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Abstract

In this paper a novel method for indexing views of 3D objects is presented. The topological prop-
erties of the regions of views of an object or of a set of objects are used to define an index based on
region connection calculus and oriented matroid theory. Both are formalisms for qualitative spatial
representation and reasoning and are complementary in the sense that, whereas region connection cal-
culus characterize connectivity of couples of connected regions of views, oriented matroids encode
relative position of disjoint regions of views and give local and global topological information about
their spatial distribution. This indexing technique has been applied to hypothesis generation from a
single view to reduce the number of candidates in 3D object recognition processes.
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1. Introduction

Given one or more images containing different views of the same object or of the same
set of objects, a fundamental problem of computer vision is that of recognizing the objects
represented in the images using models of objects known a priori.

The components of an object recognition system are represented in Fig. 1. It consists in
general of a database of models of views of known objects, in which they are represented
by those attributes that are relevant to characterize each of them in relation to the others.
The information stored in the database of models depends on the method employed for
recognition and vice versa. Another component of an object recognition system is a feature
extractor which computes the relevant features of the images of the objects to recognize.
These features are used by the hypothesis generator to assign likelihoods to the objects
present in the image. Hypothesis generation reduces the search space for the recognition
process. The hypothesis verifier then uses object models to refine the likelihood and finally
the systems selects the objects with the highest likelihood as the objects present in the
views. However, the relative importance assigned to these two components in different
object recognition systems varies.

Object representation for recognition can be based either on attributes of the 3D geometry
of the objects or on attributes of their 2D projections. These two approaches are referred
to as object-centered and view-centered representations, respectively. View-centered repre-
sentations characterize 3D objects by means of a set of 2D views, resulting in a significant
reduction in the dimensionality of the problem by comparing 2D images rather than compar-
ing 3D objects. In this case 3D objects are represented as image features and relationships
among them. Each 3D object has infinitely many different views that correspond to the
infinitely many possible points of view. However, the complete set of views of a 3D object
is redundant and for efficiency reasons the set of views used to characterize an objects
must be reduced to a minimal set. Therefore, the concept of aspect or characteristic view
[21] has been developed. Indeed, the view space can be partitioned into a finite number of
regions called characteristic view domains so that views from different characteristic view
domains are topologically distinct whereas views belonging to the same domain are not.
The different characteristic views of an object can be related using a data structure called
aspect graphs [11]. An aspect graph enumerates all the possible appearances of an object
and their adjacency relationships. In this context, the change in appearance at the boundary
between different aspects is called a visual event. It is easy to see that, using characteristic
views, both the number of stored view models and the number of comparisons that must be
performed at run time for object recognition is minimized. Using a set of view the problem
of object recognition can be reduced to the problem of 2D image recognition. We suppose
to use a single view for 3D object recognition.

Views
extraction

Features HypothesisHypothesis
generation verification

Object

Model
database

Candidate
objects

Feature

Fig. 1. Components of an object recognition system.
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In object recognition systems based on a single view the objects can be characterized by
global, local or relational features of their views. Global features are usually characteristics
of interior points or of the boundary of regions of the views whereas local features make
reference to small portions of the views. A better characterization of a view of an object can
be done using relational features in which the relative position of global or local features is
taken into account. The approach to pattern recognition based on relational features is also
called structural pattern recognition and graphs are the most used relational data structures.

Classification is the standard object recognition method from single views but in some
cases a classifier cannot be implemented, for instance because the a priori knowledge about
feature probabilities and class probabilities is not available. In such cases direct matching of
the models to the unknown object can be applied and the best matching model is selected. If
the views are modeled using relational features, the matching will be symbolic, and, if graphs
are used as relational data structures, the object recognition problem is then transformed
into a graph matching problem [1,10,13,16,17].

