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Abstract

The mainstream approach to estimate epipolar geometry from two views requires
matching the projections of at least 4 non-coplanar points in the scene, assuming a
full projective camera model. Our work deviates from this in three respects: affine
camera, planar scene and active contour tracking instead of point matching. Using
results in Projective Geometry, we prove that the affine epipolar direction can be
recovered provided camera motion is free of cyclorotation. A setup consisting of a
Staübli robot holding a planar object in front of a camera is used to obtain calibrated
image streams, which are used as ground truth to evaluate the performance of the
method, and to test its limiting conditions in practice. The fact that our method
(applicable to planar, poorly textured scenes) and the Gold Standard algorithm
(applicable to highly textured scenes with significant relief) produce comparable
results shows the potential of our proposal.
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1 Introduction

Recovering camera motion and scene structure from image streams is an im-
portant task in a range of applications including robot navigation and manip-
ulation. As a basic step underlying this task, extensive work has been devoted
in the last decade to estimating epipolar geometry from two views. The meth-
ods proposed address different versions of the problem depending on: a) the
camera model they assume, b) the types of scenes to which they apply, and
c) how visual motion is measured on the image plane.

The present work addresses epipolar estimation for an affine camera viewing
a planar scene, and using active contours to measure visual motion within
images. Below we discuss each of these three options in turn.

The camera model relates visual motion on the image plane to 3D camera mo-
tion. Depending on the viewing conditions, different camera models have been
used to emulate the imaging process [2,3]. The full perspective model (the
pinhole camera), in either its calibrated (perspective camera) or uncalibrated
(projective camera) versions, has proved to be too general when perspective ef-
fects diminish. Under weak-perspective viewing conditions (small field of view,
or small depth variation in the scene along the line of sight compared to its
average distance from the camera), simplified camera models, such as ortho-
graphic, scaled-orthographic or their generalization for the uncalibrated case,
the affine camera model, provide an advantageous approximation to the pin-
hole camera, which avoids computing ill-conditioned parameters by explicitly
incorporating the ambiguities due to weak perspective into the model.

Epipolar geometry estimation under affine assumption has received a lot of
attention in the literature [4,5]. However, most of the known methods assume
that:

(1) the scene contains depth information, and thus the algorithms fail
when the scene configuration approaches a planar structure. For instance,
our experimentation with the Gold Standard algorithm (see Section 6)
shows that the relief of the target object should be of the same order
of magnitude as the object length/width in order to obtain acceptable
results; and

(2) the scene is textured enough to allow visual motion estimation from
point correspondences.

Our work explores an alternative approach applicable when these two assump-
tions do not hold.

Previous attempts at eluding assumption 1), and thus estimating epipolar ge-
ometry from a dominant plane, have all used a full-perspective camera. It is
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well known that two views of a plane are related by a collineation under full
perspective projection. Several authors have used this fact to propose algo-
rithms for camera calibration [6], self-calibration [7,8], or extraction of struc-
ture and motion from uncalibrated views of points on planes [9,10,11]. How-
ever, when perspective effects diminish, the relationship between two views of
a planar structure becomes an affinity, which invalidates the methods based
on collineations. To the best of our knowledge, there are no previous works
eluding assumption 1) under affine viewing.

Concerning assumption 2), we estimate the visual motion between two views
using active contours, thus being able to handle poorly textured scenes. The
affinity relating two views, which we obtain from the tracking of a planar
contour, is theoretically equivalent to that resulting from three point matches.
However, as mentioned, our method eludes assumption 2), and benefits also
from other advantages of active contours, such as their robustness to occlusions
and noise, as well as the simplicity of the tracking procedure, avoiding point
matching.

Using results in projective geometry, we show that, under a 3D motion free of
cyclorotation, the epipolar direction can be recovered by relating the two affine
views of a planar contour. To validate the theoretical proofs and to test their
limiting conditions (relaxation of weak perspective, effects of cyclorotation and
noise), a series of experiments has been performed. This testing is not aimed
at a particular application at this stage, since we view the results of this
paper as a necessary step towards the recovery of other motion and structure
information (such as plane orientation) from three affine views of a planar
object.

The paper is organized as follows. Section 2 contains the analytic study of two
weak-perspective views and provides the basis for the recovery of the epipolar
direction. Section 3 explains how the parameters of the affinity relating the two
views are extracted in our implementation, based on a contour tracker. Section
4 is devoted to experimentation, using both synthetic and real image streams.
Finally, Section 5 summarizes our contribution. Furthermore, Appendix A
contains a geometric proof of our main contribution in Section 2, whereas
Appendix B contains a generalization to two affine views.
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2 Analytic study of two weak-perspective views

2.1 The camera model

A weak-perspective (or scaled-orthographic) camera ψ projects a scene point
first orthographically onto the average depth plane RC (the plane parallel to
the image plane R containing the centroid C of the scene object) and then
perspectively from this fronto-parallel plane RC onto the image R (Fig. 1).
Thus the second perspective projection (of proper optical center, say P ) sim-
ply introduces a scale factor. Modulus this scale factor, the weak-perspective
camera is an orthographic camera: all the projection rays are parallel with
direction orthogonal to the image plane R.

Let an affine world frame ψ associated to the weak-perspective camera be
chosen as follows: take any affine coordinate frame in the image plane R, and
add to it an orthogonal vector to R in order to obtain a global affine world
frame. Under these frames, the x and y image coordinates coincide with the
X and Y world coordinates, respectively, and the Z coordinate coincides with
the viewing direction, and thus the weak-perspective projection is given by







x

y





 =
f

Zave







X

Y





 , (1)

where f is the focal length, and Zave is the average distance of the object from
the camera (that is, the plane RC has equation Z = Zave). When the depth
variation of the object is small compared to Zave, and the principal point is
close to the centroid of the projected object, then the weak-perspective camera
model gives an approximation of the perspective projection [12].

We assume that the scene object is stationary and that the camera translates
by T and rotates by R around the object, and possibly zooms, thus giving a
second weak-perspective camera ψ′. The new affine coordinate frames associ-
ated with the second camera are given by the rows of R and the new origin
lies at −R⊤T, thus ψ′ has the expression
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y′
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Z ′
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 , (2)

where [X ′, Y ′, Z ′]⊤ = R[X,Y, Z]⊤ + T, f ′ is the new focal length, and Z ′
ave

is
the average distance to the object from the second camera.

