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Abstract 
 
In this paper we will discuss the use of some graph-based representations and techniques for image 
processing and analysis. Instead of making an extensive review of the graph techniques in this field, we 
will explain how we are using these techniques in an active vision system for an autonomous mobile 
robot developed in the Institut de Robòtica i Informàtica Industrial within the project “Active Vision 
System with Automatic Learning Capacity for Industrial Applications (CICYT TAP98-0473)”. 
Specifically we will discuss the use of graph-based representations and techniques for image 
segmentation, image perceptual grouping and object recognition. We first present a generalisation of a 
graph partitioning greedy algorithm for colour image segmentation. Next we describe a novel fusion of 
colour-based segmentation and depth from stereo that yields a graph representing every object in the 
scene. Finally we describe a new representation of a set of attributed graphs (AGs), denominated Function 
Described Graphs (FDGs), a distance measure for matching AGs with FDGs and some applications for 
robot vision.   
 
Keywords: Structural pattern recognition; Graph-based representations; Object recognition; Colour image 
segmentation; Perceptual grouping; Data fusion; Depth from stereo; Attributed graphs; Function-
described graphs; Distance measure between graphs 
 
 
1. Introduction 
 
Techniques that use graphs for the representation and manipulation of data [1, 2] have been widely 
investigated within the fields of image processing and image analysis. The use of graphs allows for a 
structural representation of object models extracted from images. However some difficulties in the 
applicability of graph techniques have reduced their use in practical applications. The basic problem is the 
time complexity of the algorithms. The search for a specific node or edge in a graph, or for the 
relationship between two nodes (i.e., shortest path) requires polynomial time. However, the search for a 
match of a scene model to an object model in a graph representation, known as the isomorphism problem, 
is untractable. This is, its computation has an exponential time complexity. Nevertheless, new 
developments in approximation algorithms for graph matching have allowed the reduction of this time 
complexity for sub-optimal solutions (see for example Refs. [3, 4]).    
 
In this paper we will describe several applications of graph-based representation and techniques for image 
modelling, processing and analysis within the project “Active Vision System with Automatic Learning 
Capacity for Industrial Applications (CICYT TAP98-0473)”. Specifically, we will explain their use in 
image segmentation, image perceptual grouping, and object recognition. 
 
A method to segment a colour image based on a graph partitioning greedy algorithm will be firstly 
described [5]. This algorithm, although uses a graph-based representation, has a polynomial time 
complexity. We will also explain how to combine this method for perceptual grouping using a depth map 
obtained from stereo disparity [6]. 
 
We will also describe a matching method for recognition based on a new graph representation scheme 
denominated function-described-graphs (FDGs) [7-9], which is a type of compact representation of a set 
of attributed graphs (AGs) that borrow from random graphs [10,11] the capability of probabilistic 
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modelling of structural and attributed information. This technique uses a synthesis graph method to 
acquire the prototype class from a set of attributed graphs (ARGs) [8,12]. We will also show two 
examples of application to face recognition and 3D object recognition, respectively. 
 
 
2. Graph partitioning greedy algorithm for colour image segmentation 
 
Segmentation is the most essential and important step of any low-level vision system. Segmentation is the 
process of partitioning an image into a set of non-intersecting regions such that each region is 
homogeneous and the transition from one region to another is sharp. Hundreds of segmentation 
techniques are present in the literature, but there is still no single method that is robust under any 
illumination conditions and for any application.  
 
We have selected a graph-theoretical approach to cope with image segmentation because it has a good 
mathematical basis and because the image segmentation problem can easily be translated into graph-
related problems by analogy. Moreover, in the graph theoretical approach, image region extraction and  
edges extraction are dual problems. An immediate consequence of this is that the region boundaries 
extracted are always closed. The worst disadvantage of these approaches, as can be seen in Refs. [13-15], 
is that these algorithms are very time consuming, which prohibits their implementation for real-time 
applications. 
 
For this reason, we have chosen to solve the segmentation problem using a graph partition greedy 
algorithm with superlinear time complexity. The proof of the time complexity can be found in Ref. [16]. 
Nevertheless, after the analysis and implementation of this algorithm, two types of problems arose: the 
existence of hard-constraints which produce inadequate segmentations, and high-variability regions which 
are not well segmented.  