Given a view of one or more 3D objects, the problem of object recognition using a
single view becomes the problem of finding a subset of the set of regions of the view with a
relational structure similar to that of a set of views stored in the database. Given the graph that
represents a view of an object, the symbolic matching technique described above requires a
sequential comparison between this graph and all the graphs that characterize all the views
of the database. It is easy to see that this strategy is prohibitive with a large number of view
models. To alleviate this problem, the concept of aspect graph introduced above can be used
to reduce the number of graphs models in the database by representing each characteristic
view using a single graph. Nevertheless, in the presence of a large number of objects, it is
essential to reduce the search space using a hypothesis generator. Feature indexing can be
used for this purpose. The idea behind features indexing is that when a certain feature is
detected in the view of the object to recognize, it can be used to reduce the search space.
Indeed, the search for the best matching model can be restricted to the subset of the set of
view models of the database that contain that feature. However, to be of practical interest
for object recognition, hypothesis generation should be a relatively fast although imprecise
procedure in which a reduced number of possible candidates for matching are generated.
In this way the verification can be carried out using a more complex, and therefore, slower
procedure but over a reduced number of candidates [17].

In this paper an hypothesis generation strategy based on a indexing technique that com-
bines region connection calculus and oriented matroid theory is presented [19]. More pre-
cisely, the type of connectivity between connected regions of the views is described by
means of the formalism of region connection calculus [7], whereas the topological prop-
erties of the disconnected regions of the views are encoded into a data structure called
set of cocircuits [4]. The set of cocircuits, that are one of the several combinatorial data
structure referred to as oriented matroids, encode incidence relations and relative position
of the regions of an image and give local and global topological information about their
spatial distribution. Oriented matroids provide a straightforward mathematical interpreta-
tion of the concept of characteristic view and intrinsically contains information about their
adjacency relationship, i.e, about the aspect graph of the object. Reasoning with region
connection calculus is based on rules, while oriented matroids permit algebraic techniques
to be used. These two relational data structures are used together to create an index of the
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database of views. This indexing method has been applied to hypothesis generation for 3D
object recognition from a single view that can be regarded as a qualitative counterpart of the
geometric hashing technique [12]. For other approach to shape representation and indexing
based on combinatorial geometry see [6,2,3].

Region connection calculus and oriented matroid theory are introduced in Section 2
whereas Section 3 describes the proposed indexing method. In Section 4, some experimental
results are reported and, finally, Section 5 contains the conclusions.

2. Qualitative spatial representation

Qualitative reasoning is based on comparative knowledge rather than on metric informa-
tion. Many methods for shape representation and analysis are based on extracting points
and edges that are used to define projectively invariant descriptors. In this paper, instead
of points, regions of the images are taken into account. The motivation behind this choice
is that the regions of an image can be more reliably extracted than vertices, edges or con-
tours. Segmented views of 3D objects are considered, i.e., images partitioned into simply
connected regions having perceptually homogeneous characteristics. Since our approach to
image representation and indexing is combinatorial, it is important that the number of re-
gions is low. Therefore, we implicitly suppose that we can control the maximum number of
regions resulting from image segmentation, as in the method described in [8], in such a way
that a too fine segmentation that would produce a prohibitive complexity of the resulting
representation can be avoided. In the following sections two formalisms for qualitative rep-
resentation and reasoning are described: the first one is based on region connection calculus
and the second one is derived from oriented matroid theory.

2.1. Region connection calculus

For each simply connected region of an image we can qualitatively distinguish the interior,
the boundary, and the exterior of the region, without taking into account its concrete shape
or size. A set-theoretical analysis of the possible relations between objects based on the
above partition is provided by Egenhofer and Franzosa [9]. The relation between objects
that they examine is the intersection between their boundaries and interiors. This setting
is based on the distinction of the values empty and non-empty for the intersection. If the
exterior is regarded as a part of the object itself, there are three parts for each object that must
be compared with three parts of another object. This gives rise to many set-theoretically
distinguishable relations, but it is shown in [9] that some of them cannot occur. Actually
only nine of them have a meaningful interpretation in physical space and are referred to
as “disjoint”, “meet”, “equal”, “inside”, “covered by”, “contains”, “covers”, and “overlap”
(both with disjoint or intersecting boundaries). Consider for instance a region A with a hole
B. Using this formalism, the relationship between A and B is described as “A contains B”
or “B inside A”.