Consider the equation aX + bY + c = Z of a world plane S. Then the two
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Figure 1. Affine projection compared to the (full) perspective projection and the
orthographic camera models. Affine projections (and in particular, a weak-perspec-
tive projection) give a better approximation to the perspective projection than the
other simplified model, the orthographic camera. In the affine camera model, a par-
allel projection is made onto the average depth plane, prior to an overall perspective
projection (scaling). For example, in the paraperspective model, this projection is in
the direction parallel to the perspective projection of the target centroid. However,
in the weak-perspective model, the parallel projection onto the average depth plane
is made in a direction perpendicular to the image plane. Under the condition that
the target is seen with a small field of view, these two fixed directions of parallel
projection give a good approximation for all the points of the target, compared to
the orthographic camera model.

views of the coplanar scene are related by the affinity given by







x′

y′
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x

y





 + t , (3)

with

M = s
f ′

f







R1,1 + aR1,3 R1,2 + bR1,3

R2,1 + aR2,3 R2,2 + bR2,3





 , (4)

t =
f ′

Z ′
ave







Tx + cR1,3

Ty + cR2,3





 , (5)

and where s = Zave/Z
′
ave

is the scale factor that accounts for depth variation
(s > 1 if the second camera approaches the scene object, and s < 1 if it
departs from it), and Ri,j are the elements of the rotation matrix R.

A direction v = [x, y]⊤ of the first image R is mapped by the above affinity to
the direction Mv of the second image R′. Since the affine references chosen in
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the two cameras match by the displacement, we can superpose the two images
and it has sense to consider directions invariant by M.

2.2 Recovery of the epipolar direction

Consider an orthonormal coordinate frame associated to the first image (for in-
stance, normalized pixel coordinates, when aspect ratio and skew are known).
The rotation matrix about the unit axis [cosα, sinα, 0]⊤ and angle ρ has the
form

R =















(1 − cos ρ) cos2 α+ cos ρ cosα sinα(1 − cos ρ) sinα sin ρ

cosα sinα(1 − cos ρ) (1 − cos ρ) sin2 α+ cos ρ − cosα sin ρ

− sinα sin ρ cosα sin ρ cos ρ















.

(6)
Hence, the matrix M is

M = s
f ′

f





























(1 − cos ρ) cos2 α

+ cos ρ+ a sinα sin ρ

cosα sinα(1 − cos ρ)

+b sinα sin ρ

cosα sinα(1 − cos ρ)

−a cosα sin ρ

(1 − cos ρ) sin2 α

+ cos ρ− b cosα sin ρ





























, (7)

where a = [cosα, sinα]⊤ is the direction of the rotation axis. The orthogonal
vector e = [− sinα, cosα]⊤ = a⊥ is the epipolar direction. A straightforward
computation shows that

Me = s
f ′

f
(cos ρ+ sin ρ(a sinα− b cosα))e , (8)

thus giving an analytic proof of the following result:

Theorem 1 If the rigid motion between two weak-perspective cameras is
assumed to be free of cyclorotation, then the epipolar direction e can be
recovered as one of the two eigenvectors of the vectorial part M of the affinity
that relates two views of a planar scene.

As a consequence, the direction a = e⊥ of the axis of rotation can also be
recovered.

Figure 2 illustrates the above result. Two views R and R′ of a planar H-shaped
object are shown, which are related by a rotation about an axis parallel to the
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Figure 2. Graphic illustration of Theorem 1. See text for details.

image plane (i.e., free of cyclorotation). For simplicity of illustration, a basis
{r1, r2} is chosen aligned with the main axes of the H, and the axis of rotation
is taken to be parallel to r2. Thus, the gray plane swept by r1 is left invariant
by the rotation. Note, then, that the epipolar direction is that of r1 in R and
that of Mr1 in R′, and its perpendicular within each image is the direction of
the rotation axis.

A geometric proof of Theorem 1 is included in Appendix A. Within the same
geometrical framework, in Appendix B, this result is generalized to the affine
camera model giving Theorem 4. Let us sketch the main ideas of this gener-
alized result; the reader is referred to Appendix B for the details of the proof.
The main advantage of this generalization is that, within the affine camera
model, the projected target does not need to be centered in the image (as-
suming that the image center is a good approximation to the principal point).
This enables us to handle a broader range of situations where the condition of
small field of view is satisfied but the condition of being centered is relaxed,
as, for instance, those arising in the experiments performed in Section 4.3.3.
The affine camera model, which encloses the weak-perspective one, projects a
scene point first under a fixed direction (which corresponds to a point O lying
on the plane at infinity Π∞) onto the average depth plane RC (the plane par-
allel to the image plane R containing the centroid C of the scene object), and
then perspectively from this fronto-parallel plane RC onto the image R (Fig.
1). When O equals the direction O orthogonal to the image plane, the affine
camera becomes a weak-perspective camera. By this projection procedure it
is inferred that the affine camera, as well as the weak-perspective camera,
preserves parallelism.

While in the weak-perspective camera model the improper optical center O
is determined by the orientation of the image plane (i.e., O is the pole with
respect to the absolute conic Ω of the improper line r of R), in the affine
camera model the improper optical center O may be any point in Π∞. In fact,
the direction of parallel projection, i.e., the improper optical center, depends
on the position of the projected target within the image plane. This implies, on
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the one hand, that the same (pinhole) camera under affine viewing conditions
can take two affine views with different improper optical centers (but keeping
the same image plane). On the other hand, this also implies that, while the
orientation of the image plane (and hence the improper optical center in case
of a weak-perspective camera) is determined by the displacement performed
by the camera, the improper optical center is not determined by the camera
motion in the more general case of an affine camera. This is one of the reasons
that makes the affine camera model more difficult to handle than the weak-
perspective one.

Since the improper optical centers lie at infinity, the epipoles (of the first and
second affine cameras) are also located at infinity in the image planes, i.e., the
epipolar lines in both views are parallel. But, while in the weak-perspective
cameras the epipoles coincide with the orthogonal direction (in the image
plane) of the axis of rotation, in the general affine cameras the epipoles are
no more related to this distinguished direction and, thus, a priori, they do
not provide information about the rigid motion between the two affine cam-
eras. This explains why most of the literature about the general affine camera
model switches to the weak-perspective camera model when the question of
inferring camera motion is addressed. By this same reason, our generalization
to the affine camera is valid only for viewing directions that agree with these
distinguished directions (which would be, in fact, the epipolar directions if
the camera would be considered as a weak-perspective one). Let us state the
announced result:

Theorem 2 (see Theorem 4 in Appendix B) Assume that the rigid motion
between two affine cameras is free of cyclorotation and that the target projec-
tions are shifted (from the center of the image) along the direction orthogonal
to the axis of rotation. Then the epipolar direction can be recovered as one
of the two eigenvectors of the vectorial part M of the affinity that relates the
two affine views of a planar scene.

2.3 Computing the epipolar direction from the affinity parameters

Fix any coordinate frame in the image (for instance pixel coordinates, since
orthonormality is not required) and assume that the affinity that relates the
two views has the expression

x′ = Mx + t =







M1,1 M1,2

M2,1 M2,2













x

y





 +







tx

ty





 . (9)

In virtue of Theorem 1, the epipolar direction is one of the eigenvectors of M.
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An eigenvector [1, w]⊤ of M satisfies the equation

M1,2w
2 + (M1,1 −M2,2)w −M2,1 = 0 . (10)

If the motion is under the hypothesis of Theorem 1, then (10) must have
two real solutions w1, w2, and the epipolar direction is e = [1, wi]

⊤, for some
i ∈ {1, 2} (or [0, 1]⊤, in case M1,2 = 0).