 
In the graph-based approach to image segmentation, undirected weighted graphs (UWG) are used to 
represent both intensity or colour images. An UWG G=(V,A) is defined from the set of pixels P={pi} of 
an image I={I(p) : p∈P} in the following way: To each pixel p∈P corresponds a vertex v∈V and a 
neighbourhood Np={q∈P | 0<dp(p,q)≤δ}, with N={Np : p∈P} and dp:P×P→ℜ+ a distance between pixels, 
defining the set of arcs A={apq=(p,q), q∈Np}. A weight function ω defined among arcs gives a measure of 
similarity between two vertices: 
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where dI is a distance measure for image values, which can be intensity or colour. For intensity images, 
the distance measure used is babaI IIIId −a),(: , and for colour images, 

HSIorRGBbabaI IIIId −a),(: , where RGB or HSI means the use of different colour spaces and their 

particular metrics. Ω={ω(a) : a∈A} is the set of all weights of the set of arcs in G. 
 
A segmentation of G is defined as a subgraph S=(C,F) where C={Ci} is the set of components which form 
a partition of V and F={FCi} is a canonical forest. Each component Ci is a set of vertices that are 
connected by a path of arcs in A. Cp is the component to which the vertex p belongs. A canonical forest F 
is a set of trees where each one FCi∈F is a spanning tree of Ci∈C. We can now define the set Σ of all the 
segmentations S of G and an equivalence relation, ≤, between its elements which is reflexive, anti-
symmetric, and transitive, )(SRTST ∈⇔≤ , where R(S)={Q∈Σ : ∀C∈Q, ∃C’∈S  C⊆C’} is a 
refinement of the segmentation S∈Σ.  
 
The set (Σ,≤) is a partially ordered set because T and T’∈R(S) do not imply that T∈R(T’) or T’∈R(T). 
Because of that, (Σ,≤) is a lattice, and for any T=(C,F) and T’=(C’,F’), T∩T’≤T and T’, T and T’≤T∪T’, 
where T∩T’=(C∩C’,FC∩C’) and T∪T’=(C∪C’,FC∪C’). The maximum element of (Σ,≤) is (P, FP), the 
minimum one is (∅,∅) and the atomic one is ({p∈P},∅). If we follow an algorithm that in every step 
joins two components C and C’ together, the resultant segmentation will be in ascendant order in (Σ,≤). 
This is the case of the class of greedy algorithms that use an ordering of the set of arcs A; for example, the 
Kruskal algorithm to find the minimum spanning tree, or the algorithm in Ref. [16]. 
 



The problem of segmenting an image I can be translated into finding a “proper” segmentation S from a 
graph G among the set of all possible segmentations Σ. The issue at hand is to find a segmentation that 
fulfils a global property by a local search using a greedy algorithm. To do so, we follow the definitions of 
what is a not over-segmented and a not sub-segmented image given in [16]. 
 
We consider an image is not over-segmented if all the differences between any two adjacent components 
is greater than their similarities, i.e.,: 

( ) ( )jijijiji CCSimCCDifthenCCandSCCsegmentedovernotisS ,,, >≠∈∀≡−Σ∈  
where Dif is a function that measures the difference between two adjacent components and Sim measures 
the similarity of these two components. With NOS={T∈Σ  T is not over-segmented}. In the same way, 
we define a not sub-segmented image as any image having the segmentation for which there is a proper 
refinement such that this refinement is not over-segmented. If T<S means that T≤S and T≠S, we define the 
following set AS={T∈Σ and T<S  T∈NOS}. Then, ∅=≡− SAsegmentedsubnotisS . 
 
The algorithm proposed in Ref. [16] (from now on, F&H algorithm) makes decisions based on local 
properties of the image, such as pixel differences, and yet the resulting segmentation reflects global 
properties of the image –not over-segmentation and not sub-segmentation-. But these constraints are too 
hard, causing growing defects in resultant segmentation components. The growing defects are of two 
kinds, one is related with the theoretical approach, and the other one has to do with its practical results. 

 
F&H algorithm causes a resultant segmentation S that fulfils both the not over-segmented and the not 
sub-segmented constraints. Moreover, two successive segmentations Si and Si+1 are Si≤Si+1. 
Then, { }TSNOSSA NOSTS ∈=⇔∈∧∅= min . This means that F&H algorithm stops at the first 
segmentation S that is not over-segmented, which is a quite arbitrary and hard constraint. Moreover, 
visually the segmentation S has still too many components, i.e., is still over-segmented. If we relax the not 
sub-segmented constraint, it could be possible to attain segmentations S’ with less components (S≤S’). 
We proceed in the following way: If S’ is over-segmented, the algorithm will continue until a not over-
segmentation S’’ (S’≤S’’). On the other hand, if S’ is not over-segmented, we can break again the 
constraint by joining together two components as above, or just stop at that segmentation, which will be,  
greater than S and also not over-segmented, as we were looking for. 
 