Some variants of this theory were developed by Cohn and his coworkers in a series of
papers (see for example [7]). In this work the distinction between interior and the boundary
of an object is abandoned, and eight topological relations derived from the single binary
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DC(a,b) EC(a,b) PO(a ,b) TPP(a ,b) NTPP(a,b) EQ(a ,b)
(a) (b) (c) (d) (e) (f)

Fig. 2. Some of the 8 possible relative positions of two regions and the corresponding descriptions using the
formalism of region connection calculus. The other two can be obtained from (d) and (e) interchanging a with b.
In the situation (a) a is disconnected from b, in (b) a is externally connected to b, in the situation (c) a is partially
overlapped to b, in (d) a is tangential proper part of b, in (e) a is non-tangential proper part of b and, finally, in the
situation (f) a and b coincide.

aaa
b

b
b

OUT(a,b) P-INS(a ,b) INS(a,b)
(a) (b) (c)

Fig. 3. Some of the possible positions of a convex region with respect to the convex hull of a non-convex one.

a

b

Fig. 4. With the formalism of region connection calculus the relation between these two disconnected non-convex
regions, where a is partially inside the convex hull of b and vice versa, is denoted by P-INS˙P-INSi˙DC(a, b).

relation “connected to” are taken into account. Some of them are represented in Fig. 2. Two
of these relations, namely those of Fig. 2(d) and (e), are not symmetrical and, following the
notation used in [7], their inverses are denoted TPPi(a, b) and NTTPi(a, b), respectively.
Furthermore in [7] the theory is extended to handle concave objects by distinguishing the
regions inside and outside of the convex hull of the objects. A convex object can be inside,
partially inside or outside the convex hull of a non-convex one (Fig. 3). If both regions are
non-convex 23 relations between them can be defined. These relations permit qualitative
description of rather complex relations, such as that represented in Fig. 4. Moreover, by
means of this formalism called region connection calculus it is possible, for instance, to
infer the type of connection between two regions knowing the type of connection they have
with respect to a third one. Reasoning with region connection calculus is essentially based
on rules. For other comprehensive descriptions of techniques for reasoning about qualitative
spatial relationships see [18,22].
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2.2. Oriented matroids

Oriented matroid theory [4,5,14] is a broad setting in which some combinatorial prop-
erties of geometrical configurations relevant for shape representation and indexing, such
as, incidence and relative position, can be described and analyzed. It provides a common
generalization of a large number of different mathematical objects usually treated at the
level of usual coordinates. In this section oriented matroids will be introduced over sets of
points called arrangements of points using two combinatorial data structures called chiro-
tope and set of cocircuits, which represent the main tools to translate geometric problems
into this formalism. In the abstraction process from the concrete arrangement of points to
the oriented matroid, metric information is lost but the structural properties of the arrange-
ment of points are represented at a purely combinatorial level. Then a technique to compute
the oriented matroid representation for the set of regions that compose an image, called
arrangement of regions is presented.

2.2.1. Oriented matroids of arrangements of points
Given a arrangement of points in Rd−1 whose coordinates are the columns of the matrix

P =(p1, p2, . . . , pn) of (Rd−1)n, the associated arrangement of vectors is a finite sequence
of linearly independent vectors {x1, x2, . . . , xn} in Rd represented as columns of the ma-
trix X = (x1, x2, . . . , xn) of (Rd)n where each point pi is represented in homogeneous
coordinates as xi = (pi

1 ).
To encode the combinatorial properties of the arrangement of points we can use a data

structure called chirotope [14], which can be computed by means of the associated arrange-
ment of vectors X. The chirotope of X is the map

!X : {1, 2, . . . , n}d → {+, 0, −}
("1, "2, . . . , "d) #→ sign ([x"1 , x"2 , . . . , x"d

]), (1)

in which the brackets stand for determinant, that assigns to each d-tuple of vectors of the
finite arrangement X a sign + or − depending on whether it forms a basis of Rd having
positive or negative orientation, respectively. Function (1) assigns the value 0 to those d-
tuples that do not constitute a basis of Rd . The chirotope describes the incidence structure
between the points of X and the hyperplanes spanned by the same points and, at the same
time, encodes the relative location of the points of the arrangement with respect to these
hyperplanes themselves. This representation says, for example, which points of X lie on the
positive side of a given hyperplane, which on the negative side, and which on the hyperplane
itself.