3 Extracting the affinity parameters in our implementation

The affinity that relates two affine views is usually computed from a set of
point matches. However, point matching is still one of the key bottlenecks
in computer vision. In this work an active contour [13] is used instead. The
active contour is fitted to a target object and the change of the active contour
between different views is described by a shape vector deduced as follows. The
contour is first represented as a parametric spline curve as it is common in
Computer Graphics [14], d(s) = (dx(s), dy(s))

⊤, where both dx(s) and dy(s)
are B-spline curves. They can be written as a function of their control points
Q,

d(s) =







dx(s)

dy(s)





 =







B(s)Qx

B(s)Qy





 =







B(s) 0⊤

0⊤ B(s)













Qx

Qy





 = U(s)Q , (11)

where Qx and Qy are column vectors of the x and y components of the control
points, 0 is a column vector of zeros, and U(s) = I ⊗ B(s) is the Kronecker
product between the identity matrix I and the row vector B(s) of B-spline
basis functions [13,14].

When the contour is observed in two different views, equation (3) can be
generalized to describe their relation as:

d′(s) = Md(s) + t , (12)

where d′(s), d(s) are the contour in the two views. Getting expression (11)
into equation (12), we obtain

d′(s) = MU(s)Q + t . (13)

Now, defining 1 as a column vector of ones, one can observe that B(s)1 = 1
from the convex hull property of B-spline curves, and using equation (11)
again, the difference between d′(s) and d(s) can be written as
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d′(s) − d(s) = txU(s)







1

0





 + tyU(s)







0

1





 + (M11 − 1)U(s)







Qx

0







+ M12U(s)







Qy

0





+M21U(s)







0

Qx





+(M22 − 1)U(s)







0

Qy





 .(14)

On the other hand, the difference between d′(s) and d(s) is, from equation
(11),

d′(s) − d(s) = U(s)(Q′ − Q) . (15)

Hence, comparing this result with expression (14), one can conclude that the
difference in control points Q′ − Q may be written as a linear combination of
six vectors. Therefore, using matrix notation,

Q′ − Q = WS , (16)

where

W =













1

0





 ,







0

1





 ,







Qx

0





 ,







0

Qy





 ,







0

Qx





 ,







Qy

0











 , (17)

and S is a vector with the six parameters of the linear combination, the shape
vector

S = [tx, ty,M1,1 − 1,M2,2 − 1,M2,1,M1,2]
⊤ , (18)

which encodes the relation between different affine views of the planar contour.

Figure 3 (reproduced from [15]) shows the graphical effect of each parameter:
two translations and four scalings. Note that the dimension of the shape vector
can be reduced if robot motion is constrained, for instance to lie on a plane
[16,17].

Once the compact representation of the contour in terms of control points
and knots is obtained, a Kalman filter is used to track the contour along the
sequence [13], and the shape vector is updated at each frame.

In previous works [18,19], the continuously updated shape vector was used to
estimate robot egomotion in practice, provided data from other sensors (such
as an inclinometer) or scene information (such as depth) were supplied. Here
we focus on the extraction of epipolar direction from the shape vectors of just
two views, and the analysis of the attainable accuracy in the different possible
working conditions.
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Figure 3. Affine deformations in the image plane induced by 3D camera motion.

4 Experimentation

Two sets of experiments were performed to evaluate the accuracy of the pro-
posed method. The first set uses synthetic image sequences generated by sim-
ulating camera motion and computing projections under a full perspective
camera model. Using this set, the sensitivity of the proposed technique is as-
sessed: first, with respect to the characteristics of the contour shape; second,
by relaxing the different weak-perspective conditions one at a time; third,
when the motion has some amount of cyclorotation; and fourth, by adding
variable amounts of pixel noise. Note that this would be hard to do using real
images.

The affine epipolar geometry is usually estimated using the Gold Standard
algorithm [20]. This technique requires image correspondences of at least 4
non-coplanar points. Using also our synthetic experimental testbed, we show
the effects of approaching coplanarity for this configuration, and compare the
results with those of our method, which computes the affine epipolar direction
only from planar contour matches.

The second set of experiments uses real images taken by a robot arm moving
along a calibrated path, showing the performance of the approach under real-
istic imaging conditions. Finally, when using a frontoparallel centered target,
the matrix M in (9) becomes symmetric. We also show the consequences of
exploiting this fact to reduce the dimension of the shape vector (18) from 6
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(a) 7 control points (b) 7 control points
and 1 double knot

(c) 18 control
points and 8
double knots

Figure 4. Representing contours using B-splines: (a) and (b) show that different
contours can be modelled with the same control polygon but different knot mul-
tiplicities, while (c) displays the modelling of the H-shaped contour used in the
experiments.

to 5 when parameterizing contour deformations.

4.1 Preliminary considerations

4.1.1 Contour representation

As mentioned in Section 3, the contour d(s) in (11) is represented by using
B-splines. Briefly, the sequence of control points, together with the multiplic-
ity of the knots joining the different polynomial curve segments, are used to
represent the contour [13]. The knot multiplicity determines the smoothness
of the curve at that point. In our representation with quadratic B-splines,
double multiplicity is used to encode corners. As can be seen in Figures 4(a)
and (b), by just doubling the multiplicity of one knot, the modelled contour
changes, even if the sequence of control points remains the same. Thus, both
the set of control points and the knot multiplicities should be used to obtain
the shape vector S from equation (16).

This is how it is done when we use the tracker in the experiments using real
images. However, in the experiments using synthetic images, we compute the
pseudoinverse of the shape matrix with only the control points, disregarding
knot multiplicity. This simplification is valid because the H-shaped contour
used in the experiments (Fig. 4(c)) contains many double knots and, thus, its
control polygon fits well the actual contour. The same is true for the square
shape also used in the synthetic experiments.
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Figure 5. Difference in the projection of two control polygons for the two camera
models discussed, after rotating the camera 40◦ about a 45◦ axis on the target, pass-
ing through the target center. 1) original contour, 2) weak-perspective projection,
and 3) full-perspective projection.

4.1.2 Camera model used to generate synthetic images

When synthetic images are generated using an affine camera model (i.e., as-
suming perfect weak-perspective conditions), the epipolar direction is exactly
recovered with the proposed method. However, we would like to assess the va-
lidity of the method under more general conditions. To this end, we generate
the test set of synthetic images using a full perspective camera model (refer to
Fig. 1). Then, of course, perspectivity effects affect the recovery of the epipolar
direction in the ways that will be analysed in the following sections.

