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Abstract--In this paper, a new formalism that permits to represent a non-trivial class of context-sensitive 
languages, the Augmented Regular Expressions (AREs), is introduced. AREs augment the expressive power of 
Regular Expressions (REs) by including a set of constraints that involve the number of instances in a string of 
the operands of the star operations of an RE. An efficient algorithm is given to recognize language strings by 
AREs. Also a general learning method to infer AREs from examples is presented, that consists of a regular 
grammatical inference step, a DFA to RE transformation, an RE parsing of the examples, and a constraint 
induction process. Copyright © 1996 Pattern Recognition Society. Published by Elsevier Science Ltd. 

Context-sensitive languages 
Grammatical inference 
Syntactic pattern recognition 

Finite automata Formal languages 
Learning Parsing Regular expressions 

1. INTRODUCTION 

One of the causes for the limited use of the syntactic 
approach to pattern recognition °-3) has been the lack of 
efficient representations and related methods to deal 
with the context-sensitive structure of the patterns that 
appear in most real-world problems, either in vision, 
speech recognition, or natural language processing. 
Context-sensitive grammars ~4"5) are not a good choice, 
since their parsing is computationally expensive, there is 
no available learning algorithm to infer them from 
examples and/or queries, and (less important) the 
represented language can hardly be imagined from the 
observation of the grammar rules. Augmented Transi- 
tion Networks (ATNs) (6) are powerful models that have 
been used in natural language applications, but which 
are very difficult to infer automatically. (7) Pattern 
languages, (8~ though not comparable to Chomsky's 
hierarchy of languages, provide a limited mechanism 
to take into account some context influences, namely, 
the repetition of variable substrings along the strings of 
a language. The inductive inference of pattern languages 
has been studied and some learning algorithms pro- 
posed. (9) Nevertheless, the expressive power of pattern 
languages is clearly insufficient to cope with many 
important context-sensitive structures (e.g. symmetric 
planar shapes). 

In this paper, a new yet simple formalism that permits 
to describe, recognise and learn a class of non-trivial 
context-sensitive languages, the Augmented Regular 
Expression (ARE), is introduced. AREs are neither the 
regular-like expressions, ~4) that are known to describe 

the family of context-free languages, nor a type of 
regulated rewriting (g) (although there is a certain 
resemblance between them). Roughly speaking, an 
ARE is formed by a regular expression in which the 
stars are replaced by natural-valued variables (called 
star variables), and these variables are related through a 
finite number of linear equations. 1 Figure 1 displays 
some patterns that can be represented by AREs. 

After recalling some basic definitions and properties 
of regular expressions (Section 2), AREs and the 
components which form them are formally defined in 
Section 3. Likewise, the relationships among the classes 
of languages represented by context-sensitive grammars, 
AREs, and pattern languages are discussed. In Sec- 
tion 4, an efficient method to recognize a string as 
belonging or not belonging to the language represented 
by an ARE is presented. The method is split in two 
stages. In the former, the string is parsed with respect to 
the underlying RE (optionally with the help of an 
equivalent DFA) to yield a data structure containing 
instances of the star variables for that string. In the 
latter, the satisfaction of the constraints included in the 
ARE is checked on the star instances resulting from a 
previous successful parsing. In Section 5, a practical 
approach to learning AREs from examples is proposed. 
In this case, four main steps are involved. The first one 
consists of a regular grammatical inference step, aimed 
at obtaining a DFA that generates a regular superset of 

lNote that regular expressions are reduced to AREs with zero 
equations among the star variables. 
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Fig. 1. Some patterns that can be described by AREs. 

the target language. Then, an RE equivalent to the 
inferred DFA is selected as the basic component of the 
ARE. Afterwards, the star instances corresponding to 
the example strings are determined by parsing the 
strings. Finally, the constraints of the ARE are induced 
by analysing and solving a tree of linear systems formed 
with the registered instances of the star variables. 

2. R E G U L A R  E X P R E S S I O N S  

2.1. Definition and fundamentals 

Definition 2.1. Let ~,, = { a l , . . . ,  am} be an alphabet (a 
finite set of symbols) and let/~ denote the empty string. 
The regular expressions over ~ and the languages that 
they describe are defined recursively as follows. 

1. 0* is a regular expression and describes the empty 
set. 

2. )~ is a regular expression and describes the set {,~ }. 
3. For each ai C ~(1 < i < m),ai is a regular  

expression and describes the set {ai}. 
4. If P and Q are regular expressions describing the 

languages Lp and L a, respectively, then (P + Q), (PQ), 
and (P*) are regular expressions that describe the 
languages Lp U L 0 (their union), LpLQ (their concatena- 
tion) and Lp (the closure of Lp), respectively. 

5. No other expressions are regular unless they can 
be generated in a finite number of applications of the 
above rules. 

By convention, the precedence of the operations in 
decreasing order is * (star), (concatenation), + (union). 
This precedence together with the associativity of the 
concatenation and union operations allows omittance of 
many parentheses in writing a regular expression. 

A language is said to be regular if and only if it can 
be described by a regular expression (RE). We write 
L(R) for the language described by RE R. Two regular 
expressions P and Q are said to be equivalent, denoted 
by P = Q, if they describe the same language. The 
following are some basic equivalence rules that involve 
the star operation: 

;~* = ~  (1) 

0" = k (2) 

R'R* = R* (3) 

RR* = R*R (4) 

(R*)* = lC (5) 

)~ + RR* = R* (6) 

(PQ)*P = P(QP)* (7) 

(P + Q)* = (P'Q*)* = (P* + Q*)* (8) 

(P + Q)* = P*(QP*)* = (P*Q)*P* (9) 

It is well known (Kleene's theorem ~5)) that every 
language accepted by a finite-state automaton (FSA) can 
be represented by a regular expression and every 
language denoted by a regular expression can be 
recognized by an FSA. Given an FSA A, there can be 
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Recognition and learning of a class of contextensitive languages 165 

many equivalent REs R such that L(A) = L(R). Several 
algorithms have been proposed to find a regular 
expression that describes the language accepted by a 
given FSA. (5'1°) By selecting a specific algorithm, a 
deterministic mapping ~b can be established from FSA to 
REs, this is, a canonical RE R can be chosen for each 
FSA A, R = ~(a) .  

2.2. A basic method to find an RE describing the 
language accepted by a given FSA 

A basic method proposed by Arden (l°'H) is recalled 
here. This method is used with some modifications to 
derive REs from FSA in learning AREs from examples 
(see Section 5). The following theorem, the proof of 
which can be found in Kohavy, (1°) is behind Arden's 
method. 

Theorem 2.1. Let Q, P and R be regular expressions over 
a finite alphabet. Then, if L(P) does not contain A, the 
equation R = Q + RP has a unique solution given by 
R =QP*. 

Let A = (E,Q,  3 ,q0,F)  be an FSA, where E is a 
finite set of input symbols (alphabet), Q is a finite set of 
states, q0 E Q is the initial state, F C Q is a set of final 
states, and di : (Q x ~,) --* 2 0 is a state transition 
function. Let us assume that Q has n states and a total 
order (<) is established among them, which can be 
arbitrary except that the first element is the initial state 
q0, i.e. Q =  (qo , . . . ,qn- l ) .  This order can also be 
applied to the final states, i.e. F = (qfl,- • •, ~ 1 ) '  where 

O< fl  < . . .  <flFl < n - - 1 .  
Let c~ be the RE that denotes the set of strings from 

E* that take the automaton from state qi to state qj 
without passing through a state qk with k < l; c~ will 
include only the direct transitions from qi to qj, whereas 
c~ ° will be the whole set of strings that lead from qi to q~. 
Let Rj be a synonym for c~°j, the RE that describes the 
set of strings that take the automaton from the initial 
state qo to state qj It is clear that a valid RE for L(A) is 
given by 

R = R A + . . .  +Rfe, (10) 

Hence, a procedure that determines all the Rj, for 
0 < j < n, may be used to yield R. Such a procedure is 
given by solving the following system of symbolic 
equations: 

using the rule of Theorem 2.1, A ~ L ( P ) ~  (Rj = 
Q + RiP ¢* Rj = QP*), and Rj is substituted into the 
rest of equations (~+1), i # j. Whenever Theorem 2.1 is 
not applicable, the right hand side of the equation can be 
directly used to replace Rj. 

The  above  p r o c e d u r e  y i e l d s  a l l  the  REs  
a ~ ( l _ < l _ < n , 0 < j < n , 0 < i < l ) ,  although some of 
them may be empty. A subset of 2n 2 of these REs can be 
used to parse a string by an RE efficiently with the help 
of the source FSA A, as shown in Alqutzar and 
Sanfeliu. (12) However, it must be noted that the time 
complexity of Arden's algorithm is exponential 0(2 ") in 
the number of states of the given FSA in the worst case, 
due to the fact that the length of the returned equivalent 
RE might be exponential in n. This occurs, for example, 
when the FSA is fully connected (i.e. its state transition 
diagram is a clique). Nevertheless, in many cases, when 
the given FSA presents some limitations on the 
connectivity and degree of circuit embedment in its 
state transition graph, a run-time polynomial in n can be 
achieved in practice (e.g. for FSA equivalent to REs of 

the form a*la 1 . . .  a*ai. . ,  a*nan(ai E ~),  a run-time cubic 
in n is experimentally obtained). Indeed, a best-case 
complexity of ~(n 3) can be shown by realizing that a 
number cubic in n of REs c~ are yielded (see above). 

3. AUGMENTED REGULAR EXPRESSIONS 

In order to define the Augmented Regular Expres- 
sions (AREs) some preliminary concepts are needed, 
which are introduced in the following subsections. 

3.1. Star variables and star tree of a regular expression 

Definition 3.1. Let R be a given RE and let us say that R 
includes ns star symbols (ns _> 0). The set V of star 
variables associated with R is an ordered set of natural- 
valued variables { v l , . . . ,  Vns}, which are associated one- 
to-one with the star symbols that appear in R in a left-to- 
right scan. 