Consider the arrangement of pointsP represented in Fig. 5 whose associated arrangement
of vectors X is given in Table 1.

The chirotope !X of this arrangement of vectors is given by the orientations listed in
Table 2. The element !(1, 2, 3) = + indicates that in the triangle formed by p1, p2, and p3
these points are counterclockwise ordered (Fig 6).

These orientations can be rearranged in an equivalent data structure called set of cocircuits
of X shown in Table 3. The set of cocircuits of X is the set of all partitions generated by
the lines passing through two points of the arrangement. For example, (0, 0, +, +, +, +)
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p1

p2

p3 p4

p5

p6

Fig. 5. A planar point configuration.

Table 1
Vectors that corresponds to the points of the planar arrangement represented in Fig. 5

x1 = (0, 3, 1)T x2 = (−3, 1, 1)T x3 = (−2, −2, 1)T

x4 = (2, −2, 1)T x5 = (2, 2, 1)T x6 = (0, 0, 1)T

Table 2
Chirotope of the planar arrangement of points represented in Fig. 5

!(1, 2, 3) = + !(2, 3, 4) = + !(3, 4, 5) = + !(4, 5, 6) = +
!(1, 2, 4) = + !(2, 3, 5) = + !(3, 4, 6) = +
!(1, 2, 5) = + !(2, 3, 6) = + !(3, 5, 6) = 0
!(1, 2, 6) = + !(2, 4, 5) = +
!(1, 3, 4) = + !(2, 4, 6) = +
!(1, 3, 5) = + !(2, 5, 6) = −
!(1, 3, 6) = +
!(1, 4, 5) = +
!(1, 4, 6) = −
!(1, 5, 6) = −

+

p1

p2

p3 p4

p5

p6

Fig. 6. In the triangle formed by p1, p2, and p3 these points are counterclockwise ordered. This is recorded in the
chirotope by !(1, 2, 3) = +.
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Table 3
Set of cocircuits of the planar arrangement of points represented in Fig. 5

Ordered couples of points Cocircuits

p1 p2 p3 p4 p5 p6

(p1, p2) 0 0 + + + +
(p1, p3) 0 − 0 + + +
(p1, p4) 0 − − 0 + −
(p1, p5) 0 − − − 0 −
(p1, p6) 0 − − + + 0
(p2, p3) + 0 0 + + +
(p2, p4) + 0 − 0 + +
(p2, p5) + 0 − − 0 −
(p2, p6) + 0 − − + 0
(p3, p4) + + 0 0 + +
(p3, p5) + + 0 − 0 0
(p3, p6) + + 0 − 0 0
(p4, p5) + + + 0 0 +
(p4, p6) − + + 0 − 0
(p5, p6) − − 0 + 0 0

− +

p1

p2

p3 p4

p5

p6

Fig. 7. Partition of the plane generated by the oriented ray from the point p1 to p4.

corresponding to the oriented couple (p1, p2) means that the points p3, p4, p5, and p6 lie
on the half plane determined by the oriented ray from p1 to p2. Reversing all the signs of
the set of cocircuits we obtain an equivalent description of the planar arrangement of points
(Fig 7).

Besides chirotopes and cocircuits there are several data structures capable of encoding
the topological properties of an arrangement of points. In [14] their definitions can be found
and it is shown that all of them are equivalent and are referred to as oriented matroids.