In order to manage this leap but avoiding arbitrariness, we have reformulated the concept of the not over-
segmented constraint as a problem of minimising an energy function U in the following way: 

'0, ' SSwhereUthenCCandSCCsegmentedovernotisS SSjiji ≤>∆≠∈∀≡−Σ∈ →  
i.e., S is not over-segmented if a S’ has more energy U than S; otherwise, we could go to S’ and minimise 
the energy U. Moreover, a not over-segmentation S is also a global minimum over the lattice of the 
energy function U. ∆US→S’ is the energy of the system involved in this transition between two different 
segmentation S≤S’. If we must join Ci and Cj together, U∆ S→S’=∆U(Ci,Cj). In the particular formulation of 
F&H algorithm ( ) ( ) ( )jijiji CCSimCCDifCCU ,,, −=∆ , which shows its equivalence. The resultant 
algorithm differs only with that of F&H in the following condition: 
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A condition to be fulfilled for a certain energy function U to attain this global minimum over the lattice 
by means of this greedy algorithm is the following: for any arc a=aq=aij such that Ci≠Cj, and Ci

q-1⊆Ci and 
Cj

q-1⊆Cj must be true that ( ) ( ) 0,0, 11 >∆⇒>∆ −−
ji

q
j

q
i CCUCCU . Then, the segmentation produced by our 

algorithm is not over-segmented. 
 
Proof. Be a=aij any arc such that Ci≠Cj, i.e, aq∉S. It occurs at position q in the ordering, then a=aq. Ci≠Cj 
implies that aq∈Sq, then aq∈S, which is false. Thus the first condition, Ci

q-1≠Cj
q-1, is true, which means the 

second one must be false, i.e., ∆U(Ci
q-1,Cj

q-1)>0. This implies that ∆U(Ci,Cj)>0 and, thus, S is not over-
segmented. As an example of that, if we use ∆U(Ci,Cj)=Dif(Ci,Cj)-Sim(Ci,Cj), in [3] it is shown that Ci

q-

1=Ci and Cj
q-1=Cj, which hold for the above property about the energy function.  

 



Moreover, using this new definition we can compute a probability of the event S→S’ or of joining Ci and 
Cj in a similar way it is computed a certain step in a simulated annealing process using the Metropolis 
dynamics: 
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If ∆U(Ci,Cj)≤0 then P[Ci∪Cj]=1, otherwise P[Ci∪Cj] is compared to a random number to decide whether 
to joint or not. Thus, it is possible to find other not over-segmentations S’ such that S≤S’, with a great 
probability of being not over-segmented. Both the probabilistic and deterministic algorithms break the 
uniqueness of the solution claimed in Ref. [16]. 
 
Using the function Sim(C)=max{ω(a) : a∈FC} defined in Ref. [16] leads to difficulties; due to the fact 
that a component C will not grow for any arc a that ω(a)>Sim(C), and that Sim(C)≥ ω(a’), ∀a’∈FC, it is 
only possible that all of arcs in FC have the same weight. Thus, a huge number of regions are formed, 
which is critical in homogeneous regions (small Sim(C)) because they can never join. To solve this defect, 
a correction function can be used to compute Sim(C): ( ) ( ){ } CtauaCSim

CFa /max += ∈ ω , in such a way 
that Sim(C) is greater in small components and decrease as these components grows. This helps 
homogeneous regions to grow, but dissimilar regions also grow, creating fictitious border regions or 
leaving textured regions badly segmented -unless the image is initially smoothed, which expands even 
more the borders-. The reason is the following: max{ω} of homogeneous regions is relatively small and 
|C| grows rapidly because these regions tend to be large. Thus, the correction functions effect over them 
disappears quickly. But in dissimilar ones, max{ω} is relatively greater and these regions tend to be 
small, thus the correction functions effect takes place longer, allowing them to grow too much. The 
correction functions threshold controls region measure, whether homogeneous or not.  
 
To cope with this pernicious effect, we identify all pixels that belong to these dissimilar regions -we only 
take under consideration fictitious border regions, not textured ones- by means of a coefficient IC 
computed over every region C, which is directly proportional to the compactness, KC, –border-shaped- 
and max{ω} –high-variability regions-, and  inversely proportional to the area, AC,–small regions-: 
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Once these regions have been identified, their pixels are joined randomly to the region with most 
neighbour pixels, i.e., ( ){ }{ }CqpNqCCp SCii ∈∈=⇔∈ ∈ |#maxarg .  
 