Let pos(V,i) be a function 2 that returns the position in 
R of the star symbol associated with the star variable Vg; 
moreover, i f p  is the position in R of a star symbol, then 
i = p o s - l ( V , p )  gives the index of the corresponding 
star variable vi. The function pos can be used to order 
the set V : viv j ¢ff pos(V, i) < pos(V,j).  

Definition 3.2. For vi, vj E V, we say that vi contains vj if 
and only if the operand of the star associated with vi in R 

(eg): R0 = R0otg 0 + Rlc~0 
(eT): RI ---- R0o~gl + RlO~71 

(e~_l): Rn-l = g0c~g(n_l) + glc~7(n_l) 

+ "'" + Rn 10~(n-1) 0 

+ . . .  + Rn-lc~n 1)1 

+ "'" + Rn lC~n_l)(n_ U 

+~  

where e] are labels to identify each equation. This 
system can be solved in n steps. At each step from 
j = n - 1 down to j = 0, equation (3 ÷1) is processed 2Actually, it can be represented as an attribute of each vi. 

cetto
Rectangle



166 R. ALQUI~ZAR and A. SANFELIU 

includes the star corresponding to vj; and we say 1) i 
directly contains vj if  and only if v i contains vj and there 
is no vg E V such that vi contains Vk and Vk contains vj. 

Definition 3.3. Given an RE R, its associated star tree 
J -  = (N, E, r) is a general tree in which the root node r 
is a special symbol, the set of nodes is N = V U {r}, and 
the set of edges E is defined by the containment 
relationships of the star variables in the following 
manner: 

i) for all the star variables vi E V that are not directly 
contained by other star variables, an edge (r, vi) is 
created (vi is said to be a son of r), and therefore vi is 
located in the first level of the tree; 3 

ii) for all vi, vj C V, if vi directly contains vj, then an 
edge (vi, vj) is created (and vj is said to be a son of vi). 

Furthermore, let us assign an integer identifier to each 
node of the star tree ~--: let the identifier of the root r be 
0, and let the identifier of any other node be the index i 
of the star variable vi corresponding to the node 
(1 < i < ns). A simple algorithm to build the star tree 
~-  associated with a given RE R has been reported, (lz) 
with a time complexity of O(I R I .h(R)),  where h(R) is 
the depth of non-removable parentheses in R. 

A star variable v can take as a value any natural 
number, whose meaning is the number  of consecutive 
times (cycles) the operand of the corresponding star (an 
RE) is instantiated while matching a given substring. In 
such a case, we say that the star variable is instantiated, 
and sometimes we refer to its value as an actual 
instance. For computational purposes, we will see that it 
is useful to assign a special value, say - 1 ,  to a star 
variable v when its father in the star tree 9 -  is 
instantiated but v is not during the matching process. 

3.2. Star instances data structure 

Since an RE R describes a language L(R) of strings 
(over E), it is convenient to parse a given string s E E* 
with respect to R. A parsing algorithm must return yes  or 
not depending on whether s E L(R) or not, and in the 
first case, it must also return a kind of " ins tance"  of R 
that just  describes s (something similar to a derivation 
tree in parsing a string by a grammar). An RE R is 
ambiguous if there exists a string s E L(R) for which 
more than one " instance"  of R can be built. Next, a data 
structure is presented which is designed to store the 
information of the instances of the star variables that 
occur in parsing a string s by an unambiguous RE R. 
This structure can be regarded as a partial representation 
of the " ins tance"  of R for s, since the matched sub- 
expressions themselves are not recorded. 

When a string s is parsed by an unambiguous R E  R, 
the associated star variables vi C V(1 < i < ns) will be 
instantiated zero, one, or more times, depending both on 
the instances of the star variables that directly contain 

them and on which terms of the union-type REs in R are 
selected to parse a substring of s. If the operand of a star 
in R consists of a union of two or more REs (called 
terms), which term is used for each match of the 
operand can be traced. Consequently, for each cycle, 
only the star variables that are located in the matched 
term can be instantiated, while the special value - 1  can 
be given to the rest of star variables that are directly 
contained by the same father. In this way, all the star 
variables that are brothers in the star tree 3-  will have 
the same structure of potential instances for a given 
string, whether they are actually instantiated or not. Let 
us put it more formally. 

Let S I s ( V ) =  {S l s (V l ) , . . . , S l s ( vns ) }  be the set of 
instances of the star variables in V resulting from the 
parsing of a string s by the RE R (from which V has been 
defined). Each member of the set is a list of lists 
containing instances of a particular star variable: 

Vi c [1..ns] : Sls(vi) (1il,. i : . . ,  ln l is ts ( i ) )  

where nlists(i) > 0 

Vi C [1..ns]Vj E [1..nlists(i)] : tj = ( e j l , . . . ,  ej(nelems(i,j))) 

where nelems( i , j )  > 1 

The instances stored in the lists are organized 
according to the containment relationships of the star 
variables described by the star tree ~ ' .  This is carried 
out by defining for each list lj two pointersfather_list(lj)  
and father_elem(Ij)  that identify the instance of the 
father star variable from which the instances of vi in lj 
are derived. 

For all the star variables that are in the first level of 
3-,  the following structure arises: 

Vvi, (r, vi) @ 9 =¢, SIs(vi) = (lil) A 1~ = (eiu) 

A father_list( lil ) = - 1  

A father_elem(l~ ) = - 1 

i.e. nlists(i) = 1 and nelems(i ,  1) -- 1; furthermore, if vi 
is not instantiated in parsing s then e~l = - 1  else 
e~l > 0 is the number  of matches of the star operand in 
the only instance of vi. Otherwise, let vf be the father of 
vi in 3-. For all the star variables that are in the second 
level of ~-, the list of instance lists is either empty 
(when ~1 < 0) or its structure is: 

Vvi, (r, vf), (vf, vi) C J A ~ ,  > 0 => 

s i , ( v , ) = ( l ' , )  ' ' ' All  = ( e l l ,  , - ' - e l ( ~  )) 

A fatherdis t ( l i l )  = 1 

A fa ther_elem(  l~l ) = 1 

i.e. nlists(i) = 1 and nelems(i ,  1) = ~1;  and, if vi is not 
instantiated in the k-th match of the star operand of v¢ 
then e~k = --1, else e~k > 0 is the number  of matches of 
the star operand of vi in the k-th cycle. Finally, for all the 
star variables vi that are in the higher levels of 3 -  (with 
father v¢), we have the following general rule: 4 

4This rule is also met, in fact, by the star variables in the 
3The root r is at level 0. second level of Y. 
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nlists(i) = #{4k  I 4k > 0} A Vj E [1..nlists(i)]: 

nelems( i , j)  = 4k '  A father_list( l~) = j '  

A fatherelem(lj) = k' 

and ejk is either a natural (the instance of vi in the k-th 
cycle of the instance of vf identified by the pointers 
{j', k'}) or - 1  (if vi is not instantiated in such a cycle). 
Fig. 2 shows an example of the star instances for a given 
string and RE, in which the star tree ~'- has four levels. 
Two algorithms for unambiguous RE  parsing that build 
the star instances structure have been reported. °2) 

3.3. Definition and expressive power  o f  AREs  

Definition 3.4. An Augmented Regular Expression (or 
ARE) is a four-tupla (R, V, 9"-, L), where R is a regular 
expression over an alphabet ~,  V is its associated set of 
star variables, Y is its associated star tree, and L is a set 
of independent linear relations { l l , . . . , l nc}  each one 
involving the variables in V, that is 

li = ailVl q- ' ' '  q- aijvj q- " ' '  + ai(ns)Vns + aio = 0 

for 1 < i < nc 

where ns is the number of star variables and nc 
(0 < nc < ns) is the number of relations (or con- 
straints). A preferred equivalent formulation of the set 

L is given by partitioning the set of star variables V into 
two subsets V i"d, V dep of independent and dependent star 
variables, respectively, and expressing the latter as linear 
combinations of the former: 

! ind - -  t ind li -~ v dep =- ailv 1 + ' "  d-aijv j -}- . . .  
,' ind t 

q- ai(niVni q- aio , for 1 < i < n c  

where ni and nc are the number of independent and 
dependent star variables, respectively. 

The definition of V restricts the allowed values for the 
star variables to natural numbers, Vk E [1, ns] : vk C JV. 
Consequently, the set of linear relations L is only well- 
defined when the involved variables take natural 
numbers as values. This also implies that some of the 
star variables may be implicitly constrained to a smaller 
range inside the natural numbers (e.g. vk _> z, z c Y ;  vk 
always odd; vk always even; etc.). Moreover, the 
coefficients aij(or a~j) of the linear relations will always 
be rational numbers. 

Definition 3.5. Let R = (R, V, ~--, L) be an ARE, the 
language L(R) represented by R is the set of strings 
from E* such that a E L(R) and there exists a parsing of 
a by R in which the star instances SI~(V) satisfy all the 
l inear constraints in L (let the predicate satisfy 
(SI~ (V), L) denote this condition). 