An illustration of the differences in projected contour control polygons for
both camera models can be seen in Figure 5 for two different targets: a simple
square (Fig. 5(a)) and an “H” form (Fig. 5(b)). In the plot, 1) represents
the original template, 2) corresponds to the weak-perspective projection and
3) indicates the full perspective projection. These plots were obtained after
a camera rotation of 40◦ about an axis centered on the target centroid and
having an inclination of 45◦, as drawn in the figure. The target is located at a
distance of 500mm from the camera plane, and the camera is simulated with
a focal distance value of 5mm. Note how this configuration has purposedly
been chosen away from weak-perspective assumptions, in order to observe
perspective effect differences in the projection of the two models.

4.2 Effects of the contour shape

To determine the influence of the contour shape on the recovery of the epipolar
direction, we use the square and H-shaped contours in Fig. 5. Synthetic images
of the two contours are generated for any positioning of the camera on the
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Figure 6. Error in the recovery after a camera rotation of 40◦ about an axis passing
through the target centroid and whose orientation varies from 0◦ to 360◦. The
continuous line shows the error in the recovery of the epipolar direction, while the
dotted one indicates the error in the recovery of the orientation of the rotation axis.

surface of a sphere centered on the target centroid and of radius Zave. This
is equivalent to a pure rotation of the camera about an axis on the target,
passing through the target centroid. As mentioned in the preceding section,
projections are performed under a full-perspective camera model.

Figure 6(b) shows the evolution of the recovery error for a rotation of 40◦ about
an axis whose orientation varies from 0◦ to 360◦. Zave is fixed to 1500mm.
Observe that the error remains very low throughout: less than 0.1◦. For the
square shape, the error shows a periodicity of 90◦, and it is zero for the specific
rotations at 0◦, 45◦, . . . , 360◦. In upcoming sections we will see that this effect
is preserved even after weak-perspective imaging assumptions are relaxed.
However, for the more complex H shape, the epipolar recovery error is not
equally distributed in the four quadrants, and the rotations for which the
error is zero do not have the same periodicity as for the simple square model.

From this and similar experiments, we conclude that the shape of the contour
being tracked has an influence on the distribution of the error for different
camera motions, but not much on the average recovery error. This is pre-
sumably due to differences in shape symmetries and in the number of points
conforming the control polygon.

4.3 Relaxation of weak-perspective conditions

4.3.1 Camera translation along the optical center: distance to target

We analyse how a decrement of the distance from the camera to the target
Zave affects the computation of the epipolar direction. Decreasing the dis-
tance enlarges perspective effects, and consequently, should increase the error
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Figure 7. Error in the recovery of the epipolar direction when the distance from
the camera to the target varies from 500 to 2000mm. The plot shows results for a
camera rotation of 40◦ about an axis on the target with inclinations ranging from
0◦ to 90◦.

in epipolar direction recovery. For this experiment we consider distances of
500, 750, 1000, 1250, 1500, 1750 and 2000mm. The smallest of these, 500mm,
corresponds to an extreme situation for the weak-perspective model, in which
important unmodelled distortions in the projected control polygon are present
(refer to Fig. 5(b)). For larger depth values, the affine conditions are better
satisfied, thus reducing the error, as shown in Figure 7. It is worth noting that
even under these unfavourable conditions the recovery error stays below 0.6◦.

4.3.2 Camera rotation: depth relief of the target

The weak-perspective model assumes that the depth relief of the target is very
small compared to the distance Zave from the camera to the target centroid. In
our case in which the target is a planar contour, this means that the distance
from the contour in 3D to its projection onto a plane centered on the target
and parallel to the image plane is very small compared to Zave.

Starting from a fronto-parallel view of the contour, the amount of depth relief
is directly related to the amount of camera rotation about an axis placed
on the contour. Thus, we perform an experiment to analyse the effect of
depth relief by fixing a rotation axis on the target at various inclinations
(7.5◦, 15◦, . . . , 82.5◦) and then rotating the camera about each of these axes
from 5◦ to 50◦, with same focal length and Zave values as before.

Figure 8 shows the results. In good accordance with Figure 6 for the square
shape, the epipolar direction recovery error is zero for any positioning of the
camera resulting from a rotation about an axis having an inclination of 45◦.
For the “H” shape, the zero error occurs at different inclination values for
different amounts of rotation. Note that, for both target shapes, larger rota-
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Figure 8. Error in the recovery of the epipolar direction for different rotation axis
inclinations when the rotations through these axis range from 5◦ to 50◦.

T

α0

α1

α2

R0

R1

R2

Figure 9. Starting with a frontoparallel target T , a first view R0 is taken and then
two other views R1 and R2 are taken; R2 after a larger amount of rotation than
R1. The maximum angle αi between the rays of the target projection decreases
(and, thus, the projection becomes closer to a parallel projection) as the amount of
rotation increases.

tions lead to smaller recovery errors. A geometric explanation of this effect is
that, starting from a fronto-parallel target position, the larger the amount of
rotation, the closer the target projection is to the parallel rays characteristic
of weak-perspective projection (Fig. 9). Therefore, it follows that unmodelled
perspective effects produce larger errors for small rotation amounts.

In sum, the error in the recovery of the epipolar direction due to depth relief
is negligible.

4.3.3 Lateral camera translation: Uncentered contour

The weak-perspective camera model assumes that the distance of the contour
control points to the principal ray are small, again in relation to the distance
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Figure 10. Error in the recovery of the epipolar direction for a fixed rotation of 40◦

about an axis inclined 45◦ on the target plane and an initial distance of 5m, when
lateral translations of the camera along the several directions listed in the insert are
performed.

Zave from the camera to the target. This condition can be satisfied with a
small field of view, and keeping the projected target centered in the image
(supposing that the image center is very close to the principal point). In order
to evaluate the effects of relaxing the condition that the target is centered,
we simulate a series of camera translations parallel to the target plane. We
show results for a series of translations at orientations 0◦, 30◦, . . . , 150◦ on the
image plane, and the special cases at 45◦ and 135◦. These translations range
from −175mm to 175mm, spanning the entire simulated image area.

Compared to the previously evaluated conditions, camera translations that
result in target shifts in the image lead to the largest errors in the computation
of the epipolar direction. As can be seen in Figure 10, contour shape effects
are negligible compared to the error induced by lateral camera translation.
Moreover, epipolar recovery errors are more significant for translations along
directions orthogonal to the epipolar direction (135◦), and negligible along the
epipolar direction. See Appendix B for a geometrical explanation of this effect,
which corresponds to a particular case of Theorem 4 proved therein.

4.4 Effects of cyclorotation

Our algorithm assumes that there is no cyclorotation in the camera motion.
As can be easily seen in Fig. 2, performing a camera motion that contains
cyclorotation wouldn’t preserve any image direction. We like to quantify the
error in the recovery of the epipolar direction as the amount of cyclorotation
increases.
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Figure 11. Effects of introducing cyclorotation in the camera motion. Each line is
the recovery error after a camera rotation about an axis passing through the target,
and whose orientation varies from 0◦ to 360◦ in the plane, and from 0.5◦ to 5◦ out
of the plane (increasing the amount of cyclorotation).