This step can cause some border distortions due the pixel distribution, then it is useful to have as few 
pixels as possible to distribute. This can be obtained inhibiting for some steps the over-segmentation 
constraint in the algorithm. Thus, it is granted that, at least, Sim(C)≥Threshold, avoiding the case 
Sim(C)=0, which do not let the homogeneous regions join together without a correction function. By 
combining these two steps, it is possible to let homogeneous regions grow, but not the dissimilar ones, 
with any use of correction functions. 
 
An experimental result using the algorithm as presented in Ref. [5] can be seen in Fig. 1. Fig. 1(c) has 
been obtained using the probabilistic algorithm inhibiting the over-segmented constraint up to arc weights 
greater than 2.0. It seems very realistic, but has many fictitious border regions and needs a second step to 
eliminate them. In (b) a threshold of 0.5 to identify fictitious border regions has been used. In the final 
result (c), 29 regions have been detected. 
 

             
(a) Initial Segmentation       (b) Fictitious Border Identification               (c) Pixel Distribution Result 

 
Fig. 1. Colour-based segmentation. 

 
 



 
3. Fusion of colour-based segmentation and depth from stereo 
 
One of the objectives of the project is to have a robust scene description using diverse techniques. We are 
presently working with the idea to integrate perceptual groupings extracted from colour-based 
segmentation and depth information from stereo. The use of depth cues as an aid to perceptual grouping 
allows for a robust segmentation of objects and background with similar reflectance properties, that 
otherwise would be impossible. The method is explained in Ref. [6] and it is summarised next. 
 
The algorithm starts from a set of regions { }LRRR K21,=R  with good color continuity, which can be 
obtained from either the color segmentation algorithm described above, or any other method such as the 
one described in [3]. This set of regions is further divided in two subsets. If |Rj|>tA and pj

2/|Rj|<tC ⇒ Rj∈Ω, 
otherwise Rj∈Γ. R=Ω∪Γ. Ω represents the regions with area greater than tA and compactness smaller than 
tC, Γ represents the detail in the image, and pj is the perimeter of Rj. 
 
The two main issues that must be addressed during any perceptual grouping method are: (1) 
subsegmentation; when two or more entities should have been considered separate elements, but their 
distinguishable properties were not evident during segmentation, and (2) oversegmentetion; when an 
element in the image was erroneously divided by the segmentation algorithm in smaller entities. Our data 
fusion algorithm combines depth information from stereo with the color segmentation results described 
above to solve these issues. 
 
To solve for subsegmentation, in each region Ωj the set of points { }jd

i
d
iiiij vuzyx Ω∈= ),(|),,(r  is 

extracted from the depth map, and for each point (us
i,vs

i)∈Ωj a new point (xi,yi,zi) is added to rj, where the 
corresponding di(us

i,vs
i) is obtained from the average disparity from the points in the window (us

i-
1…us

i+1,vs
i-1…us

i+1) with entry in rj. The process is repeated iteratively until all pixels in Ωj have a 
corresponding entry in rj. This is, until all pixels in Ωj have been assigned a depth estimate. 
 
Smooth surface segments S  are recursively generated by starting at any point j

l ip
r
∈rj and growing 

outwards while meeting the following two criteria for the neighbouring points p i
r

 and kp
r

: The “jump 

edge criterion” Jtki >−pp
rr

, and the “curvature criterion” Utk >ik
T
i −− ppnn

rr
/)ˆˆ(1cos . The normals  

are computed minimizing the error of fitting a local planar patch in the vicinity of 
in̂

ip
r

. The region Rj∈Ω is 

then replaced in R by the segments in S . A new division of R into Ω and Γ is necessary. j

 
For the case of oversegmentation we first generate a set of initial classes { }ld
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and the sets of points to be classified { }m
d
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d
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The task at hand is to associate each Γm to its parent region Ωl based on their spatial proximity. This 
classification constitutes the merging of smooth and detail into spatially coherent entities. Consider one 
detail region Γm. We must compute the distance from the points (ud

i,vd
i,di)∈γm to the classes in ω. We use a 

parametric distance measure for classification. The normalized distance from point (ud
i,vd

i,di)∈γm to class ωl 
is ( ) ( )( )),,(),,(),,(),,(1
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l dvu  is the mean vector of class 

ωl, and Σl the covariance matrix. The votes V )(min illi d=  are accumulated for each (ud
i,vd

i,di)∈γm, and the 
region in Ω associated to the class ωl with most votes is considered the parent region for Γm. 
 
The result is a new set of regions Ω’ where each element }{ nmjj ΓΓΩΩ K∪=′  represents a region in 
the scene where color continuity and depth continuity are merged to constitute spatially coherent entities. 
A set of characteristics can be measured on each of these regions, such as position, normal orientation, 
curvature, level of detail, area, compactness, etc. 
  