2.2.2. Oriented matroid of arrangements of planar regions
Consider a segmented view of a 3D object. Computing the oriented matroid of the

arrangement of regions of a view is not straightforward since the regions that form the
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Fig. 8. Steps of encoding of the combinatorial properties of a view of an object into a chirotope.

image cannot be reduced to points, taking for instance their centroids, without losing es-
sential topological information for object recognition. Therefore, the convex hull [15] of
each region is employed to represent the region itself. Then, couples of the resulting convex
hulls are considered and the oriented matroid is computed based on the location of the
other convex regions of the image with respect to the two lines arising while merging them.
Note that, since we decompose an image into a set of simply connected regions, holes are
considered as separate regions. In this way we do not need to compute the convex hull of
regions with holes that would eliminate the hole thus generating a change in the topology
of the regions of the image.

Consider, for instance, the couple of convex hull of regions (S, T ) of Fig. 8(a). It is easy
to see that the convex hull of these two planar convex disconnected polygonal regions is
a polygon whose set of vertices is included in the union of the set of vertices of S and T.
On the contrary, the set of edges of the convex hull of S and T is not included in the union
of their set of edges. Indeed, two new “bridging edges,” e1 and e2, appear as illustrated in
Fig. 8(a). Actually, efficient algorithms for merging convex hulls are based on finding these
two edges [20].

Consider the two lines l1 and l2 that support e1 and e2. These two lines divide the image
into three or four zones depending on the location of their intersection point with respect to
the image. Let RS,T , LS,T of Fig. 8(b) be, respectively, the rightmost and leftmost zones
with respect to l1 and l2 and IS,T the zone of the image comprised between them. Since,
RS,T , LS,T and IS,T can be univocally determined from the ordered couple of regions S
and T, the location of a region U with respect to the regions (S, T ) of the image is encoded
into a chirotope using the following rule

!(S, T , U) =
{+ if U ∈ LS,T ,

0 if U ∈ IS,T ,

− if U ∈ RS,T .

(2)

It has been implicitly assumed in (2) that U is completely contained into either RS,T LS,T

or IS,T but, in general, it belongs to more that one of them. In this case, since the ratio of
areas is an affine invariant, introducing an approximation, we can choose the sign based on
which region contains the largest portion of the area ofU. If this region is split into 2 equally
sized parts between RS,T and IS,T , or between LS,T and IS,T , the sign that corresponds
to RS,T and LS,T will be assigned, respectively. On the contrary, if a region is split into
three equally sized parts, among RS,T , IS,T and LS,T , the 0 sign will be assigned. For
instance, if regions U, V and Z are located as in Fig. 8(c) we have that !(S, T , U) = +,
!(S, T , V ) = 0 and !(S, T , Z) = −.
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2.3. Invariance of the representation

Consider a 3D arrangement of points and one of its views. The chirotope of the 3D
arrangement of points and that of its 2D perspective projection are related in the following
way: if x0 represents in homogeneous coordinates the center of the camera, p0, we have
that

sign[x̄i , x̄j , x̄k] = sign[xi, xj , xk, x0], (3)

where xi , xj and xk are the homogeneous coordinates of the 3D points pi , pj and pk , and
x̄i , x̄j and x̄k are those of the corresponding points in the view, p̄i , p̄j and p̄k . Eq. (3) can
be regarded as a projection equation for chirotopes.

It is easy to see that, whereas the matrix that represents in homogeneous coordinates the
vertices of a projected set of points is coordinate-dependent, the oriented matroid of the
projected set of points is a coordinate-free representation. Furthermore, it is a topological
invariant, that is, an invariant under homeomorphisms. Roughly speaking, this means that
the oriented matroid that represents the arrangement of points of a view of an object does
not change when the points undergo a continuous transformation that does not change any
orientation, that is, any sign of the chirotope. Due to this property, this representation is
robust to discretization errors of the image as well as to small changes of the point of view
that does not change any orientation of the chirotope. This does not occur when the viewing
direction is nearly parallel to the plane spanned by the three observed points. It is easy to
see that in this case a small displacement of the point of view may flip the plane and hence
the sign of the determinant formed by these three points and the point of view.