Figure 11 shows the large errors resulting from the same experiment of Section
4.2 but introducing different degrees of cyclorotation. For each experiment,
the rotation is 40◦ about an axis passing through the target center whose
orientation varies from 0◦ to 360◦, and whose cyclorotation component ranges
from 0.5◦ to 5◦. As expected, the error in the recovered epipolar direction
severely increases with respect to the amount of cyclorotation.

4.5 Sensitivity to pixel noise

The affinity M relating two views nears the identity for small motions, and
thus the computation of the epipolar direction based on M is very sensitive
to perturbations in the projection of the control points. To evaluate this sen-
sitivity, we consider rotations ranging from 5◦ to 50◦ about an axis oriented
at −45◦ on the target plane, for which the recovery error neared zero under
noise-free conditions (Fig. 8). Gaussian noises with standard deviations equal
to multiples of 0.25 pixels are added to both the x and y components of the
image projections of the control points. A Montecarlo simulation is performed
for 10000 samples, and the results are plotted in Figure 12. For each shape,
there are 10 plots corresponding to the rotation angles from 5◦ to 50◦ and,
within each plot, the mean epipolar direction and its standard deviation are
represented as a vertical segment for each noise level from 0.25 to 1.00 pixels.

Note that, in accordance with the effect illustrated in Figure 9, larger rota-
tions lead to smaller recovery errors. Moreover, as could be expected, higher
amounts of noise yield a poorer recovery, although it is worth mentioning that
for rotations larger than say 20◦ the recovery is quite good even in the presence
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Figure 12. Mean (horizontally oriented line) and standard deviation (vertical line)
of epipolar directions computed in the presence of Gaussian noise with standard
deviations from 0.25 to 1.00 pixels. Ten graphs corresponding to rotations ranging
from 5◦ to 50◦ about an axis oriented at −45◦ are displayed.

of considerable noise. Conversely, for rotations smaller than 10◦, our technique
shows not to be reliable under noisy conditions. Observe that the results for
the “H” shape are much better, especially for small rotation angles, than those
for the square, due to the fact that a larger number of control points results
in a better estimation of the affinity.

4.6 Comparison with the Gold Standard algorithm

To this point, we have analysed the effects of several factors on the accuracy of
our proposed procedure. Now, and still in a simulated setting, we would like
to carry out a comparison with another technique for computing the affine
epipolar geometry, namely the Gold Standard (GS) algorithm [20]. This algo-
rithm, contrary to our procedure, needs non-coplanar point correspondences
in order to compute the maximum likelihood estimate of the affine fundamen-
tal matrix. While in theory, only four non-coplanar points would suffice for
computing the affine epipolar geometry using the GS algorithm; its perfor-
mance is affected by the amount of non-coplanar information provided, both
in terms of depth range and in the number of points used. The idea is to
establish experimentally the amount of depth information required by the GS
for this algorithm and our procedure to provide equivalent epipolar direction
recovery results.

To this end, we set first an experiment in which we add a range from two
to twelve extra points to the H-shaped contour, varying their distance with
respect to the contour plane. Camera parameters are fixed at: 500mm dis-

19



0 20 40 60 80 100120140160180200
45.5

45

44.5

44

43.5

43

42.5

42

41.5

ep
ip

ol
ar

 d
ire

ct
io

n 
(d

eg
)

depth (mm)

our method

Figure 13. Epipolar direction computed with the GS algorithm in the case of
2,4,...,12 out-of-plane points (a curve for each number) placed at increasing depths
(in abcissae) above the H-shaped contour. Notice that the relevant factor is not the
number of points, but the depth at which they are placed.

tance to target and a focal distance of 767pixels. As before, camera motion
is achieved via a rotation of 40◦ about an axis placed at an orientation of 45◦

on the target plane. The results are shown in Figure 13. It can be seen how
as the depth of these points is increased, the error in the computation of the
epipolar direction decreases. Furthermore, it turns out that the number and
xy location of these points have little effect in the computation of the epipolar
direction. The figure contains plots of the resulting errors in the computation
of the affine epipolar direction with the GS algorithm for different numbers of
out-of-plane points, and a cut threshold indicating the error in the recovery
of the epipolar direction using our proposed technique under the same experi-
mental conditions (the additional points out of the contour plane are evidently
not used in this case). As shown in the figure, for the given experimental con-
ditions, the results of our technique are comparable to the results of the Gold
Standard algorithm when the extra points are placed roughly at a distance
equal to the target size (120mm in our case).

Note the importance of parallax in the computation of the affine fundamen-
tal matrix in the Gold Standard algorithm. As the target points approach
coplanarity, the parallax vector, which determines the epipolar direction, is
monotonically reduced in length. Consequently, the accuracy of the line di-
rection is correspondingly reduced, and the covariance of an estimated affine
fundamental matrix increases. This situation does not occur in our procedure,
as it has been devised precisely to compute the affine epipolar direction from
two views of a plane.

Our second experiment evaluates the noise sensitivity of both techniques for
computing the affine epipolar direction, and consists in repeating the same
experiment multiple times adding Gaussian noise to the control polygon pro-
jections. The experiment is performed for our approach using the planar “H”
shape, and for the GS algorithm using: a) the planar “H” contour and two

20



noise (pixels)
case

0.00 0.25 0.50 0.75 1.00

planar contour “H” µ -44.97 -44.95 -44.96 -45.04 -45.07

with our technique σ 0 0.193 0.492 0.552 0.876

planar contour “H” and 2 µ -43.76 -43.77 -43.78 -43.74 -43.85

points 120mm off the plane (GS) σ 0 0.143 0.245 0.436 0.486

2 layers of the contour µ -44.91 -44.91 -44.89 -44.92 -44.91

“H” at 0mm and 120mm (GS) σ 0 0.068 0.140 0.210 0.324

Randomized depth values µ -44.81 -45.75 -45.03 -44.51 -44.84

for the control polygon points (GS) σ 0 0.294 0.486 0.712 0.625

Table 1
Epipolar direction recovery using our procedure and the Gold Standard algorithm,
for increasing levels of Gaussian pixel noise. Ground truth is a camera rotation of
40◦ about an axis at 45◦ on the target.

off-the-plane control points at a distance of 120mm, b) 24 control points di-
vided in two layers resembling two “H” shapes at different distances, and c)
a randomized depth assortment of the 12 “H” control points. Table 1 shows a
comparison of the results obtained for an increasing standard deviation of 0
to 1 pixels in image noise.

Observe that our procedure and GS using two layers of control points provide
the most consistent results, while GS with only two out-of-plane points yields
a somewhat downward-biased estimation. Overall, though, no big differences
in accuracy are observed.