The time complexity of the depth from stereo module is O(dk2n), where k is the width of the kernel 
window, d is the maximum expected disparity, and n is the number of pixels in the image. If the edges in 
G are sorted in linear time, the segmentation module is bounded by O(n). The time required to compute 
the normalized distances is bounded by O(m2/a2), where m is the number of points in the disparity map 



associated to regions in Ω, and a=|Ω|. Given that the disparity map is dense in the perimeter of Ωj and 
negligible inside smooth regions, , and from the compactness constraint p∑≈ a j kpm 2/ j

2<tC |Rj|. 
 
The overall cost of the oversegmentation part of the algorithm is bounded by 
( ) )(|)|()(/ 22222 ntkOtakOkpaOamO cjcj <<≈ Ω . The time complexity of the algorithm is thus linear 

with respect to the number of pixels in the image, and is asymptotically comparable to that of the 
individual data acquisition modules. 
 
Experimental results in a complicated scene can be seen in Fig. 2. The original left colour image from the 
stereo pair is shown in Fig. 2(a). Both the left and right images were rectified to meet the parallel epipolar 
constraint. The results of the colour segmentation algorithm applied to the rectified left image are shown 
in Fig. 2(b). In this figure, the textured regions represent the small segments that need to be classified as 
belonging to the nearby objects.  
 
Fig. 2(c) shows the disparity map obtained from the stereo module. It is most clear from this image how 
depth information is dense at highly detailed areas in the scene, whereas smooth regions are poorly 
represented. Although the left-to-right right-to-left constraint could have been relaxed from equality to 
similarity when creating the depth map, this was not implemented; letting the segmentation module 
overcome the weaknesses of any typical depth-from-stereo module. 
 
An initial pruning of the segmented image is done based purely on the mean disparity value of each 
segment. We eliminated from our three-dimensional region of interest those segments that fall too close 
or too far from the camera by computing their mean disparity. Also those segments with very low points-
in-depth-map to segmented-area ratio were discarded, as they do not contain enough disparity information 
to accurately estimate their depth, and are not suitable for later attempts at object characterisation. Fig. 
2(d) shows how the boxes behind the four objects of interest are virtually eliminated, as well as the table 
and the vertical bar in the back. 
 
Results from the data fusion algorithm are shown in Fig. 2(e). The image shows our four objects of 
interest easily identifiable. These segment groups and their attributes can be used to characterise the 
objects they represent. Fig. 2(f) shows a set of graphs representing the hypothesised objects that are due 
for recognition. 
 
 
 

     
        (a) Original left color image                 (b) Initial segmentation results      (c) Disparity map 

 

      
 (d) Initial pruning               (e) Data fusion results                          (f) Graphs due for recognition 

 
Fig. 2. Data fusion steps on a complicated scene. 

 
 



4. Representation and recognition of  objects using function-described graphs 
 
A fundamental problem in pattern recognition is selecting suitable representations for objects and classes. 
In the decision-theoretic approach to pattern recognition, a pattern is represented by a set of numerical 
values, which forms a feature vector. Although, in many tasks, objects can be recognised successfully 
using only global features such as size and compactness, in some applications it is helpful to describe an 
object in terms of its basic parts and the relations between them. In these cases, the structural approach to 
pattern recognition can be applied [1,2]. 
 
Nevertheless, there are two major problems that practical applications using structural pattern recognition 
are confronted with. The first problem is the computational complexity of comparing two structures. The 
time required by any of the optimal algorithms may in the worst case become exponential in the size of 
the graphs. The approximate algorithms, on the other hand, have only polynomial time complexity, but do 
not guarantee to find the optimal solution. For some of the applications, this may not be acceptable. The 
second problem is the fact that there is more than one model graph that must be matched with an input 
graph, then the conventional graph matching algorithms must be applied to each model-input pair 
sequentially. As a consequence, the performance is linearly dependent on the size of the database of 
model graphs. For applications dealing with a large database, this may be prohibitive. 
 
Attributed Graphs (AGs) are the basic tool for structural pattern recognition and have been widely used in 
the literature since they were proposed by Tsai and Fu in the latest seventies [17]. Whereas a graph 
consists of a set of nodes (or vertices) representing pattern primitives and a set of edges (or arcs) 
representing relations between the primitives, AGs incorporate semantic information about the properties 
of both the primitives and the relations, through the use of vertex and arc attributes, respectively.  
 