The concept of chirotope of the set of views of a 3D object is related to the concepts
of characteristic view and aspect graph of a 3D object. An equivalency relationship can be
defined in the set of views of a 3D object so that all the views from the same characteristic
view domain belongs to one equivalency class, the so-called characteristic view class. Each
characteristic view class can be represented by any of its view called aspect or characteristic
view. The equivalence relationship of characteristic view classes is defined as follows.
Two views are equivalent if and only if they have isomorphic graph representation and
can be related by a 3D geometric transformation that can be a Euclidean or a projective
transformation. It is easy to see that the concept of characteristic view class has a natural
mathematical interpretation by means of the concept of chirotope. Indeed, as explained in
[4, Chapter 1] the oriented matroid of a view of a 3D object contains information about the
underlying graph representation of the view and isomorphic graphs have the same oriented
matroid representation. Furthermore, since projective transformations can be regarded as
special homeomorphisms, we can assert that the representation of the projected set of points
based on oriented matroids is projectively invariant. However, since affine and Euclidean
transformations are special projective transformations, the oriented matroid of the projected
set of points of a view of an object does not change under rotations, translations, and affine
transformations of the planar arrangement of points themselves. Moreover, the oriented
matroid representation of a set of views of a 3D object intrinsically contains information
about their adjacency relationships, i.e., about the aspect graph of the object.

These considerations can be extended to the case in which oriented matroids represent
an arrangement of planar regions. Since the ratio of areas is not invariant under projective
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Fig. 9. Three different views of the same scene which have the same representation using oriented matroids.

transformations this representation will be invariant to affine and Euclidean transformations
of the views. In Fig. 9 three different views of the same scene having the same oriented
matroids are represented.

3. Indexing views of 3D objects

The process of indexing a database of views of a set of objects starts with some preliminary
choices, namely the features used to characterize the regions of the segmented views of the
set of 3D objects. Suppose that hue and area are used to characterize each region. Another
parameter to choose is the number of levels in which the hue is quantized and the number of
regions having the same hue that will be taken into account. These choices, of course, depend
on the properties of the views of the database. Then, the views are segmented according to
these choices and the convex hull of each region is computed.As a consequence, the resulting
images are compositions of convex polygonal regions called relevant regions which can be
disconnected or partially or completely overlapped. In Fig. 10 are represented two views of
two objects in which a hue quantization with 6 levelsW, R,Y, G, B and N has been applied
and only the two regions having largest area with the same hue value are taken into account.
Let (W, R, Y, G, B, N) be the ordered tuple of hue levels considered. For example, labels
G1 and G2 in Fig. 10 denote, respectively, the first and the second regions of the views with
the largest area having the same hue value G.

The type of connection between the existing regions is described using the formalism of
region connection calculus. For each couple of disconnected regions the set of cocircuits is
computed. This is done for each view of the database and this information is combined into
a unique index table whose entries are relational features and whose records contain a list
of the views in which each feature is present. The order of the rows is not relevant: it is a
consequence of the ordering of the hue levels in the tuple (W, R, Y, G, B, N). The size of
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Fig. 10. Two views of two objects whose topological properties are indexed in Table 4.

Table 4
Index of the topological properties of the two views v1,1 and v1,2 of the two objects represented in Fig. 10

Ordered couples Type of Cocircuits Views
of regions connection

W R Y G1 G2 B1 B2 N

(W, R) DC 0 0 ∗ 0 0 0 − + v1,1
(W, Y ) DC 0 ∗ 0 0 ∗ 0 0 − v1,2
(W, G1) NTPP v1,1
(W, G1) DC 0 ∗ 0 0 ∗ 0 0 0 v1,2
(W, G2) DC 0 0 ∗ 0 0 + 0 0 v1,1
(W, B1) DC 0 0 ∗ 0 0 0 0 0 v1,1
(W, B1) NTPP v1,2
(W, B2) DC 0 0 ∗ + + + 0 + v1,1
(W, B2) NTPPi v1,2
(W, N) DC 0 0 ∗ − − − − 0 v1,1
(W, N) DC 0 ∗ + + ∗ 0 0 0 v1,2
(R, Y ) ∅
(R, G1) NTPP v1,1
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
(B2, N) DC + 0 ∗ − − − 0 0 v1,1
(B2, N) DC − ∗ + + ∗ + 0 0 v1,2

the index table depends on both the number of hue levels and the number of regions having
the same hue level that are taken into account.