4.7 Experiments using real images

We present now results on image sequences in a controlled setting of our
technique for computing the affine epipolar direction from pairs of views of a
plane only. The goal of this work is not tracking, but computing the affinity
and using it to estimate the epipolar direction induced by the two views. To
this end, we facilitate the tracking phase by moving a simple target placed
on a manipulator end-effector, and focus on evaluating the accuracy of the
direction recovered in different situations, compared to robot motion ground
truth.

The experimentation setup consists of a Stäubli RX60 manipulator holding the
target pattern on its end-effector. This target is a planar artificial H-shaped
figure with corners and curved edges, which can be easily tracked with our
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(a) Initial (b) 15◦ (c) 30◦

(d) 45◦ (e) 60◦ (f) 75◦

Figure 14. The first experiment with real images entails pairs of views consisting
of the initial one plus each of the other five, corresponding to camera rotations of
40◦ about an axis on the target with inclinations sampled at intervals of 15◦. The
computed epipolar direction is displayed as a line passing through the target center.

active contour tracker. Images are acquired using a Sony DWL500 firewire
camera with a calibrated focal length of 767pixels. The working zone of the
robot arm is highly limited, and this restricts the repertoire of experiments
that we can perform with it. So the initial distance from camera to target
has had to be set to 500mm. This corresponds to the extreme case discussed
in Section 4.3.1, Fig. 7, and, therefore, we are testing the proposed approach
under relaxed weak-perspective conditions, as studied in simulation in Section
4.3. The acquired images have evident perspective effects, as shown in Figures
14 and 15.

The first experiment entails camera motion induced by a rotation of 40◦ about
an axis on the target at various inclination angles sampled at intervals of 15◦.
This, thus, relates to Fig. 7(b) with distance equal to 500mm. Starting from
the fronto-parallel position shown in Figure 14(a), the contour is tracked to
each of the final views shown in the remaining frames of the figure. The epipo-
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epipolar direction -15 -30 -45 -60 -75

θ̄ -16.63 -31.01 -45.00 -57.63 -72.04

σ 0.14 0.09 0.14 0.19 0.13

Table 2
Mean and standard deviation in degrees of the epipolar direction computed by the
proposed technique from real images.

lar direction computed by the proposed algorithm in each case is displayed as
a line passing through the target center.

Table 2 presents the numerical values obtained in the computation of the
epipolar direction. Standard deviation is computed by acquiring 300 images
in the final position, estimating the shape vectors and then computing the
corresponding epipolar directions. Note that the standard deviations are all
very similar, and the mean values deviate more from the ground truth as the
angle departs from the 45◦ inclination. This should be interpreted in the light
of Fig. 7 as meaning that the tracker amplifies the recovery error due to per-
spectivity effects unmodelled by the weak-perspective camera. Consequently,
under true weak-perspective conditions, the errors should be much lower as
indicated by the shrinking of the error curves in Fig. 7 when the distance Zave

from the camera to the target increases.

Three additional sequences were analyzed after further relaxing weak-perspective
conditions, in the same way as in the synthetic case. The first such sequence, la-
belled “Not centered”, starts at the fronto-parallel initial position (Fig. 15(a))
and finishes at an uncentered position, after a translation of 100mm along the
x axis of the robot coordinate frame and a rotation of 40◦ about an axis at
45◦ inclination (Fig. 15(b)). Consistent with our simulated results (refer to
Section 4.3.3), this lateral camera translation is by far the violation of weak-
perspective conditions that has the most pervasive effect on the computation
of the epipolar direction. See the numbers in Table 3, first row.

The second experiment, labelled “Not Frontoparallel A”, corresponds to the
same rotation described above, but the initial frame is not frontoparallel. The
sequence starts with the target already rotated 20◦ as shown in Fig. 15(c) and,
after a further rotation of 20◦, finishes at 40◦ (Fig. 15(d)), all rotations about
an axis at 45◦ inclination as before. Observe that the result is a bit worse than
that of the initial experiment, but with a similar standard deviation.

Finally, the last experiment, labelled “Not Frontoparallel B”, corresponds to
a sequence from a non-frontoparallel initialization of the contour at 40◦ of
rotation (Fig. 15(d)) going back to a frontoparallel target position (Fig. 15(a)).
The result is very similar to that of the preceding experiment.
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(a) Initial (b) Lateral translation
and 40◦

(c) 20◦ (d) 40◦

Figure 15. Experiments with real images further relaxing weak-perspective condi-
tions. The first sequence, entailing an uncentered target, starts at (a) and ends at
(b). The next sequence departing from a non-frontoparallel target position starts at
(c) and ends at (d). The last sequence, testing also non-frontoparallel initialization,
starts at (d) and ends at (a).

Frames θ σ

Not Centered -34.65 0.13

Not Frontoparallel A -43.89 0.09

Not Frontoparallel B 43.96 0.10

Table 3
Mean and standard deviation of the epipolar direction computed over real images
when weak-perspective conditions are further relaxed.

4.8 A remark: interest of reducing shape space

Using a frontoparallel centered target, the matrix M in (12) turns out to be
symmetrical. We can exploit this fact to reduce from 6 to 5 the dimension of
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Figure 16. The same plots as in Fig. 6 but using a 5D shape vector instead of a 6D
one.

the shape vector (18) used to parameterize contour deformations to
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Reproducing the experiments of Section 4.2 with this reduced shape matrix
results in exactly perpendicular solutions for the epipolar direction and the
rotation axis. This is because the vectorial part of the weak-perspective de-
formation is forced to be symmetric even with the perspective effects present.
As a result, the computed errors are the same for both. Figures 16(a) and
16(b) show the values for both the epipolar direction and the rotation axis
superimposed one on top of the other. Note that the angles at which the
error becomes 0◦ are preserved, as the symmetry axes in the contour have
not changed. This may not be of great benefit when weak-perspective image
conditions are satisfied, but when perspective effects are strong, reducing the
shape space greatly diminishes the distorsions that these effects cause in the
recovery of the epipolar direction.

As mentioned before, we have exploited this advantage for improving egomo-
tion recovery in some practical settings [16,17].

4.9 Applicability considerations

Throughout this experimental section we have made an effort to gradually
relax the imaging conditions away from the weak-perspective model, in or-
der to assess the validity of the proposed method even under unfavourable
conditions. We have seen in Section 4.3.1 that the error introduced by small
translations along the optical axis is negligible, and in Section 4.3.2 that the
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depth relief assumption is not really required in normal conditions. Contrar-
ily, in Section 4.3.3 we have shown that lateral camera translations that shift
the contour away from the center of the image introduce critical errors. In a
realistic application one needs to ensure that the target projects always to the
center of the image. To do so, an active vision system that keeps the tracked
contour always centered in the image, regardless of camera motion, should be
used.