Function-Described Graphs (FDGs) have been introduced recently as a new compact representation of an 
ensemble of AGs for structural pattern recognition [7-9]. FDGs can be seen as a type of simplification of 
the general random graphs proposed by Wong et al. [10], that borrow from them the ability to 
probabilistically model structural attribute information, while improving, with respect to first-order 
random graphs [10, 11], the capacity to record structural relationships that consistently appear throughout 
the data. FDGs do this by incorporating qualitative knowledge of the second-order probabilities of the 
graph elements, that are expressed as binary relations (Boolean functions) between vertices or arcs.  
 
Three methods for building FDGs from a set of attributed graphs have been presented elsewhere. The first 
one synthesises an FDG in a supervised manner [8], while the other two use the dynamic and hierarchical 
clustering algorithms, respectively [12]. The problem of matching AGs to FDGs for recognition or 
classification purposes has been studied from a Bayesian perspective [18]. A distance measure between 
AGs and FDGs may be derived from the principle of maximum likelihood, but robustness is improved by 
considering only locally the effects of extraneous and missing elements. Hence, the distance measure that 
will be presented in this section considers the costs of the matching of vertices and arcs using the edit 
operation approach [19], but incorporates as well the second-order relations between vertices or arcs to 
enforce the structural properties that are common in the modelled set of AGs. A branch-and-bound 
algorithm has been proposed to compute this distance measure together with its corresponding optimal 
labelling [9]. Because of the exponential cost of this method in the worst case, three efficient but 
approximate algorithms have been also proposed and compared to compute sub-optimal distances 
(actually matching scores) between AGs and FDGs [20]. 
 
In the rest of this section, we recall the definition of both AGs and FDGs, describe the distance measure 
between them and present the results obtained in some experimental tests in two applications: face 
recognition and 3D-object recognition. Extended information about FDGs and the techniques used to 
synthesise FDGs from a set of AGs and to compute optimal or sub-optimal distances between AGs and 
FDGs can be found in [9].  
 
4.1. Attributed graphs 
 
Let  be a directed graph structure of order n where ( evH ΣΣ= , ) { }nkvkv ,...,1==Σ  is a set of vertices (or 
nodes) and { }{ }jinjieij ≠∈ ,,...,1,

v∆
e =Σ  is a set of edges (or arcs). We use the term graph element to refer to 

either a vertex or an edge. Let  and be the global domains of possible values for non-null attributed 
vertices and arcs, respectively. A null value of a graph element is represented by 

e∆
Φ . 



 
Definition 1.  An AG G over (  with an underlying graph structure )ev ∆∆ , ( )H ev ΣΣ= ,  is defined to be a pair 

 where V  is an attributed vertex set and ( AV , ) )( vv γ,Σ= ( )eeA γ,Σ=  is an attributed arc set. The mappings 

ωγ ∆→Σvv :  and εγ ∆→Σee :  assign attribute values to vertices and arcs, respectively, where { }Φ∪∆= eε∆  
and . { }Φ∪∆= vω∆

 
A complete AG is an AG with a complete graph structure H (but possibly including null elements). An 
attributed graph G  of order n can be extended to form a complete AG ( AV ,= ) ( )','' AV=G  of order k , 
by adding vertices and arcs with null attribute values 

nk ≥,
Φ . We call G’ the k-extension of G. 

 
4.2. Function-described graphs 
 
Definition 2. A FDG F over  with an underlying graph structure ( ev ∆∆ , ) ( )εω ΣΣ= ,H  is defined to be a 
tuple (  such that )

)

RPBW ,,,
 
1. ( ωω γ,Σ=W  is a random vertex set and  is a mapping that associates each vertex ωωωγ Ω→Σ: ωω Σ∈i  
with a random variable )  with values in ∆ . ( ii ωγα ω= ω

2. ( εε )γ,Σ=B  is a random arc set and εεεγ Ω→Σ:  is a mapping that associates each arc εε Σ∈kl  with a 
random variable ( )klj εγβ ε=  with values in . ε∆

3.  are two sets of marginal (or first-order) probability density functions for random vertices 
and edges, respectively. This is,  and 

( εω PPP ,= )
{ }nipP i ≤≤= 1),(aω { }mjqP j ≤≤= 1),(bε   (being m the number of 

edges), where )Pr()( aa =≡ iip α  for all ω∆∈a  and )) Φ≠≡ Pr( 21 ∧Φ≠= jjj ααβ b(j bq  for all b  such that ε∆∈

21, jj αα  refer to the random variables for the endpoints of the random arc associated with jβ . By 
definition, 1) =ΦPr( 2 =1 ∨Φ=Φ= jjj ααβ . 
4. )  is a collection of boolean functions defined over pairs of graph elements (i.e. 
relations on the sets of vertices and arcs) that allow the incorporation of qualitative second-order 
probability information.  and  are the vertex antagonism and arc antagonism functions, 
respectively, where  is defined by 