R =  (a(b(ce*c+df*d)*)*)* R(V/*) = (a(b(ceV'c+dfV2d)V')v') v5 
V={Vl,V2,V3,V4,V5} ~-= (VUr,{(r,  v5),(v5,v4)~(va,v3),(v3~vl),(v3,v2)},r) 

s = a b c c d f f d c e c b d d b d f d c e e c a b c e e e c  

S i s ( V 5 )  = ((2) {-1'-1}) 

S i s ( v 4 )  = ((3 1) {1'1}) 
Sls ( l :3 )  = ((3 1 2){1'1}(1) {1'2}) 

Sls(Vl) = ((0 - 1 1){l'1}(-1){1'2}(-1 2){1'3}(3) {2'1} ) 
Sl=(v2) = ( ( - 1  2 - 1){1'1}(0){1'2}(1 - 1){1'3}(-1) {2'1)) 

Star tree 
V 
4 

3 

V V 
1 2 (0 -1 

r 

(3 1 ~ )  Star instances 

(3 1 2~)) ( ~ 1 )  

Fig. 2. An example of star instances data structure. 
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The AREs permit description of a class of context- 
sensitive languages by imposing a set of rules that 
constrain the language of a regular super-set. A very 
s imple  example  is the language  of  rec tangles  
{amb~amb"]m,n >_ 1}, which is well known to be 
context-sensitive (see grammar CSG1 in Appendix A), 
and which is descr ibed by the ARE 1~ 1 = (R1, 
V1, if'-l, L1), where 

Rl = a*ab*ba*ab*b 

V 1 ~--- {Vl, V2, V3, V4} 

RA ( V l / * )  ~--- a v~ abVZbaV3abV4b 

9-1 = (El U r, {(r, vl), (r, v2), (r, v3), (r, 124)}1 r) 

LI = {v3 = Vl,V4 = v2} 

(i.e. V ina = {Vl, v2} g dep = {v3, v4} 

and nc = 2). 

However, more complex languages with an arbitrary 
level of star embedment and multiple linear constraints 
(even among stars at different levels of embedment) can 
be described as well by the ARE formalism. Consider, 
for instance, the ARE R2 = (R2, V2, ~ - 2 , L 2 )  with 

R2(V2 /*  ) = (C vl (dV2bV3)V4cVSaV6cVT(bVsdV9)VlOcVlleVl2) v'3 

and 

L 2 = {vii  = v 1 + v5 -- v7, 

V12 = V6~ 

v2 = v 4 - -  1, 

V3 = V4 -- 1, 

v8 = 0.5v10 + 0.5, 

V 9 = 0.5V10 + 0.5} 

The set of constraints L2 (besides an unambiguity 
requirement  for parsing R2) implies  that v2,v3, 
v8,v9 _> 1;v4 > 2; and Vl0 will always be odd. Fig. 3 
and Fig. 8 show some examples that belong to the 

language represented by /)2, given an alphabet of 
graphical primitives {T a, ,7  b, ---* c, ~ d, 1 e}. The 
context-sensitive grammar CSG2 in Appendix A gen- 
erates L(/)2). The reader is encouraged to compare the 
compact and descriptive representation provided by the 
ARE R2 with the obscure grammar CSG2, that 
comprises 79 rules. 

The following question naturally arises: Can all the 
context-sensitive languages be represented by AREs? 
The answer is in the following theorem. 

Theorem 3.1. The Augmented Regular Expressions do 
not describe all the context-sensitive languages. 

Proof. The context-sensitive grammar CSG3 (see 
Appendix A) that generates the language {a k I k = 2 i 
Ai > 1} is a counter example. This language is not 
describable because AREs can only filter the range of 
values of the star variables through linear relations, and 
these relations only involve the star variables but not any 
external variable (such as i in L(CSG3)). Therefore, there 
is no ARE k = (R, V, ~'-, L) such that L can represent 
the constraint V 1 = 2 i A i _> 1 for R(V/*)  = a v'. [] 

The context-sensitive language {a k I k is a prime} is 
another counter example. Indeed, it seems reasonable to 
expect that a large class of CSLs will not be described 
by AREs either, due to the limited type of context 
constraints that can be represented. 

Consider  now the language {xx I x E ( 0 +  1) +} 
generated by the context-sensitive grammar CSG4. 
L(CSG4) corresponds to the pattern language (8) xx over 
the binary alphabet E = {0, 1}, where the variable x 
stands for any string in P,+. The ARE (0 + 1) v~ (0 + 1) ~ 
with {v2 =Vl}  cannot express that the substrings 
associated with the instances of the operands of the 
stars denoted by Vl and v2 are identical. However, if the 
equivalence rule (0 + 1)* = (0" 1)*0" is applied before, 

Primitives a b / ~ / ~ / ~  
and ~ c 

symbols e d 

../N 

- - N / N / - A  

Sl = c5 d3 b3 d3 b3 d3 b 3 d3 b3 c3 al° c3 b2 d2 bZ d2 bZ d2 c5 e l° c 6 dbdbc8 al ° c 4 bdcl° e 10 

[R2(V2/*) = (c v' (dV2b~3)V4cV~aV6cVT(bV"dV")V'°cV"eV'2)v"] 

[Slsl (v13) = ((2){-1'-1})] 

Sls,(vl) = ((5 6) {1'1}) 
Slsl (Vs) = ((3 8) {1'1} ) 

Slsl(v6) =- ((10 10) {1'1}) 
Slsl (V4) = ( (4  2) {1'1l) 

SI$1(V2) = ((3 3 3 3){1'1}(11) {1'2}) 
Sls~(V3) = ((3 3 3 3){1'1}(11) {1'2}) 

Sls,(V7) = ((3 4) {1'1}) 

gist(Vii) = ((5 10) {1'1}) 
3151 (v12) = ((10 10) {1'1}) 

Slsl (Vl0) = ((3 l) {1'1}) 
SIsI(V8) = ((2 2 2){1'1}(1) 0'2}) 
SIs,(v9) = ((2 2 2)0'1}(1) {1'2}) 

Fig. 3. An example of pattern recognized by the ARE R2 with its corresponding star instances. 
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the ARE (0 v~ 1)Ov2Ov3(ov41)vsO v6 with {v5 = v2; v6 = v3; 
v4 = vl } is able to describe the above pattern language. 

Theorem 3.2. The Augmented Regular Expressions do 
cover all the pattern languages, but the size of an ARE 
describing a pattern language over E is exponential with 
respect to the number of alphabet symbols I E ]. 

Proof. Let p be a pattern language over E = { a l , . . . ,  
am} (m _> 2) including some finite number of variables 
{Xl, . . .  ,xl} (1 > 0). Each variable xi(1 < i < l) can be 
represented by an RE R ~ - - ( a l  ÷ ' " + a m ) * .  By 
applying repeatedly equation (9) an equivalent RE R~, 
without union operators is obtained that contains 2 m - 1 

~ /  

stars (this is easily shown by induction). Let Rz, be an 
ARE with no constraint such that the stars of R~ are 
replaced by independent star variables. Let t(i) be the 
number of occurrences of xg in p. Each occurrence x U of 

~ ¢  

x~ in p gives rise to a duplicate of Rz with new star 
~ l  ~ /  

variables: Rij. An ARE Rp describing the pattern 
language p can be stated by letting the star instances 

~ /  , . . 

of the AREs Ril be independent and estabhshing a set L 
of (2 m -  1). ~ l = l ( t ( i ) -  1) equations of  the form 
Pijk = Filk (1 _< i < 1; 2 < j  _< t(i); 1 < k < 2 m - 1). []  

On the other hand, it is obvious that the class of 
pattern languages (8) does not cover the languages 
represented by AREs. For example, the language of 
rectangles  L(/?l) and the context- f ree  language 
{ 0v~ IV20V~ I v2 = Vl + v3} cannot be described by any 
pattern language. 

4. STRING RECOGNITION THROUGH AUGMENTED 
REGULAR EXPRESSIONS 

The recognition of a string s as belonging to a 
language L(/~) can be clearly divided in two steps: 
parsing s by R, and if successful, checking the 
satisfaction of constraints L by the star instances SIs(V) 
that result from the parsing. If R is unambiguous, a 
unique parsing and set of star instances SIs(V) is possible 
for each s E L(R), and therefore a single satisfaction 
problem must be analysed to test whether s C L(/~). 

4.1. Parsing strings by REs to build the star instances 

Two algorithms for unambiguous RE parsing have 
been reported °2) which, given a string s and an RE R, 
respond whether s E L(R) or not, and in the first case, 
build the corresponding star instances SIs(V). The 
processing of the input string is clearly divided in two 
phases: the recognition and construction phases. The 
first algorithm uses the RE R (alone) for recognition. 
The construction phase is a kind of re-run of the 
recognition phase in which it is known in advance 
that the string will be successfully parsed by the 
RE, and therefore, the true instances of the star 
variables can be recorded. To this end, the current 
star variable that is involved in parsing is tracked, 
and the value of each new instance is computed by 
counting the number of consecutive matches of the 
operand of the related star. The time complexity of the 

first algorithm is O(1 s t • ]R 1) globally and for both 
phases. 

A more efficient parsing method is attainable if the 
unambiguous RE R has been obtained from an 
equivalent DFA A which is also given. This is the case 
if R has been inferred from examples by applying the 
DFA-to-RE mapping, described in Section 5, to the 
result of a DFA learning method. The second parsing 
algorithm (12) is such an efficient method which uses the 
DFA A, some of the REs a t yielded by Arden's 
algorithm, and the skeleton 5 of R. The key point is that A 
(instead of R) is used for recognition O([ s [), and that 
the path of visited states obtained, guides the construc- 
tion of the star instances structure for the input string s. 
There are two achievements that permit reduction of the 
time complexity of the construction phase also. The 
former is to locate the substrings of s that are associated 
with the cycles of the involved star-type REs by finding 
subpaths of visited states that start and end with the 
same state without passing through it. The latter is to 
select directly the term of the involved union-type REs 
that actually matches the corresponding substring with- 
out the need of attempting to parse the non-matched 
terms) ~2) Hence, the second algorithm has a time 
complexity of O(max{I skel(R) [, n. Is ]}), due to the 
construction phase, where n is the number of states of A, 
Is I and I skel(R)[ denote the lengths of the input 
string and the skeleton of R, respectively, and 
I skel (R) I<1 e I. 

4.2. Constraint satisfaction 

Algorithm 1 (in Appendix B) is proposed to evaluate 
the predicate satisfy(Sis(V), L) given a set of star 
instances, previously recorded in a successful parsing, 
and a set of linear constraints among the star variables. 
It provides the second step in recognizing a string 
through an ARE, and its theoretic time complexity is 

O(I L I . h ( Y  ). I VI . I (SIs(V)))  where ILl and IVI are 
the number of constraints and star variables, res- 
pectively, h(J-)  is the height of 9"-, and I ( S L ( V ) ) =  

n l i s t s ( i )  n l . . . .  ' maxi=l,lVl ~-~j=l e ems(I,j) is the maximal number of 
potential instances of a star variable (i.e. including those 
assigned to - 1 )  yielded by parsing s. 