In Table 4 the index of the topological properties of the two views v1,1 and v1,2 of the
objects represented in Fig. 10 is reported. In the first column the relation between ordered
couples of regions is described in terms of region connection calculus. The symbol “∅” for
a certain couple (S, T ) indicates that no view contains two regions having features S and T.
This is the case of the ordered couple of regions (R, Y ). When S and T are disconnected,
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the corresponding cocircuit is present in the index. The symbol “∗” in correspondence with
a certain feature indicates that no region with that feature is present in the views listed in
the record. For example, the cocircuit corresponding to the couple (W, R) contains a ∗ in
the column Y because no region with the Y feature is present in v1,1. If (S, T ) is a couple
of connected regions, the corresponding row of the index is empty because the cocircuit
cannot be computed.

3.1. Hypothesis generation for object recognition

Consider a database of views of a set of known 3D objects and a view vi of one of them
that we want to recognize.As explained in the introduction, hypothesis generation for object
recognition from a single view entails retrieving from the database them views most similar
to vi to reduce the search space in object recognition from a single view. Roughly speaking
an index indicates which views contain a certain relational feature. In this paper a strategy
for hypothesis generation based on indexing of relational features will be presented. The
relational features used to create the index are type of connection and relative location of
the relevant regions of the views.

In the hypothesis generation process, the same type relational features are calculated for
the view vi and used to access the index table. Then, the m views that best match vi are
selected based on counting the number of correspondences they have with vi in terms of
type of connection and set cocircuits which together can be thought of as a feature matrix in
which each relational feature is represented by a row and associated to a couple of relevant
regions of vi . To find them views that best match vi we follow an approach based on voting
[12,6]. For each relational feature of vi , i.e., for each couple of relevant regions of vi , say
(U, V ), we access the database to retrieve the list of views in which the relational feature
corresponding to the couple (U, V ) is present. At each iteration each of the retrieved views
receives one vote. The votes obtained by each view at each iteration are added together and
the m best matches of vi will be those views of the database that received the m highest
scores. It is easy to see that this method for hypothesis generation, which can be regarded
as a qualitative version of the geometric hashing technique [12], is also robust to partial
occlusions of the objects. Indeed, if a region of an image is occluded, the set of cocircuits
can still be computed and therefore, the number of correspondences with the views of the
database can still be calculated. In this case, obviously, its selectivity decreases.

3.2. Computational complexity

Suppose that the segmented views are characterized by h hue values, and that the index
is built taking into account the k largest regions for each value of hue. Then the maximum
number of relevant regions of a view used for indexing is n = kh.

Since the index is based on a combinatorial characterization of the views in which all
the possible ordered couples or relevant regions are considered, the number of entries of
the index table, i.e., the number of different relational features that will be considered once
the value n has been chosen, is given by the product of two factors. The first factor is
the number of different relational features that can exist considering all the combinations
of couples of regions. This corresponds to the number of combinations of the relevant
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n regions taken 2 by 2, that is n(n − 1)/2. Consider a couple of relevant regions of the
image. The second factor represents the number of different relational features that can
exist in correspondence to the same couple of relevant regions. It is given by the number of
combinations of the other (n − 2) relevant regions taken 2 by 2, that is, (n − 2)(n − 3)/2.

Each relational feature has (n + 1) elements, namely 1 symbol that indicates the type
of connection and n symbols that represent the cocircuit. Thus, the memory space needed
to store the index table is O(n5). This value is independent of the number of views on the
database. Additionally each entry contains a list of views whose size depends on the number
of views of the database.