( εωεωεω EEOOAAR ,,,,,=

A
: ×ΣωωA

ω

Σ
εA
}1,{0→ω ( ) ( ) 0Pr1, =Φ≠∧Φ≠⇔= jijiA ααωωω , and similarly, 

{ }1,0: →Σ×Σ εεεA  is defined by ( ) ( ) 0Pr =Φ≠∧Φ≠⇔ ji ββ1, =pqklA εεε , where ( kli )εγβ ε=  and 
( )pqj εγβ ε=

{ }1,0: →Σ×Σ ωωω

. In addition, O  and  are the vertex occurrence and arc occurrence functions, where 
 is defined by 

ω εO

O ( ) ( ) 0Pr1, =Φ=∧Φ≠⇔= jijiO ααωωω , and { }1,0: →Σ×Σ εεεO  is defined 
by ( ) ( ) 0=Pr1, Φ≠⇔= ipqklO Φ=j∧ ββεεε . We say that two graph elements (of the same type) are co-
occurrent if and only if the occurrence relation applies to them in both directions. Finally,  and  are 
the vertex existence and arc existence functions, where 

ωE Eε

{ }1,0: →Σ×Σ ωωωE  is defined by 
( ) ( ) 0=ΦPr1, =∧Φ=⇔= jijiE ααωωω , and { }1,0: →Σ×Σ εεεE  is defined by 
( ) ( ) 0=ΦPr1, ∧Φ=⇔= jipqkl ββεεε =E .  
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Fig. 3. An FDG with an underlying graph structure composed by 4 vertices and 6 arcs. There is also an antagonism 
relation between vertices and and an occurrence relation from arc  to arc . The probability density 
functions stored in the vertices and the arcs are not shown. 

1ω 3ω 2,4ε 2,3ε

 



A random element δ  of an FDG is a null random element if its probability of instantiation to the null 
value is one, 1)Pr( =Φ=δ . A complete FDG is an FDG with a complete graph structure H. An FDG 

 of order n can be extended to form a complete FDG ( RPBWF ,,,= ) ( )',',','' RPBWF =  of order k , by 
adding null vertices and null arcs and extending appropriately both the set of probability density functions 
and the boolean functions that relate graph elements. We call F’ the k-extension of F. 

nk ≥,

 
4.3. Distance measure between AGs and FDGs 
 
Let G’ be the k-extension of an AG G and F’ be the k-extension of an FDG F, both defined over a 
common attribute domain , where k is the sum of the number of vertices in G and F. Let 

 be a mapping that labels graph elements, which is actually defined as a pair of morphisms 
, where  and 

( ev ∆∆ ,

wΣ

)

)
'': FGf →

( ev fff ,= vvf →Σ: εΣ→Σeef :  apply on vertices and arcs, respectively. 
A reasonable choice for the set H of valid morphisms f is to require a one-to-one mapping between 
vertices of the extended graphs and to determine the arc mapping from the vertex mapping assuming 
structural coherence. In addition, the relative order between arcs must be preserved when dealing with 
planar graphs. A global cost  can be associated with each f in H, and the distance measure between G 
and F is defined as the minimum of all such costs: 
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Now, the global cost C  is defined with two terms that depend on the first-order probability information 
and six more terms that depend on the second-order constraints stored in the FDG, 
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These eight terms are weighted by non-negative constants  to , to compensate for the different 
number of elements in the additions as well as to balance the influence of second-order costs with respect 
to first-order costs in the overall value. 
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The individual costs caused by vertices are defined using the probabilities stored in the FDG as 
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where  is a threshold on low probabilities that is introduced to avoid the case PrK ( )0ln . In the case of the 
arcs, the individual costs are defined using the arc conditional probabilities as follows. Let ( ) mije e b=γ  in 
the AG arc and let ( ) nab βεγ ε =  in the matched FDG arc. Then, in general,  
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However, if either  or is a null extended vertex in the AG, then the conditional probability )q  is 
not applicable and must be replaced by the conditional probability 

iv jv ( mn b

( )Φ=∨Φ== bamn ααβ bPr , which is 1 
if b  and 0 otherwise. Φ=m

Some second-order costs are added to the global cost of the labelling when second-order constraints 
(antagonism, occurrence, existence) are broken. Eqs. (5)-(7) show the second-order costs, which can be 
only 1 or 0, associated with the three relations of antagonism, occurrence and existence between pairs of 
vertices. The costs derived from the second-order relations between arcs are similarly defined [9]. 
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4.4. Experimental tests and results 
 
The previous matching measure between AGs and FDGs has been applied in different contexts, for 
example, for face recognition [21] and for 3D-object recognition [7,9]. Next, some tests and results on 
these two applications are summarised. 
 