It must be noted that every valid constraint can only 
involve a set of star variables which share a common 
structure of instances, i.e. the number of instances of 
each of them is the same, and these can be grouped, one 
instance of each variable, in rows, one row for each 
cycle of the instances of a common selected ancestor. In 
principle, this means that the set of related star variables 
should be brothers in .~- (and their father being the 
common ancestor). 

However, this is not exactly the case. It could happen 
that the values of the assigned instances of a certain son 
were constant for each instance of its father. In such a 

SThe skeleton of an RE describes R in terms of the languages 
corresponding to a determined subset of the paths of A and it is 
formed in a simplifying step after running Arden's algorithm 
(see Section 5). 
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case, a unique value might be associated with the 
father's instance and, furthermore, both values (of father 
and son instances) might be related by a constraint. In 
other words, regarding the star instances, the son would 
be promoted to a lower level in the tree and share with 
its father the instance structure determined by the 
instances of its grandfather; we could say that, with 
respect to the promoted son, the father is a degenerated 
ancestor and the grandfather is the housing ancestor. 
This promotion process could continue until a non- 
degenerated ancestor were found, for which the 
instances of the promoted variable would not have a 
common value for each instance of the ancestor, or until 
a default node were reached as a housing ancestor. This 
default node can be the root node r of the star tree or a 
selected ancestor (e.g. a housing ancestor that is shared 
with other star variables, as is explained next). Each 
time a star variable is promoted to a lower level, all of its 
redundant instances must be collapsed into a single one 
in order to keep the common structure of instances. The 
procedure  determine_ancestor_and_instances, (12) 
whose cost is O(h(J - ) . I (SIs (V)) ) ,  implements the 
process described. 

Moreover, even if a common housing ancestor is not 
found, a set of star variables can be related by a 
constraint whenever all of their housing ancestors are 
related by a strict equality. This fact ensures that a 
common instance structure is available, even though the 
star instances are not constant, as it occurs in the AREs 
describing pattern languages. For example, in the ARE 
(OVll)V2ov3(ov41)Vso v6 with {v5 = v2; 1:6 ~-- V3; V4 = V1}, 

the constraint v4 = Vl is valid because v5 and v2 are the 
housing ancestors of v 4 and vl, respectively, and 
V 5 :---- 1: 2. 

In summary, each constraint in L can only be satisfied 
by the star instances SIs(V), gathered during the parsing 
of a string s, if the star variables involved either share a 
common housing ancestor or their housing ancestors 
satisfy a strict instance equality. Let the constraint l~ in 
L(1 < i < nc) be expressed as 

vdi ep ~- ail Vil nd ÷ ' ' "  ÷ ailvl nd ÷ aio, 

where the set of independent variables fulfils the 
restriction that Vj E [1..l] : aij ~ O. 

In order to test 1 i the instances of the dependent star 
variable vdi ep, obtained in the parsing of s, are analysed. 
If there is no actual instance of vi dep, the constraint is 
considered to have been met. Otherwise, the deepest 
c o m m o n  ances tor  of  the star var iab les  {vai ep, 

ind ind 1 v I , . . . , v  l ~, i.e. the first common ancestor going 
from each of these nodes to the root of ~--, is selected as 
a candidate to common housing ancestor. To check the 

linear constraint I / i t  is mandatory that the instances of 
all the star variables involved in the relationship can be 
arranged in the structure of instances caused by the 
housing ancestor of vi dep (call it Vhi). Consequently, if  
any of them (say v~ nd) has a housing (non-degenerated) 
ancestor (say Vhk) that is deeper than the common 
housing ancestor candidate and the equation Vhk = Vhi is 
not met by the instances, then it means that a shared 
structure of instances is not available for the string s, and 
therefore, the constraint li is considered to be violated. 
In the particular case of a star variable of an ARE 
always having a constant value (vdi ep = aio) regardless 
of its level in ~-, its housing ancestor will be the root 
node, and obviously, all actual instances must be 
collapsed to the value aio to verify the constraint. 

Finally, when the housing ancestor of all the star 
variables in li coincides with their deepest common 
ancestor or all the housing ancestors are related by strict 
equality, the constraint is tested on all the actual 
instances of v/aep. To this end, these instances are 
arranged in a column vector B, whereas the correspond- 
ing instances of the involved independent variables are 
orderly put as columns in a matrix A, together with an 
al l - l ' s  column associated with the constant term of the 
constraint. Then, it suffices to test A - X :- B, where X is 
the vector of coefficients in the right hand side of the 
constraint. 

Consider the example of Fig. 3. Given the constraints 
L2 and the star instances displayed (for the string sl),  
Algorithm 1 would set v13 as housed descendant of 
the root node r, and the rest of star variables of v2 as 
housed descendants of v13. In the main loop, the six 
constraints of L2 would be checked. The first one, 
V l l =  vl ÷ v5 - v7, would lead to the successful test of 
the equality A .  X - - B  shown in Fig. 4. The rest of 
constraints would be verified in a similar manner. 
Therefore, the string Sl of Fig. 3 would be accepted as 
belonging to L(/~2). 

5. I N F E R R I N G  AREs F R O M  S T R I N G  E X A M P L E S .  

Now, let us consider the problem of learning AREs. A 
possible approach is to split the process in two main 
stages: inferring the underlying RE, and afterwards, 
inducing the constraints that bear the context sensitivity 
of the language. For the first stage, some regular 
grammatical inference (RGI) method is required. Al- 
most all of the known RGI methods return an FSA, and 
consequently the RGI step will have to be followed 
usually by an FSA to RE mapping. For the second stage, 
the tasks of building the star tree, parsing a set of 
example strings, and inferring the constraints from the 
collected star instances, are needed. 

[!l ivy1  tcyc  of  sto ev v7]  
2nd cycle of instance V I 3  = 2 in Sl 6 8 4 1 L 10 [ 

Fig .  3. Ver i f i ca t ion  o f  the  cons t ra in t  v i i  = vl + v5 - v7 t h r o u g h  the  m a t r i x  p r oduc t  A • X = B ( the top  r o w  o f  
the displayed A and B is just for labeling purposes). 
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Projective view S" 

Primitives (16 ex.) (48 ex.) 
- -  a 

/ b 

] c Sample data: S = (S +,S 
\ d I 

aaaaacccbdccccaaaaaccccbdccc Regular 

Regular Expression / I Active Grammatical Inference (AGI) 

I 
a(a*cc*bdcc*a)*a*cc*bdcc* - ~ /  

method 

FSA to RE v 
Inductionof / ~ S A  a ~ c 

a(aVlccV2bdccV3a) V4aVSccV6bdcc v7 

I v4=l L7 
with v5 = vl 

v6 = v3 a,b,c,d 
v7 = v2 

Augmented Regular Expression Deterministic FSA 

Fig. 5. An example of application of the proposed method for inferring AREs. 

5.1. Description of the overall procedure 

Before proceeding to describe the details of the 
proposed method for learning AREs, it is worthwhile to 
give, first, a global picture of it in terms of an actual 
example. Fig. 5 displays a simple but illustrative case. 
The problem at hand is to learn a recognizer for the class 
of contours coming from a frontal view of variable-size 
cylinders with a fixed-size dent at a variable position 
along the axis. It is clear that the language associated 
with such an object is context-sensitive, 6 and, conse- 
quently we cannot expect that a regular or even a 
context-free language learning algorithm returns a 
suitable recognizer for this class of objects. Never- 
theless, an adequate description like amcnbdcPamcPbdc ~ 
should be reachable from a few examples. In fact, our 
ARE learning method is a rather straightforward (but, as 
far as we know, unexplored) approach for inferring 
syntactic descriptions of this kind. 

In the case of Fig. 5, a sample S = (S+,S -)  of 16 
positive and 48 negative examples was provided, 
corresponding to some variable-size instances of the 
contours shown at the top of the figure. Even though the 
target language is context-sensitive, one may try to enter 
this sample into an FSA learning algorithm and analyse 
the usefulness of the result. 7 The application of the 
(regular) active grammatical inference method recently 

6The length of the two horizontal segments is the diameter of 
the cylinder, and the lengths of the vertical segments separated 
by the dent are obviously the same at each side of the axis. 

7A strategy that resembles "the drunk searching the keys 
under the lamp." 

reported, C23) to the given S yielded the deterministic 
FSA displayed in Fig. 5, which accounts for the basic 
repetitive structure of the model but which over- 
generalizes a lot, accepting rather arbitrary contours 
without any length restriction. However, this result is a 
good starting point to search for a more accurate 
description that includes the context constraints (i.e. an 
ARE). The next step is to obtain an equivalent compact 
representation that facilitates the induction of the 
constraints, and this turns out to be an RE. In our example, 
the method explained in next subsection was used yield- 
ing the RE shown in Fig. 5. Finally, from the automatic 
analysis of the star instances of the RE that were produced 
by parsing the positive examples, a set of constraints 
could be derived that, in conjunction with the regular 
expression, perfectly described the target language. 