Moreover, we have seen in Section 4.5 that the epipolar direction cannot be
accurately computed for small rotation values in the presence of pixel noise. In
the implementation with our robotic arm and real image sequences, accurate
estimation of the epipolar direction could be obtained once a rotation of 15◦

was exerted, or, equivalently, once the camera was translated laterally roughly
one fifth of its distance to the target whilst keeping the target centered.

Finally, if we can assume that the target is frontoparallel in some frame of
the motion sequence, one should consider the use of the reduced shape space
equations defined in Section 4.8.

5 Conclusions

The recovery of camera motion and scene structure from uncalibrated image
sequences has received a lot of attention lately due to its numerous applica-
tions, which range from robot localization and navigation, to virtual reality
and archeology, to name just a few. Most works rely on detecting a set of
non-coplanar points in the scene and matching their projections on the dif-
ferent views. Good results are achieved only when scenes are textured enough
to allow visual motion estimation from point correspondences. In this paper
we have departed from this main stream, by dealing with a less informative
situation, namely features lying on a plane, and recurring to contour tracking
instead of point matching.

Our main result is that, under weak-perspective conditions and assuming a
camera motion free of cyclorotation, the epipolar direction can be recovered
from the affinity relating two views of a planar scene. Two proofs of this result
are provided, one within the framework of projective geometry, and the other
through an analytic development.

Two sets of experiments have been undertaken to study the performance of
the proposed method. In both, the affinity relating two views is derived by
tracking a planar contour from one view to the other, and then extracting the
affinity parameters from the observed contour deformation, coded as a 6D (or
5D) shape vector. First, synthetic images were used to evaluate the results in
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a noise-controlled environment by relaxing one by one the conditions of the
imaging model, and then to compare the accuracy of our method with that
of the Gold Standard algorithm, which relying on matches of non-coplanar
points falls in the main stream mentioned above.

The outcome of the comparison has been very encouraging, since with less
scene information (only from a plane) and with a much simpler processing
(solving a single second-order equation), we are able to obtain the epipolar di-
rection with similar accuracy. It is worth reminding, however, that our method
is less general in that it requires a camera motion free of cyclorotation.

The second experimental set consisted of image sequences that were used
to validate the proposed approach under real imaging conditions. Note that
the objective of the paper is to show what can be obtained from the affine
deformation of two views of a contour, and not to validate the robustness
of the contour tracker used. For this reason, simple and well-calibrated image
sequences were used in order to have a good basis for ground truth comparison.

Future work will try to unravel under what circumstances additional infor-
mation on camera motion and scene structure can be recovered from two (or
more) uncalibrated views of a planar object under weak perspective viewing
conditions. We have already mentioned that, if the aspect ratio and skew (i.e.,
the intrinsic parameters determining the metric structure in the image) are
known, then the direction of the axis of rotation can also be recovered. Along
the same line, we will tackle the recovery of the orientation of the scene plane,
as well as what occurs in degenerate situations in which such orientation is
the same as that of the image plane, or when both planes have a common
direction.

A Geometric study of two weak-perspective views

A.1 The camera model

Consider a weak perspective (or scaled orthographic) camera ψ, which projects
a scene point first orthographically onto the average depth plane RC (the
plane parallel to the image plane R containing the centroid C of the scene
object) and then perspectively from this fronto-parallel plane RC onto the
image R. Let P be the proper optical center of the second perspective pro-
jection, which simply introduces a scale factor. Modulus this scale factor, the
weak-perspective camera is an orthographic camera: all the projection rays
are parallel with direction orthogonal to the image plane R; consequently, if
O is the improper optical center (lying on the plane at infinity Π∞), then the
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Figure A.1. Geometry on the plane at infinity of two weak-perspective cameras. The
notations are explained in the text.

improper line r of R or RC , that is, r = R∩ Π∞ = RC ∩ Π∞, is the polar of
O with respect to the absolute conic Ω, lying on Π∞.

Consider a world point X projected by the weak-perspective camera ψ to the
image point x = ψ(X), namely

ψ : P
3 ∨O
−→ O∗ ∩RC

−→ RC ∨P
−→ P ∗ ∩R

−→ R , (A.1)

and x = (((X ∨O)∩RC)∨P )∩R, where O∗ denotes the rays through O, ∨O
denotes the projection with center O, and ∩R denotes the section with the
plane R. From (A.1) it is inferred that the weak-perspective camera ψ (as well
as the affine camera) has the property of mapping world directions to image
directions: an improper world point X ∈ Π∞ is projected to an improper
image point x = ψ(X) ∈ Π∞ given by x = (X ∨ O) ∩ r. Thus, a world plane
S is mapped by the affinity ψ|S to the image plane, i.e. the camera preserves
parallelism.

Consider a second weak-perspective camera ψ′, whose image plane, improper
and proper optical centers are R′, O′ and P ′, respectively. Let S be a world
plane of improper line s = S∩Π∞. The restriction to a coplanar scene induces
a projectivity ψ′

|S ◦(ψ|S)−1 between the two weak-perspective images. Further-
more, it is an affinity, since image directions are mapped to image directions:
ψ′
|S ◦ (ψ|S)−1(r) = r′, where r′ = R′ ∩Π∞. Thus, we can consider the induced

projectivity Ψ = (ψ′
|S ◦ (ψ|S)−1)|r between the improper image lines (see Fig.

A.1), which is given by

Ψ : r
∨O
−→ O∗ ∩s

−→ s
∨O′

−→ O′∗ ∩r′
−→ r′ . (A.2)
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Once a reference world point X0 ∈ S and its respective images x0 ∈ R and
x′

0
∈ R′ are chosen, the affinity ψ′

|S ◦ (ψ|S)−1 is determined by {x0, x
′
0
,Ψ},

modulus a scale factor. In our application, the centroid of a world planar
contour will be taken as the reference point, i.e., X0 = C, and its projections
x0 and x′

0
will be easily recognized in the image planes as the centroids of the

respective target contours, since the images are related to the scene plane by
an affinity. Observe that, after the analysis of the camera model carried out,
most of the relevant information of the affinity relating two weak-perspective
views is enclosed by the projectivity Ψ at infinity.

A.2 The geometry at infinity

Let us analyze the situation in the plane at infinity. Since the optical centers of
the two weak-perspective cameras lie at infinity, the epipoles E = (O∨O′)∩ r
and E ′ = (O ∨O′)∩ r′ (of the first and second cameras, respectively) are also
located at infinity in the image planes, i.e., the epipolar lines are parallel.

The rigid motion between the two cameras is decomposed into a rotation and
a translation. The translation restricted to the plane at infinity is the identity.
Hence only the change of pose modifies the location at infinity.