4.4.1. Face recognition 
 
Fig. 4 displays the node set of the graph for face representation and Fig. 5 shows the result of the feature 
extraction process from which the graph information is obtained. Some of the distances between the 
extracted nodes are represented as arc attributes. 

 

   
                 Fig. 4. Node set for face representation.                        Fig. 5. Feature Extraction.  

  
 Recognition 

ratio (%) 
Full face 

data 
20% 

occlusion 
40% 

occlusion 
    60% 
occlusion 

80% 
occlusion 

Data Set 1 
LS 1.1/TS 1.2 

95.2 90.0 86.8 80.0 58.8 

Data Set 2 
LS 2.1/TS 2.2 

95.2 93.6 90.0 85.6 69.6 

Average  95.2 91.8 88.4 82.8 64.2 
(a) FDG synthesis and matching using fuzzy discretization 

  
 Recognition 

ratio (%) 
Full face 

data 
20% 

occlusion 
40% 

occlusion 
    60% 
occlusion 

80% 
occlusion 

Data Set 1 
LS 1.1/TS 1.2 

90.0 87.6 79.6 75.6 57.2 

Data Set 2 
LS 2.1/TS 2.2 

92.0 92.4 87.6 82.0 65.6 

Average  91.0 90.0 83.6 78.8 61.4 
(b)  5 – Nearest neighbours 

  
Fig. 6. FDG and 5-NN results. 

 



In the case of face recognition, to carry out identification experiments we used images of a hundred 
people. These people were divided into two groups of 50 people each (a and b) and starting from each 
one, training sample FDGs (a1 and b1) and a test sample FDGs (a2 and b2) were generated using five 
images per person. These images come from the Libor Spacek’s database at the Department of Computer 
Science, University of Essex. 
 
Images are 24-bit colour, 180x200 pixels ones, which were shot at a fixed distance between the video 
camera and the subject, with a homogenous background and a constant artificial illumination. Samples 
present people of any sex, several races with or without beard and/or glasses. Training was done using 
samples a1 and b1, and tests using samples a2 and b2.  The classification results obtained by using the 
graph matching technique based on FDGs are displayed in Figure 6 and compared to the results achieved 
by means of the k-nearest neighbour technique with k=5. 
 
As it can be seen in Fig. 6, the recognition ratio using the graph matching technique was of 95.2% using 
all the face data (the whole graph) and gracefully degraded by occluding face parts (removing subgraphs) 
down to a 64.2% when an 80% of the face was occluded (just one of the five subgraph components was 
used). These results were significantly better than those obtained by the 5-NN technique. 
 
4.4.2. 3D-object recognition 
 
We took sixteen views from four 3D colour objects. In each view, the angle was incremented 22.5 
degrees. The views taken with the angles 0, 45, 90, 135, 180, 225, 270 and 315 were used to synthesise 
the FDGs in the learning process. The other views, 22.5, 67.5, 115.5, 157.5, 202.5, 247.5, 292.5 and 337.5 
composed the test set. Images were segmented in regions and an adjacency graph was extracted in which 
vertices represent these regions with the average hue as the attribute. There was an arc between each pair 
of adjacent regions as shown in Fig. 7. 
 
The classification results are displayed in Table 1. The FDGs were synthesised using two different 
approaches: dynamic and hierarchical clustering. The results of the former technique were much better 
because the presentation order was relevant as given by the rotating view, whereas this information is not 
exploited in the latter technique. Again, the FDG-based approach outperformed the k-nearest neighbour 
technique (for k=1 and k=3). 
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Figure 7. The 4 objects, their segmented views and their corresponding AGs. 

 
 
Table 1 
Classification correctness of  the FDGs synthesised with two different learning methods and the k-nearest neighbours. 

 
 Correctness 

FDG dynamic synthesis 78% 
FDG hierarchical synth. 51% 
1- Nearest Neighbour 56% 
3- Nearest Neighbour 59% 

 
 



5. Conclusions 
 
In this paper we have presented several graph-based representations and techniques applied to image 
modelling, processing and analysis. Our main interest has been to show how these techniques can be used  
in practical cases for robot vision, covering the stages from low level image segmentation to high level 
3D object recognition. Graph techniques permit to represent image objects and scenes in very natural 
way, without losing the critical information of each one of the parts that belongs to the image object or 
scene. The graph-based representation and techniques presented here avoid the computational complexity 
of typical graph problems while offering a good performance in practice. Some experimental results have 
been shown for image segmentation, perceptual grouping and object recognition. 
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