The data flow of the process followed to infer an ARE 
from examples is depicted in Fig. 6. Once the regular 
expression R is determined from the inferred FSA A, the 
associated star variables Vand the star tree ~ must be 
obtained. These are used both to build an "array of star 
instances" ASI, containing the information recorded 
from parsing the examples, and to analyse it in order to 
induce the set of constraints L. The result of the process 
can be expressed as the tupla k -- (R, V, ~-, L). Algo- 
rithm 2 (in Appendix B) is a more detailed description 
of the overall learning procedure. Note that a wide range 
of algorithms is available to perform the regular 
grammatical inference step. O7-23) This must not be 
interpreted, however, as if the choice of the regular GI 
method were irrelevant. On the contrary, the implicit or 
explicit biases of the selected method may or may not 
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) S  + > 

S + ~ Regular 
. / G r a m m a t i c a l  

S :" : ~ 1  Inference 

> R - - ~  Star tree 
I [construction 

:- A :~ Parsing [ 
Constraint 

S + / 
- R  :- ~-> ASI - -~  Induction 

~ ~ b y  ] ~ V ~  fmmStar 

R 7" Instances 

< R,  V , ' f f , L  > = R 

~ L  

Fig. 6. Flow diagram of main data in the process of learning Augmented Regular Expressions from string 
examples. 

help to reach a "natural" (the simplest in some sense) 
regular expression for the data that supports the 
discovery of the underlying context constraints. 

A drawback of the preceding approach must be noted: 
all negative examples (if any) will be rejected by the 
inferred RE, whereas, in fact, some of them could 
belong to the language accepted by the RE in the target 
ARE (provided that they did not satisfy the constraints). 
Therefore, an alternative learning scheme may be 
applied such that, initially, the negative examples are 
not supplied to the RGI step, but if any of them is 
accepted by the inferred ARE, then the process is 
restarted incorporating the conflictive negative exam- 
ples to the RGI step. In this way, several runs could be 
necessary to reach a consistent ARE; in the worst case, 
after a finite number of runs (bounded by the number of 
negative examples), all the negative sample would be 
given to the RGI step, as in Fig. 6, thus guaranteeing the 
consistency of the inferred ARE. In any case, it would 
be helpful to have available an informant who 
partitioned the negative sample in the two subsets of 
strings to be accepted and rejected respectively by the 
RE in the target ARE. 

5.2. FSA to RE mapping 

The method that is suggested to be used for the FSA- 
to-RE transformation is based on Arden's algorithm 
described in Section 2, but a final simplifying step and 
an inner modification of the algorithm are proposed to 
"improve" the resulting regular expression. 

The RE given by equation (10) can be simplified a lot 
by determining the common factors (prefixes) in the 
sum terms and applying repeatedly the equivalence rule 
PQ + PS = P(Q + S). First, let us find a simplified RE 
for the union of the regular languages Rj for all the states 
qj E Q. It is easy to show, by replacing recursively the Rj 
variables in equations (3) by the expressions given in 
equations (el), for 0 < j < n and 0 < i < j, that the 
following equivalence holds: 

~ R j  : RO -4-'" +Rn-1 = Ro(A +RolPQI(n_I) + " "  
qjEQ 

+ Ro(n-llP~n_l)(n_l)) = RoPOo(n_I) (11) 

where R/j = ~//j, and Pi Q denotes the set of strings that 
lead from state qi to any state qj C Q with i < j < k 
without passing through a state ql with 1 < i, and it can 
be defined recursively as 

RO#O 
= + (12) 

j=i + l ,k 

Next, we define a relation qi ~ qj in the following way: 

qi ~ qj ==~ (j < i) A Rij ~ O 

Now, let Q¢ C Q be any subset of states, and let C(Q') be 
the transitive closure of Q~ with respect to the relation 
~. It can be proved that 

P~ = 0 ¢~ qi~C((f), Vk >_ i (13) 
t 

Hence, PQ can be computed recursively using C(Q ~) for 
filtering null terms as follows: 

, v-,R~j#OAqj~C(Q') a/ Qt 
Pig = A -1- ~..aj:i+l,k RijP)k if qi @ (14) 

Z-.~j=i+I,k~-~Rij#OAqjEC(Q~) RIjP~ o t h e r w i s e  

Then the union of the regular languages associated with 
the states of Q~ is equivalent to a simplified RE with the 
extracted common factors: 

Rj : RoP~,_I) (15) 
qj~:Q' 

Furthermore, if Q' ~ O then P0~,-U = P0Cz ' where qz is 
the state of Q' with the largest index. 

Finally, for the RE equivalent to the given automaton 
A, we obtain 

R=~b(a) = RopFoofle, ( =  ~-~ RI I (16) 
\ qyEF zl 

We refer to the string that is obtained by substituting in 
R the REs corresponding to Ro and Rij by the symbols 
"R0" and "Ri j"  as the skeleton of R. 

Consider, for example, the 4-state FSA that is 
displayed in Fig. 7(a). The two equivalent REs, given 
by equations (10) and (16), after running Arden's 
algorithm, are shown in Fig. 7 (c) and (d), respectively. 
The skeleton of the simplified one is displayed in 
Fig. 7 (e). 
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a 

(a) 

Ro = ( (a + ba*b)(baa*b)*(a + bb) )* 

RI = ((a + ba*b)(baa*b)*(a + bb))*(a + ba*b)(baa*b)* 

R2 = ((a + ba*b)(baa*b)*(a + bb))*(ba* + (a + ba*b)(baa*b)*baa*) 

R3 = ((a + ba*b)(baa*b)*(a + bb))*(a + ba*b)(baa*b)*b 

(b) 

R2 + R3 = ((a + ba*b)(baa*b)*(a + bb))*(ba* + (a + ba*b)(baa*b)*baa*) 

+ ((a + ba*b)(baa*b)*(a + bb))*(a + ba*b)(baa*b)*b 

(c) 

D ~,{q2q3} = ((a + ba*b)(baa*b)*(a + bb))*((a + ba*b)(baa*b)*(baa* + b) + ba*) R = ~ 0 r 0 3  

(d) 

skel(R) -- R0(R0_I (R1S2 + Rl_3) + R0_2) 

(e) 

Fig. 7. (a) An example FSA A with 4 states; (b) regular languages associated with its states given by Arden's 
algorithm; (c) straightforward RE f o r  A : ~ q r E F R f ;  (d) simplified RE for A : R  = ~b(A)= RoP00~l; 

(e) skelelton of R. 

Moreover, in order to be able to describe (and induce) 
the greatest number of significant context relations 
using the ARE formalism, the underlying RE should be 
selected among the REs in its equivalence class 
according to the following two (somewhat opposite) 
heuristics: 

1. Maximize the number of stars. 
2. Preserve unambiguity. 

The aim of the first heuristic is to increase the 
potential for inferring context relations from the star 
instances obtained in parsing the examples by the RE. 
The aim of the second is to ease both the RE parsing and 
constraint induction processes. Note that applying any 
of the equations (3), (5), (8) or (9) (the former two in 
reverse) to an RE leads to an equivalent RE with a larger 
number of stars. However, equations (3), (5) and (8) 
introduce a great deal of ambiguity in the resulting RE. 
On the other hand equation (9) not only preserves, but 
enforces unambiguity, since an RE containing a union 
operation is transformed into an RE containing just 
concatenation and star operations. For instance, let 
(P + Q)* = (a + b)* and take a3ba3ba 3 as input string, 

it results that (a + b) 11 is the "parse" by (a + b)* while 
(aab)2a 3 is the "parse" by (a*b)*a*. 

All the stars in the output RE of Arden's algorithm 
originate by applying the rule of Theorem 2.1 in solving 
the equations (el+l), 0 < 1 < n, i.e. 

1+1 o ~ l + 1  Rl = ( R 0 o t / + 1  -I- - • • + Rl-lOl(l_l)l ) + r~lt~ll 

I/z, _ / + 1  D /+1 \ /+1" Rt = kr, oetol + "'" + t,l-lO~(l_l)l)OQl . 

Therefore, if the RE air +1 is of the form (P + O), we 
may apply equation (9) to the subexpression c~l~ - r  to 
yield a "better" result in terms of the above heuristics. 
In the general case, there can be many ways of 
decomposing atl[ 1 into the P and Q union operands. A 
meaningful decomposition is given by P = a~ and 
Q = al +1 - a~, where P denotes the direct transitions 
from ql t o  itself (the loops of qt) and Q denotes the 
circuits starting and ending in qt that only can traverse 
states qk with k > l. In this way, loops can be 
discriminated from the rest of cycles of the given FSA 
in the resulting equivalent RE. This is important for 
pattern recognition tasks, where the loops of an FSA 
model usually account for (indefinite) length or duration 
of a basic primitive, a meaningful structure in the 
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A 

S 2 

W m 

84 

Sl =cSd3b3d3b3d3b3d3b3c3al°c3b2d2b2d2b2d2c5el°c6dbdbcSal°c4bdcl°el° 

SE--_c2dEbEdEbEd2bEc4a7c2bdc4e7c4dbdc6a9c5b3d3b3d3b3d3bad3b3d3c5e 9 

S 3 -~c2dbdbc2a8c~b2d2b~d2b2d~c2e8c3d2b~d2b~d2b2c4a6c4bdc~e6c~d~b2d~b2d~b~c2a8c2b2d~b~d~b~d2c~e  8 

s4=cd3b•d3b3d3b3d3b3c2a5cb3d3b3d3b3d3b3d3b3d3c2e5c2dbdbc2a5c3bdce5cdbdbca8cb2d2b2d2b2d2ce 8 

Fig. 8. Four example strings from L(R)2 which are used to inferthe cons~ntL2. 

pattern (specially if  tools are provided to relate the 
lengths, or durations, of different parts). 

Consider the example of Fig. 5. The application of 
Arden's algorithm to the FSA of Fig. 5, plus the 
simplifying step, led to the RE R = a(a + cc*bdcc*a)* 
cc*bdcc*, while the above modification on the algorithm 
yielded R r = a(a*cc*bdcc*a)*a*cc*bdcc*. Although we 
could further transform R' into the more intuitive 
description Rrr= aa*cc*bdcc*(aa*cc*bdcc*)* by using 
equation (7) and equation (4), R r is good enough as an 
underlying RE to enable the inference of all the 
contextual constraints displayed by the modelled pattern 
(see Fig. 5). Note that not all the constraints are 
inferrable from R. 