The rotation, say φ, sends r′ to r and it is decomposed into two parts (cf.
Koenderink and van Doorn rotation representation [4]): a rotation about an
axis of direction A = r∩r′ and angle ρ, and a rotation about an axis of direction
O and angle θ. The first rotation is a pure rotation out of the image plane,
and the second is a rotation inside the image plane (also called cyclorotation).
Let Φ : r′ → r be the restriction of the rotation to the improper line of the
second image. The decomposition of the rotation restricted to r′ gives

Φ : r′
Φ

A
ρ

−→ r
Φ

O
θ−→ r , (A.3)

Observe that the polar of A with respect to the absolute conic Ω is the line
E ∨E ′ = O∨O′. Hence E ∨E ′ is the direction of the planes orthogonal to the
axis of the first rotation, and then ΦA

ρ (E ′) = E (see Fig. A.1). On the other
hand, by (A.2) we obtain that Ψ(E) = E ′. This gives a geometric proof of

Theorem 3 (Geometric version of 1) If the rigid motion between two weak-
perspective cameras is assumed to be free of cyclorotation, then the epipolar
direction E can be recovered as one of the two fixed points of the improper
image line homography Φ◦Ψ, which is induced by the affinity φ◦ψ′

|S ◦ (ψ|S)−1

that relates two views of a planar scene.

As a consequence, if the aspect ratio and skew (i.e. the intrinsic parameters
determining the metric structure in the image) are known, the direction A =
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E⊥ of the axis of rotation can also be recovered.

Notice that, in image coordinates, the affinity φ ◦ ψ′
|S ◦ (ψ|S)−1 is given by

Equation (3) and that the line homography Φ ◦ Ψ is given by the matrix M,
appearing in the same Equation (3).

B Geometric study of two affine views

Keep the notations of Appendix A. The weak-perspective camera model as-
sume that the distance of the target points to the principal ray are small. This
can be achieved with a small field of view, when the projected target is cen-
tered in the image (assuming that the image center is a good approximation to
the principal point). If the condition of being centered is relaxed, we need the
more general affine camera model, which encloses the weak-perspective one:
an affine camera ψ projects a scene point first under a fixed direction O ∈ Π∞

onto the average depth plane RC (the plane parallel to the image plane R con-
taining the centroid C of the scene object) and then perspectively from this
fronto-parallel plane RC onto the image R. When O equals the direction O
orthogonal to the image plane, the affine camera becomes a weak-perspective
camera.

If P is the proper optical center of the second perspective projection, which
simply introduces a scale factor, then the affine projection is

ψ : P
3 ∨O
−→ O

∗ ∩RC

−→ RC ∨P
−→ P ∗ ∩R

−→ R , (B.1)

that is, analogous to the weak-perspective projection but for the improper
optical center O. Notice that, modulus a scale factor, all the projection rays
of the affine camera are parallel with direction O; and that, as well as the
weak-perspective camera, a world plane S is mapped by the affinity ψ|S to the
image plane, i.e. the camera preserves parallelism.

While in the weak-perspective camera model the improper optical center O
is determined by the orientation of the image plane (i.e., O is the pole with
respect to the absolute conic Ω of the improper line r of R), in the affine
camera model the improper optical center O may be any point in Π∞. To see
this, suppose that you have a camera under affine viewing conditions, that is,
the target is seen under a small field of view. Then the direction of parallel
projection, i.e., the improper optical center, depends on the position of the
projected target within the image plane. Hence the same camera (with the
same image plane) can take two affine views with different improper optical
centers. This is one of the reasons that makes the affine camera model more
difficult to handle than the weak-perspective one. Thus, we will speak of a
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Figure B.1. Geometry on the plane at infinity of two general affine cameras. The
notations are explained in the text.

view of improper center O taken by an affine camera. If O = O, we say that
it is a weak-perspective view.

Consider a second affine camera ψ
′
, whose image plane, improper and proper

optical centers are R′, O
′
and P ′, respectively; let O′ be the pole with respect

to the absolute conic Ω of the improper line r′ of R′. Let S be a world plane of
improper line s = S∩Π∞. As in the case of two weak-perspective cameras, the
projectivity ψ

′

|S ◦ (ψ|S)−1 between the two images, induced by the restriction
to a coplanar scene, is in fact an affinity, since image directions are mapped
to image directions: ψ

′

|S ◦ (ψ|S)−1(r) = r′, where r′ = R′ ∩ Π∞. We also

consider the induced projectivity (see Fig. B.1) Ψ = (ψ
′

|S ◦ (ψ|S)−1)|r between
the improper image lines, which is given, in the general affine case, by

Ψ : r
∨O
−→ O

∗ ∩s
−→ s

∨O′

−→ O
′∗ ∩r′
−→ r′ . (B.2)

Consider the Koenderink and van Doorn decomposition [4] of the change of
pose of the two affine cameras: a rotation about an axis of direction A = r∩ r′

and angle ρ, and a rotation about an axis of direction O and angle θ, and its
restriction to the improper lines:

Φ : r′
Φ

A
ρ

−→ r
Φ

O
θ−→ r . (B.3)

The polar of A with respect to the absolute conic Ω is the improper line
O ∨ O′, which will be called virtual epipolar line. The virtual epipolar line is
the direction of the planes orthogonal to the axis of the first rotation, and
then ΦA

ρ (E ′) = E, where E = (O ∨ O′) ∩ r and E ′ = (O ∨ O′) ∩ r′ are called
virtual epipoles.
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Figure B.2. Geometry on the plane at infinity of two affine cameras under the
hypothesis of Theorem 4. The notations are clear from the text.

As in the case of two weak-perspective cameras, the epipoles E = (O∨O
′
)∩ r

and E
′
= (O∨O

′
)∩r′ (of the first and second affine cameras, respectively) are

also located at infinity in the image planes, i.e., the epipolar lines in both views
are parallel. But, while in the weak-perspective cameras the epipoles coincide
with the virtual epipoles, in the general affine cameras the epipoles are no
more related with the virtual epipoles and, thus, a priori, they do not provide
information about the rigid motion between the two affine cameras. This is
one of the reasons why most of the literature about the general affine camera
model switches to the weak-perspective camera model when the question of
inferring camera motion is tackled.

In the more general setting of affine cameras we obtain the following general-
ization of Theorem 1, owing to the fact that Ψ(E) = E

′
by (B.2):

Theorem 4 Assume that the rigid motion between two affine cameras is free
of cyclorotation and that their improper centers lie on the virtual epipolar
line. Then the epipolar direction E = E can be recovered as one of the two
fixed points of the improper image line homography Φ ◦ Ψ, which is induced
by the affinity φ ◦ ψ

′

|S ◦ (ψ|S)−1 that relates two views of a planar scene (see
Fig. B.2).

As a consequence, in the situation where the affine camera takes first a weak-
perspective view, and then moves and takes an affine view of improper center
lying on the virtual epipolar line, the epipolar direction E = E can be recov-
ered as one of the two fixed points of the improper image line homography,
as well. This explains the results obtained in the experiments performed in
Section 4.3.3.
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[16] G. Alenyà, E. Mart́ınez, C. Torras, Fusing visual and inertial sensing to recover
robot egomotion, Journal of Robotic Systems 21 (2004) 23–32.
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