Feature extraction from each image returns n(n− 1)/2 relational feature each composed
by (n+1) elements. In the hypothesis generation process the index table has to be accessed
to understand which views contain a certain feature vector. This entails matching (n + 1)-
dimensional feature vectors that represent relational features. Each relational feature of vi

corresponding to a certain ordered couple of relevant regions has to be compared only with
the entries of the index table corresponding to the same ordered couples of relevant regions.
This amounts to n(n − 1)/2 × (n − 2)(n − 3)/2 comparisons. The resulting computational
cost is O(Cn4+D), whereC is the cost of comparing two (n+1)-tuples of symbols andD is
the cost of finding the view of the database having the maximum number of correspondences
with the given view. The value Cn4 is independent of the number of view of the database.

It is important to bear in mind that in the hypothesis generation method described in this
paper n is usually a small number. If we use, for instance, 16 hue levels and consider the 2
largest regions having the same view n = 32. These are the values used in the experiments
described in the next section.

4. Experimental results

The method described in this paper has been fully implemented and several experiments
have been carried out to assess its effectiveness in hypothesis generation for object recogni-
tion and to compare it to other object recognition techniques based on relational features. In
particular, it has been compared to two other structural methods based on graphs. The first
experiment has been based on the adjacency graph of the regions of the views whereas in the
second one a structure called function-described graph is used to characterize each view.
In both cases a distance between graphs [16] has been computed to select the view most
similar to a given view. Fig. 11 schematically shows the learning and recognition processes
of the three methods (see [17] for more details).

Sixteen views of each object with angular separation of 22.5◦ have been used for the
experiments. These images have been segmented using the method described in [8]. For il-
lustrative purposes, Fig. 12 shows one view of each object and the corresponding segmented
image, with the extracted adjacency graph in which the attributes of the nodes represent the
average hue of the region. For each object, the reference set was composed by the views
taken from the angles 0, 45, 90, 135, 180, 225, 270 and 315 and used to synthesize the
structure of the database. The test set was composed by the eight views not used in the ref-
erence set, that is, the views taken at angles: 22.5◦, 67.5◦, 115.5◦, 157.5◦, 202.5◦, 247.5◦,
292.5◦and 337.5◦.
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(a)
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(c)

· · ·

· · ·

· · ·
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}

}

Ref. Set 1

Ref. Set 1

Ref. Set 1

Ref. Set 2

Ref. Set 2

Ref. Set 2

Ref. Set n

Ref. Set n

Ref. Set n

FDG 1

FDG 2

FDG n

AG Distance

VotingIndex Table Test Set

Test Set

Test Set

FDG Distance

Fig. 11. The three structural object recognition methods from a single view considered in the experiments.
(a) Method based on adjacency graphs. (b) Method based on function described graphs. (c) Method presented in
this paper. Whereas in (a) and (b) a distance measure is used, in (c) the selection of the m views of the test set
most similar to a given view is based on counting the number of correspondences based on the type of connection
between regions and on the set of cocircuits.

Fig. 12. Some of the views used for the experiments of object recognition, their segmented views and the adjacency
graphs of the regions of the segmented views.

Table 5 shows the correctness of the adjacency graph (AG), function-described graphs
(FDG) and the method presented in this paper based on indexing the topological properties
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Table 5
Correctness of the three object recognition methods from a single view considered in the experiments

Method Correctness

AG 59%
FDG 78%
RCC & OMT 87%

of the regions of the views of a 3D object using region connection calculus and oriented
matroid theory (RCC & OMT)

5. Conclusions

In this paper a new method for indexing a database of views of 3D objects has been pre-
sented. It is based on the combination of two qualitative representations derived from region
connection calculus and oriented matroid theory. It has been shown that this combination
of qualitative representations characterizes the local and global topology of the regions of
an image, is invariant under affine and Euclidean transformation of the views, intrinsically
robust to discretization errors of the image and insensitive to small displacements of the
point of view. This indexing method has been applied to hypothesis generation for 3D object
recognition from a single view. The experimental results are encouraging and currently we
are refining the method introducing a similarity measure between sets of cocircuits.
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