5.3. Inducing the constraints of an ARE from recorded 
star instances 

Once an RE R is inferred, the star variables Vand the 
star tree J -  associated with R are easily determined. °2~ 
Then, the aim is to induce an ARE R = (R,V,~-,L) 
such that L contains the maximal number of (linear) 
context relations that are met by all the examples 
provided. In other words, we want k to represent the 
smallest language covering the positive sample that may 
be accepted by an ARE with the same given RE. To this 

end, the example strings must be parsed by R giving rise 
to an array of sets of star instances ASI, and those 
regularities that consistently appear throughout the 
star instances must be discovered. Algorithm 3 (in 
Appendix B) carries out this last process returning a 
set of linear constraints L among the star variables V. 
Its time complexity is O(I V 13 .I(ASIs+(V))), where 
I(ASIs÷(V)) is the maximal number of  potential 
instances of a star variable yielded by parsing the set 
of strings S +. 

Algorithm 3 is based on establishing a tree of linear 
systems according to the housing ancestor concept. 
Each housing ancestor will have its own partition of 
independent and dependent star variables among its 
housed descendants. To construct this partition, each 
ancestor node of  ~-  keeps track of  its housed 
descendants that have been determined to be indepen- 
dent. All the variables of Y are visited by levels, and for 
each one (say vj), its housing ancestor (say vk) is found 
and a vector of its non-redundant instances is formed. 
Then a matrix is built that contains the instances of the 
independently housed descendants of vk. Initially, the 
number of columns of the matrix is the number of 
independently housed descendants plus one (an al l - l ' s  
column) and the number of rows is the number of (non- 
redundant) actual instances of vj, which is bounded by 
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1st cycle of instance v13 = 2 in sl 
2nd cycle 

1st cycle of instance v13 : 2 in s2 
2nd cycle 

1st cycle of instance v13 = 3 in s3 
2nd cycle 
3rd cycle 

1st cycle of instance vl3 = 3 in s4 
2nd cycle 
3rd cycle 

Vl V4 I,'5 1J 6 V7 VI0 

1 5 4 3 10 3 3 
1 6 2 8 10 4 1 
1 2 3 4 7 2 1 
1 4 2 6 9 5 5 
1 2 2 2 8 2 3 
1 3 3 4 6 4 1 
1 2 3 2 8 2 3 
1 1 4 2 5 1 5 
1 2 2 2 5 3 1 
1 1 2 1 8 1 3 

X =  

Vll 

4 
5 
2 
3 
2 
2 
1 
1 

Fig. 9. The linear system A - X = B for the star variable vii (the top row of the displayed A and B is just for 
labeling purposes). The solution is X = [0 10 10 - 1 0] T. 

the number of parsed strings if  vk is the root node or 
otherwise by the total sum of the values of the instances 
of Vk. Next, the rank of the matrix is evaluated and any 
linearly dependent column is removed. Finally, it is 
determined whether the vector of actual instances of vj is 
linearly dependent on the column vectors of the matrix. 
If it is, then the corresponding linear system can be 
solved to find the constraint coefficients, and the new 
constraint is appended to L; otherwise, vj is included in 
the list of independently housed descendants of vk. 

Let us illustrate the method with the set of strings 
displayed in Fig. 8, that belong to L(R2). First, the sons 
of the root node are processed; in this case, v13 is the 
only one and it is found independent (since its instances 
[2 2 3 3] T are not constant). Then, the sons of v13 are 
visited. It turns out that v13 is the housing ancestor of all 
of its sons. The star variables v1, ~'4, v5, v6, v7 and vl0 are 
successively found to be independent. At this point, the 
instances of vii are stored in vector B to be analysed, 
while the matrix A contains the instances of the 
independent housing descendants of  v13 already 
processed, Fig. 9 displays the corresponding linear 
system. It turns out that vector B is a linear combination 
of the columns of A, and solving the system yields 
(vii = vl + v5 - v7). This constraint is put into L. Then, 
the last son v12 is visited and the second constraint 
(vj2 = vt) is similarly obtained. Next, v2 and v3 (the 
sons of v~) are processed, v13 is determined as their 
housing ancestor (since their instances are constant for 
each instance of v4), and both are found dependent 
according to (v2 = v4 - 1, v3 = v4 - 1). Finally, v8 and 
v9 (the sons of vl0) are also housed by v13 and the 
analysis of their instances gives rise to the last 
constraints (v8 = 0.5v10 + 0.5, v9 = 0.5VlO + 0.5). In 
the end, the inferred set of constraints L coincides with 
the target L2 of R2. 

6. C O N C L U S I O N S  

A powerful new representation class called Augmen- 
ted Regular Expressions (AREs) has been presented to 
describe, recognize and learn a class of context-sensitive 
string languages capable of expressing multiple and 
complex context constraints. Moreover, the string 
recognition method proposed is efficient (low-polyno- 

mial in time). Although it has been demonstrated that 
not all the context-sensitive languages can be described 
by AREs, the class of representable objects includes 
planar shapes with symmetries, which is quite important 
for pattern recognition tasks. 

On the other hand, it has been proved that AREs 
cover all the pattem languages, (s) but the size of an ARE 
describing a pattern language is exponential in the 
number of alphabet symbols. Even though this is not 
critical for alphabets with few symbols (including the 
binary case), it is a practical impediment in the rest of 
cases (say when [E [> 10). The cause of  this 
inefficiency is due to the fact that the constraints in 
AREs only involve the number of instances of certain 
subpatterns in a string but not the relations among the 
subpatterns themselves. 

In order to represent pattem languages such as 
{xx [ x E E + } more efficiently, the ARE concept should 
be extended by means of the definition of constraints 
(e.g. equality) among the substrings that result from 
instantiating the operands of the star-type subexpres- 
sions. This would require that the data structure 
produced by parsing a string by an RE would register, 
not only the lists of star variable instances, but also the 
associated lists of matched substrings. At first, this 
adaptation seems possible, and therefore, a more 
powerful formalism would be achieved at the expense 
of increasing the space requirements. 

Another extension of the formalism is to allow the 
definition of (a limited class of) non-linear constraints 
among the star variables. In this way, a class of non- 
linear AREs, or NAREs for short, could be defined with 
a greater expressive power. Note that string recognition 
by NAREs can still be efficient, since only the equation 
satisfaction test should be replaced. However, inferring 
such models from string examples would be extremely 
hard due to the great number of combinations of 
variables and terms that could arise; moreover, the 
probability of inducing artificial constraints (i.e. noise) 
would grow. 

On the other hand, in order to apply AREs to real 
pattern recognition tasks, it is quite clear that the 
recognition method presented must be made more 
flexible to cope with the noisy and incomplete input 
data and/or imperfect data segmentation that is typical 
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of practical problems. Generally, there are two ways to 
enable a parser to process imperfect data: either the 
model (e.g. grammar) is extended by common errors or 
the parser is made fault tolerant. In the case of AREs, 
the latter approach is more easily implementable. A 
flexible ARE parsing method may be attained by using a 
regular error-correcting parser for the process of 
matching the underlying RE in conjunction with a 
"tolerant" constraint checker that may be based on 
correlation and linear regression (instead of strict linear 
equations). Normally, a set of possible parses of the RE 
would have to be tested for constraint satisfaction in the 
relaxed sense. The development of the specific tools 
needed to adapt the ARE formalism to robust parsing 
are the subject of present and future work. The 
availability of these tools is required before trying to 
apply AREs to real-world problems. 

Coming back to the given definition of AREs, it must 
be emphasized that the learning scheme presented is not 
a method for identifying AREs from examples, which is 
an open (and probably hard) problem, but a general 
approach to infer data-consistent AREs, trying to 
discover the maximal number of context relations. 
However, the constraint induction algorithm proposed 
ensures that, if the target RE is identified previously, 
then the target unknown ARE, which includes it, will be 
identified in the limit. This property follows from the 
characteristic of inferring the smallest language contain- 
ing the examples among the AREs that include the same 
RE. The effectiveness of the whole procedure depends 
strongly on the result of the regular grammatical 
inference (RGI) step. The algorithm to be used in this 
step should be biased to return preferably small DFA (or 
better REs directly) with a high level of generalization 
with respect to the sample. There are two reasons for 
this demand: to obtain the simplest regular expression 
for parsing, and to be able to induce in the following 
phase the context constraints that limit the extension of 
the inferred language. The constraint induction could be 
impeded if the starting language, yielded by the RGI 
step, were too restricted to the given examples (i.e. a 
kind of sample overfitting). 

Two drawbacks of the presented learning scheme 
must be mentioned, namely, the processing of negative 
examples, and the efficiency in the worst case. The 
trouble with negative examples is that, unless an 
informant is available, the learning algorithm does not 
know which negative examples should be rejected by 
the RE to be inferred and which should not. Hence, 
either all of the negative examples are supplied to the 
RGI step (thus biasing considerably the induction), or an 
iterative process is carried out, in which only the 
negative examples that are accepted by the ARE 
obtained at the end of an iteration are incorporated into 
the RGI step in the next iteration, until a consistent ARE 
is inferred. 

