1. PMOKE of a thin film

Here we are going to develop the expressions of the PMOKE for a very thin layer (thickness
d) of the same MO material as the spheres are made of. We could proceed as before assuming
that the electric field inside the thin layer is approximately constant and use Eq. (20) to obtain a
self-consistent solution for Einside. Instead, it is simpler if we express a linearly polarized beam
as the combination of two: one left and one right circularly polarized beam (σ− and σ+). In
that case the complex Kerr rotation can be obtained from the reflection coefficients of those left
and right circularly polarized beams (r− and r+) as:

Ryx

Rxx
= i

(
r+ − r−
r+ + r−

)
≈ θ + iϕ (47)

The reflection coefficients r± depend on the different refractive indices (n2± = ε ±Qε) for left
and right polarizations [46] and, for k0dn± � 1 and normal incidence, can be written as

r± ≈ i
(
n2
±−1

) k0d
2

− (n4
±−1

)(k0d
2

)2

+ . . . (48)

where we keep the lowest real and imaginary terms in the expansion. In the limit Q2ε2 �
(ε2 −1) we then have

ϕ ≈ ε
ε −1

Q (49)

θ ≈ −k0d
2

εQ (50)

(C) 2010 OSA 15 February 2010 / Vol. 18,  No. 4 / OPTICS EXPRESS  3565
#118710 - $15.00 USD Received 19 Oct 2009; revised 21 Dec 2009; accepted 11 Jan 2010; published 3 Feb 2010



These results basically follows those obtained for a small particle: the ellipticity does not de-
pend on the system size and the rotation scales with the size of the system, i.e. volume of the
sphere and thickness of the film respectively. Neglecting radiative corrections is equivalent to
keep only the lowest order in d/λ , leading to a pure imaginary r±.

4.2. Magneto-Optical cylinders. TMOKE

We shall consider a transverse magneto-optical Kerr effect (TMOKE) where a constant mag-
netic field H = Hzuz is oriented in the direction parallel to the cylinder and perpendicular to the
plane of incidence. The electric field is assumed to be in the incidence plane (p-polarization)
E0 = (ux cosϑ −uy sinϑ)E0eik0xsinϑ eik0ycosϑ (see Figure 1b). The bare polarizability is given
by

α0xx = α0yy = 2Aε0
(ε −1)(ε +1)−Q2ε2

(ε +1)2 −Q2ε2 (51)

α0yx = α∗
0xy = i 2Aε0

2Qε
(ε +1)2 −Q2ε2 (52)

α0zz = Aε0(ε −1) (53)

The reflected TMOKE signal for a single particle can be obtained by calculating the relative
variations of the intensity for the specular intensity when the magnetization of the sample is
reversed from saturation in one direction (mz = +1) to saturation in the oposite direction (mz =
−1) in the case of ferromagnet or when the magnetic field is reversed from +Hz to −Hz. In
absence of absorption we have αxy = −αyx and the (far field) TMOKE signal is simply given
by

ΔI0
I0

≡ I0(Q)− I0(−Q)
I0(Q)+ I0(−Q)

=
I0(Q)− I0(−Q)

2I0(Q = 0)
= 2Re

{
αyx

αxx

}
tan(2ϑ) (54)

Notice that this result is closely related to the Kerr rotation in polar configuration. In analogy
with the PMOKE signal for spheres, the electrostatic approach without radiative corrections
gives zero TMOKE variations. Including radiative corrections we obtain

ΔI0
I0

=
2Qε

(ε −1)(ε +1)−Q2ε2 sin(2δ ) tan(2ϑ) (55)

with

1
tanδ

= − k2
0

8ε0
α0xx

(
1−
∣∣∣∣α0yx

α0xx

∣∣∣∣
2
)

(56)

In the limit Q2ε2 � (ε −1)(ε +2), (k0a)2 � 1, we have

ΔI0
I0

≈− 2Qε
(ε +1)2

π
4

(k0a)2 tan(2ϑ) (57)

5. Conclusion

We have derived general expressions for the polarizability of dielectrically anisotropic nanome-
ter size spheres and cylinders or nanorods. Our results generalize the well known radiative cor-
rections to the electrostatic polarizability of small particles [5, 6]. Equations (7), (27) and (28)
for arbitrary shaped (electrically small) particles and Eqs. (32), (34) and (35) for cylinders are
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the main general results of this work concerning the optical theorem and polarizability. Mag-
neto optical Kerr effects in the light scattered from non-absorbing nanoparticles (Eqs. (46),
(50) and (57)), absent in the electrostatic approximation, were shown to be proportional to the
radiative corrections to the polarizability tensor.

We do believe that our results will have significant impact in the optical characterization
of new nanostructured materials. Although strong Magneto-Optical effects occur in materi-
als having important absorption losses, the advances in material science together with nanos-
tructured designs will soon lead to MO systems and nanoparticles with negligible absorption.
Actually, recently Osada et al. [47] reported a new nanostructured material, based on (Fe/Cu)-
cosubtituted titania nanosheets, with negligible absorption and huge MO signal in the near-
infrared. Moreover, and in analogy with isotropic composite materials, a correct description
of the polarizability is needed to describe the dielectrical properties of MO nanoparticle based
composites. Experiments along this direction are in progress.
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