Concerning efficiency, all the parts of the learning 
process run in low-order polynomial time, except the 
FSA-to-RE transformation, which is exponential in the 
worst case (e.g. for a fully-connected FSA). Although, 

fortunately, most of the FSA that are typically induced 
from object contours or other physical patterns are 
sparsely connected and present quite a limited degree of 
circuit embedment, thus allowing a practical computa- 
tion of the equivalent RE, it is clear that the worst-case 
behavior may defeat the learning approach. A possible 
alternative is to obtain the RE from the RGI step to 
avoid the FSA-to-RE transformation. To this end, an 
RGI method returning REs should be selected; as far as 
we know, the uvkw algorithm by Miclet ~3) is the only 
such method among the range of known RGI meth- 
ods.(14-16) 

It is interesting to locate precisely our work with 
respect to other methods proposed within the field of 
inductive inference to approach the problem of learning 
formal languages from partial information. The reported 
methods can be classified depending on the class of 
languages they are able to infer and depending on 
whether the language is presented by examples or by 
queries. (17) If the input is restricted to just examples, as 
in our case, it is usual to distinguish between a positive 
presentation of a language L, this is a set of positive 
examples S + C L, and a (so-called) complete presenta- 
tion, where two disjoint finite sets S + C_ L (examples) 
and S- C_ L (counter examples) are given. The inference 
problem associated with the presentation by examples is 
to find a formal description D of a language L' such that 
S + c L t and S-  C L r, and D satisfy certain restrictions 
(e.g. D is the smallest acceptor among all candidates). 
This problem is traditionally referred to as grammatical 
inference (GI). O4A55 

Even though it is well-known that any enumerable 
class of recursive languages (context-sensitive and 
below) can be identified in the limit from complete 
presentation (both positive and negative data), °s~8 most 
part of the work in GI has been devoted to the problem 
of inferring regular languages (i.e. finite-state auto- 
mata). (14A6) Moreover, the majority of the reported 
regular GI methods are heuristic techniques that use 
only positive examples and some inductive bias, (16'19) 
while just a few methods have been proposed for regular 
GI from complete presentation, either in the classical 
symbolic paradigm ~2°-22~ or through alternative ap- 
proaches such as recurrent neural networks. (23-2s~. In 
addition, some GI methods have been suggested to learn 
some proper subclasses of context-free languages, such 
as the even linear languages, from positive data, (26'27) 
and a few more algorithms have been proposed to infer 
general context-free grammars from positive structural 
examples (2s) (or together with negative strings(29)). 

However, in order to be used in a wider class of 
problems and applications, there is a need for GI 
methods that cope with the issue of learning context- 
sensitive languages. This requirement is specially 
significant in syntactic pattern recognition problems 

8A GI method is said to identify L in the limit if for a larger 
and larger collection of examples, the descriptions D eventually 
converge to a correct description for L. 
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for computer vision, ~2'3) where many objects contain Grammar CSG2: 
symmetries and structural relationships that are not 1 S--+AS 2 S---+A 
describable by context-free languages. Nonetheless, 3 A--+EF[aG][eH] 4 F-+aFI 
work on learning context-sensitive languages is extre- 5 F---+J 6 l[aG]--+[aG]l 
mely scarce in the literature. Recently, Takada has 7 J[aG]--+aG 8 l[eH]--+[eH]e 
shown that a hierarchy of language families that are 9 G[eI-1]--+Ge 10 E~[LN]  
properly contained in the family of context-sensitive 11 E--+[LN][cO]M 12 E-+[cK]M[LO] 
languages can be learned using regular GI algo- 13 [cK]--~c[cK]M 14 [cK]--+[cN] 
rithms. O°) His approach is based on using control sets 15 [cO]---+ c[cO]M 16 [cO]--+c 
on grammars and establishing a recursive sequence of 17 M[LO]--+[LO]M 18 [cN][LO]--+c[LN] 
controlling grammars that starts on a regular grammar. 19 [LO]-+L[cO]M 20 [LN]c-+L[cN] 
However, the class of learnable context-sensitive 21 [cN]c--+c[cN] 22 [cN]L---~c[LN] 
languages is restricted by the fact that the languages 23 Ma--~aM 24 [cN]a--+c[aN] 
are generated through a sequence of (controlled) 25 [LN]a--~L[aN] 26 [aN]a-+a[aN] 
universal even linear grammars. 27 G--+[PQR] 28 M[PQR]-+M[QR] 

On the other hand, an early work by Chou and Fu {7) 29 M[PQR]-~[cP][QR] 30 [aN][PQR]--+aQ 
discussed the matter of inferring transition networks 31 M[cP]--+[cP]M 32 M[cP]--+[cP]c 
(TNs) from positive examples. An extension of the 33 Mc---wM 34 [aN][cP]-+a[cN] 
(heuristic) k-tails regular GI method was proposed for 35 [aN]Q--~a[QN] 36 [cN]--+[QR]cQ 
learning Basic TNs, thus covering the inference of 37 M[QR]--+Q[Rc] 38 MQ--+QM 
context-free languages. Afterwards they gave a derived 39 M[Rc]--+[Rc]c 40 [cN]Q--*c[QN] 
trial-and-error scheme (guided by a teacher) for the 41 [QN][Rc]--~Qc 42 L--+[VT][LW] 
inference of Augmented TNs representing context- 43 [LW]---~T[UW] 44 [LW]--+TL[UW] 
sensitive languages, which required some kind of a 45 L---~TU 46 L-+TLU 
priori knowledge in the form of transformational rules. 47 TU--+TXb 48 /~UW]--+T[XW]b 
In general, however, the step form BTN to ATN learning 49 bU--~Xbb 50 bX--+Xb 
is a hard one, since it is not clear at all how can the test 51 b[UW]-+[XW]bb 52 b[XW]~[XW]b 
conditions and register-setting actions typical of ATN 53 TX--+Ud 54 T[XW]--+[UW]d 
arcs be inferred from just string examples. As far as we 55 dX--+ Udd 56 dU--+ Ud 
know, no other paper following this line of research has 57 d[XW]-+[UW]dd 58 d[UW]--+[UW]d 
been reported since then. 59 [VT]U--+[V~b 60 [VT][UW]--+db 

In summary, our strategy to infer AREs, although it 61 [VX]X--+[dV]X 62 [VX][XW]-+[dV][XW] 
still presents some drawbacks, is probably the most 63 [dV]X-+d[dV] 64 [dV][XW]--+dd 
promising attempt reported so far to learn (caution, we 65 Q--+[VT']U' 66 Q---+[VT'IT'Q'U' 
do not mean identify) a large class of context-sensitive 67 Q'--+T'T'Q'U' 68 Q~--+T'U' 
language descriptors from examples. Moreover, these 69 T'U'---+T'X'd 70 dU'--+X'dd 
descriptors, the AREs, can be used indirectly as efficient 71 dX'--+X'd 72 7'X'--+U'b 
recognizers, and they provide a compact and intelligible 73 bX'--+U'bb 74 bU'--+U'b 
representation. 75 [VT']U'--+[VX']d 76 [VX']X'-+[bV']X' 

77 [VX']d-+bd 78 [bV']X'--~b[bV'] 
79 [bV']d--+bd APPENDIX A 

List of context-sensitive grammars referenced in the 

text Rules 3-9 
Language {ambnamb n [ m, n > 1 }. implement the constraint 

1;12 = V 6 

Grammar CSGI: Rules 10-4 1 
1 S--+abab 2 S-+aAbB[aC][bD] implement the constraint 
3 A---+aAE 4 A---+aF vii = !21 " r  1:5 - -  •7 

5 B--+bBG 6 B--+bH Rules 42--64 
7 G[aC]-+[aC]b 8 Gb---~bb implement the constraints 
9 G[bD]--+b[bD] 10 H[aC]--+[aC]H v2 -- v4 - 1;v3 = v4 - 1 
11 Hb---+bH 12 H[bD]--+bb Rules 65-79 

13 Eb---~bE 14 Ea-+aa implement the constraints 
15 E[aC]--+a[aC] 16 Fb--+bF v8 : 0.5vl0 + 0.5;v9 = 0.5v10 + 0.5 
17 Fa-~aF 18 F[aC]---+aa 

Language {(c v'(dv=bv3)v4cv'avrc v'(bv"dvg)vl°cv''ev'2) + I 
1)11 = 121 q-  I~S - -  V7;1:12 = V6; V2=V4--1;V3-=V4--1; 
V 8 : 0 . 5 V I 0 q - 0 . 5 ; V 9  = 0 .5V10  q-O.5;V2,V3,V6,1t8,V9 ~ 1} .  

Language {a k I k : 2 ~ A i ~ 1}. 

Grammar CSG3: 
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1 S---+[ACaB] 2 [Ca]a--+aa[Ca] 1 S---*OE[CB] 2 S--*O[FB] 
3 [Ca][aB]---~aa[CaB] 4 [ACa]a--+[Aa]a[Ca] 3 S---dE[DB] 4 S--*I[GB] 
5 [ACa][aB]---~[Aa]a[CaB] 5 E---~OEC 6 E--+IED 
6 [ACaB]--+[Aa][aCB] 7 [CaB]--+a[aCB] 7 E---~OF 8 E---riG 
8 [aCB]~[aDB] 9 [aCB]~[aE] 9 C[OB]--~O[CB] 10 C0---+0C 
10 a[Da]---~[Da]a 11 [aDB]--~[DaB] 11 C[1B]--+I[CB] 12 C1---+IC 
12 [Aa][Da]--~[ADa]a 13 a[DaB]---~[Da][aB] 13 [CB]---~[OB] 14 D[OB]-~O[DB] 
14 [Aa][DaB]--~[ADa][aB] 15 D0---~0D 16 D[1B]--~I[DB] 
15 [ADa]---*[ACa] 16 a[Ea]--*[Ea]a 17 D1--*ID 18 [DB]--~[IB] 
17 [aE]--~[Ea] 18 [Aa][Ea]--~[AEa]a 19 F[OB]--~O[FB] 20 FO---~OF 
19 [AEa]--*a 21 F[1B]--d[FB] 22 F1--dF 

23 [FB]--+0 24 G[OB]--~O[GB] 
Language {xx I x E (0 + 1)+}. 25 G0--+0G 26 G[1B]~I[GB] 

27 G1---*IG 28 [GB]--~I 
Grammar CSG4: 

APPENDIX B 

Algorithms referenced in the text. 
Algorithm 1. Evaluates the predicate satisfy (SIs(V), L). 
Inputs: A set Vof star variables that are organized in a star tree J-. 

A set SI containing the lists of instances of the star variables V resulting from the (successful) parsing of a 
string s. 
A set L of linear relations among the star variables in V. 

Outputs: A boolean variable satisfy_constraints whose value will be TRUE if and only if the star instances SI satisfy 
all the constraints in L. 

begin 
ASI[1]:= SI {The set SI is placed in the first position of an array ASljust for compatibility with the arguments of the 
functions determine_ancestor and instances and sum of star_exponents.} 
{Mark the star variables for which the housing ancestor has not been computed} 
for v_id in [1.. [ V 1] do 

housing_ancestor_of_node [v_icl]~- 1 
end_for 
{Check the constraints L} 
i:=1; satisfy_constraints~ TRUE 
while i < L.nc and satisfy_constraints do {check each constraint} 

vdep_id~ element of list (L. vdep, i) {get the ith dependent variable) 
linear_combination[vdep_icl]~ element of list (L.right_hand_sides, i) 
X.~-- linear combination[vdep_id].coefficients 
list_of_indep_variables'~- linear_combination[vdep id].independent__variables 
common_housing_anc_id:= deepest_common_ancestor (~,~, vdep_id, list_of_indep_variables) 
node:= startree_node_identified_by (vdep_id) 
determine_ancestor and instances (~-, node, vdep_id, ASI, 1, common housing_anc_id, anc_id, coef[vde- 
p_id]) {returns anc_id, the identifier of the housing ancestor of node, and coef[vdep_id], the values of the 
instances of vvdep~d for each instance of Vanc3d in ASI[1] } 
housing_ancestor_of_node [vdep_id]'~-- anc_id 
if number of actual_instances (coef [vdep_id]) > 0 then 
exists_common_housing_ancestor~ TRUE 

if  hous&g_ancestor_of_node [vdep_id] ~ common_housing_anc_id then 
exists common_housing_ancestor.----- FALSE 

end_if 
j := 1; 1~ length (list_of_indep_variables) 

while j <_ l and satisfy_constraints do 
v_id.----- element of list (list_of indep_variables, j) 
if  housingancestor_of_node [v_id] < 0 then 
node~ startree_node_identified_by (v_id) 
determineancestor and instances (~'-, node, v_id, ASI, 1, common_housing_anc_id, anc_id, coef[v_id ]) 
{returns anc_id, the identifier of the housing ancestor of node, and coef[v_id], the values of the instances of 
vv_id for each instance of Vanc3a in ASI[1] } 
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housing_ancestor_of_node [v_icl]~ anc_id 
end_if 
if housing_ancestor_of_node [v_id] ~ common_housing_anc_id then 
eists_common housing_ancestor~ FALSE 
end_if 
if not e x s t s _ c o m m o n _ h o u s i n g _ a n c e s t o r  then 

if not equal_instances(housing_ancestor_of_node [vdep_id], housing_ancestor_of_node [v_id], AS1, 1) 
then 

satisfy_constraints:= FALSE 
end_if 

end_if 
j ~ j + l  
end_while 
if sa t i s f y_cons t ra in t s  then 
row_max_number'.-- sum of s ta r_exponents  (ASI, housing_ancestor_of_node [vdep_id], 1) 
column_number~ l + 1 
bu i ld_sys temmat r ix  (vdep_id, list_of_indep_variables, coef, row_max_number, column_number, 
row_actual_number, B, A) { vector B is given by the star instances of Vvdepid, and the system matrix A is 
given by the star instances of the independent variables from which Vvdepid depends, and after removing the 
rows for which the instance of Vvdepld is unassigned. } 
satisfy_constraints:= test_linear_system (A, X, B, row_actual_number, column_number) 

end_if 
end_if 
i : = i + 1  
end_while 
{satisfy_constraints - satisfy( SIs( V ), L ) } 
end_algorithm 

Algori thm 2. Induction of augmented regular epressions 
Inputs:  A sample S = (S+, S ) of a context-sensitive (unknown) language ~ over an alphabet E. 
Outputs:  A deterministic FSA A = (E, Q, 6, q0F), consistent with the sample S (i.e. S + C_ L(A) A S- C_ ~* - L(A), 

that is obtained from S through a regular grammatical inference algorithm, and which is assumed to 
accept a regular superset of ~ (i.e. ~q~ c_ L(A)). 
The "canonical" RE R equivalent to A. 
The set Vof star variables and the star tree J -  associated with R. 
The array of sets ASI with the lists of instances of the star variables V resulting from the parsing of the 
positive examples (s E S +) by R. 
A set L of linear relations among the star variables in V, that is fully satisfied in the parsing of all the 
positive examples (s c S +) by R. 
The inferred ARE (Augmented Regular Expression): k = (R, V, 3--, L). 

begin 
A := regular_grammatical_inference_algorithm (S +, S - )  
n:= number of states of automaton (A) 
run_Arden's_Algorithm (A, n, Rj, o~I. )~ {returns Rj and c~Ij for 0 _< j < n, 1 _< l <_ n, 0 _< i _< l} 
simplify equivalent RE (A, n, Rj, a~j, _ _ skelR, R) {the "canonical"l  RE R and its skeleton skelR are obtained} 
run star tree construction (R, V, Y ) {returns the star variables Vand star tree Y associated with R} 
number_positive_examples :=-- IS + I 
for example in [1.. number_positive_examples] do 

s ~  read_positive_example (S +, example) {where s is a string over E} 
rnn_RE_parsing_guided_by_FSA (s, A, skelR, R, V, ~-, parsed, path, skelR_instance, S1) 
{returns parsed = TRUE, the path of states visited, the skeleton of the example skeIR_instance, and the most 
important, the set SI of lists of star instances of the star variables V resulting from parsing s. } 
ASl[example] ~ SI 

end_for 
run_Algorithm_3 (V, J~, ASI, number_positive_examples, L) {returns L, the induced set of linear constraints among 
the star variables } 
/~ ~ (R, V, ,Y--, L) {simply put the components of the ARE together} 
end_algorithm 

Algorithm 3. Induces a set of linear relations that hold among the star variables throughout the instances resulting 
from the parsing of a set of strings. 
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Inputs: A set Vof star variables, that are organized in a star tree J ' .  
An array of sets ASI containing the lists of instances of the star variables V resulting from the (successful) 
parsing of a set of strings. 
The size of the array ASk number of_strings. 

Outputs: A set L of linear relations among the star variables in V, that is fully satisfied in the parsing of all the 
strings from which ASI has been built. 

begin 
L.nc ~ 0 {Initialize the number of constraints (dependent star variables) in L} 
L . V  dep ~ 0 {Create an empty set of dependent star variables V dep } 
L._rightJzand_sides ~ 0 {Create an empty set of linear combinations associated with V dep } 
maxlevet := deepest_level of tree (Y) {this is the level of the deepest node in ~-} 
for l in [O..max_level - 1] do {visit the father nodes of ~'- by levels} 

for i in [1.. nodes_of_level_l (~-, l)] do 
father.---- node_i_of_level_l (J-, l, i) 
father_id.---- node_identifier_of (father) 
number_of_indep_housed_descendants [father id] ~ 0 
list_of_indep_housed_descendants ~ather_ia~ ~ 0 
max_number_of_rows_of_system_matrix [father_id]~ sum of star_exponents (ASI, father_id, number_of_ 
strings) 
for nson in [1.. nsons of (father)] do 
son~ son_of (father, nson) 
sonid.~- node_identifier_of (son) 
determine_ancestor and instances (Y, son, son_id, ASI, number_of_strings, 0, anc_id, coef [son id]) {returns 
anc_id, the identifier of the nearest non-degenerated ancestor of son, and coef[son_id], the values of the 
instances of Vson.Jd for each instance of Vanc_id } in ASI} 
housing_ancestor_of_node [son_id] := anc_id 
row_max_number ~ max_number_of_rows_of system_matrix [anc_id] 
column max number ~ number_of_indep_housed_descendants [anc_id] + 1 
build_system_matrix (son_id, list_of_indep_housed_descendants[anc id], coef, row_max_number, 
column max number, row_actual_number, B, A) {vector B is given by the star instances of vson_id, and the 
system matrix A is given by the star instances of the independently housed descendants of Vanc_id, after 
removing the rows for which the instance of Vson_id is unassigned. } 
if row_actual_number > 0 then 
rank A:= rank of matrix (A, row_actual_number, column_max_number) 
if rank A < column~nax~umber then 
remove_dependent_columns_from_system_matrix (A, rankA, row_actual_number, column_actual_number, 
columns_mask) {matrix A is reduced by removing (in increasing order) those columns that are a linear 
combination of the previous ones, column_actual_number = rankA, and columns_mask is a binary mask that 
marks the selected columns} 
else 
column_actual_number ~ column_max_number 
columns_mask := fully_marked_mask (columnmax_number) 
end_if 
build_extended_system_matrix (A, B, row_actual_number, column_actual_number, AB) { matrix AB is built by 
appending to matrix A a column with vector B} 
rank AB:= rank of matrix (AB, row_actual_number, column_actual_number + 1) 
if rank AB < (columnactual_number + l) then { the appended column is a linear combination of the columns 
of A} 
solve_linear_system (A, B, row_actual_number, column_actual_number, X) {vector X is obtained by solving 
the linear system A • X = B } 
linear_combination[son_id].coefficients := X 
linear_combination[son_id].independentvariables.----- extract_masked_list (list_of_indep_housed_descendants 
[anc_icO, 
column_max_number, column_actual_number, columns_mask) 
linear_combination[son_ia~ ~remove_indep_variables_with_coef_zero (linear_combination[son id]) 
L.nc ~ L.nc + 1 {the number of dependent star variables is increased and the new constraint is appended to L} 
L.V dep := append (L.V dep, son_id) {i.e. vso,_id E V dep } 
L._rightAmnd_sides append (L.right_hand_sides, linear._combination[son_id]) 
else {the appended column is linearly independent} 
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number_of_indep_housed_descendants [anc_id]~ number_of_indep_housed_d escendants [anc_id] + 1 

list_of_indep_housed_descendants [anc_id] ~ append (list_of_indep_housed_desc endants [anc_id], son_id) 

end_if 
end_if 

end_for 
end_for 

end_for 
end_algorithm 
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