
Pergamon
Pattern Recognition, Vol. 30, No. 1, pp. 163-182, 1997

Copyright © 1996 Pattern Recognition Society. Published by Elsevier Science Ltd
Printed in Great Britain. All rights reserved

0031 3203/97 $17.00+.00

PIh S0031-3203(96)00056-8

RECOGNITION AND LEARNING OF A CLASS OF
CONTEXT-SENSITIVE LANGUAGES DESCRIBED

BY AUGMENTED REGULAR EXPRESSIONS

RENI~ ALQUt~ZAR a and ALBERTO SANFELIU b
aDepartament de Llenguatges i Sistemes Informhtics, Universitat Polit~nica de Catalunya

Diagonal 647 8a, 08028 Barcelona, Spain
bInstituto de Robrtica e Informfitica Industrial, Universitat Polit~cnica de Catalunya-CSIC

Edifici Nexus, Gran Capit~ 2, 08034 Barcelona, Spain

(Received 22 August 1995; in revised form 15 March 1996; received for publication 15 April 1996)

Abstract--In this paper, a new formalism that permits to represent a non-trivial class of context-sensitive
languages, the Augmented Regular Expressions (AREs), is introduced. AREs augment the expressive power of
Regular Expressions (REs) by including a set of constraints that involve the number of instances in a string of
the operands of the star operations of an RE. An efficient algorithm is given to recognize language strings by
AREs. Also a general learning method to infer AREs from examples is presented, that consists of a regular
grammatical inference step, a DFA to RE transformation, an RE parsing of the examples, and a constraint
induction process. Copyright © 1996 Pattern Recognition Society. Published by Elsevier Science Ltd.

Context-sensitive languages
Grammatical inference
Syntactic pattern recognition

Finite automata Formal languages
Learning Parsing Regular expressions

1. INTRODUCTION

One of the causes for the limited use of the syntactic
approach to pattern recognition °-3) has been the lack of
efficient representations and related methods to deal
with the context-sensitive structure of the patterns that
appear in most real-world problems, either in vision,
speech recognition, or natural language processing.
Context-sensitive grammars ~4"5) are not a good choice,
since their parsing is computationally expensive, there is
no available learning algorithm to infer them from
examples and/or queries, and (less important) the
represented language can hardly be imagined from the
observation of the grammar rules. Augmented Transi-
tion Networks (ATNs) (6) are powerful models that have
been used in natural language applications, but which
are very difficult to infer automatically. (7) Pattern
languages, (8~ though not comparable to Chomsky's
hierarchy of languages, provide a limited mechanism
to take into account some context influences, namely,
the repetition of variable substrings along the strings of
a language. The inductive inference of pattern languages
has been studied and some learning algorithms pro-
posed. (9) Nevertheless, the expressive power of pattern
languages is clearly insufficient to cope with many
important context-sensitive structures (e.g. symmetric
planar shapes).

In this paper, a new yet simple formalism that permits
to describe, recognise and learn a class of non-trivial
context-sensitive languages, the Augmented Regular
Expression (ARE), is introduced. AREs are neither the
regular-like expressions, ~4) that are known to describe

the family of context-free languages, nor a type of
regulated rewriting (g) (although there is a certain
resemblance between them). Roughly speaking, an
ARE is formed by a regular expression in which the
stars are replaced by natural-valued variables (called
star variables), and these variables are related through a
finite number of linear equations. 1 Figure 1 displays
some patterns that can be represented by AREs.

After recalling some basic definitions and properties
of regular expressions (Section 2), AREs and the
components which form them are formally defined in
Section 3. Likewise, the relationships among the classes
of languages represented by context-sensitive grammars,
AREs, and pattern languages are discussed. In Sec-
tion 4, an efficient method to recognize a string as
belonging or not belonging to the language represented
by an ARE is presented. The method is split in two
stages. In the former, the string is parsed with respect to
the underlying RE (optionally with the help of an
equivalent DFA) to yield a data structure containing
instances of the star variables for that string. In the
latter, the satisfaction of the constraints included in the
ARE is checked on the star instances resulting from a
previous successful parsing. In Section 5, a practical
approach to learning AREs from examples is proposed.
In this case, four main steps are involved. The first one
consists of a regular grammatical inference step, aimed
at obtaining a DFA that generates a regular superset of

lNote that regular expressions are reduced to AREs with zero
equations among the star variables.

163

cetto
Rectangle

cetto
Rectangle

cetto
Rectangle

cetto
Rectangle

164 R. ALQUI~ZAR and A. SANFELIU

/ t
Primitives

- - a

/ b

I c

N d

{ amc n bdc p amc p bdc n I m,n,p/> 1 }

a) Frontal views of variable-size cylinders
with a fixed-size dent at a variable position.

1
{c n a nca n+lc n+la I n /> l }

b) L-shape

Primitives

,'-', (convex): a

/ (line): b

(concave): c

~ " (concave): d

Primitives
T a A p

--O c
t

{ cbmabmdb n ab n cb nab n dbmab m I n > m } { (pcma n e 2n an c2mte s)+ I m,n,s ~>1 }

c) Submedian chromosomes d) ECG-like signals

Fig. 1. Some patterns that can be described by AREs.

the target language. Then, an RE equivalent to the
inferred DFA is selected as the basic component of the
ARE. Afterwards, the star instances corresponding to
the example strings are determined by parsing the
strings. Finally, the constraints of the ARE are induced
by analysing and solving a tree of linear systems formed
with the registered instances of the star variables.

2. R E G U L A R E X P R E S S I O N S

2.1. Definition and fundamentals

Definition 2.1. Let ~,, = { a l , . . . , am} be an alphabet (a
finite set of symbols) and let/~ denote the empty string.
The regular expressions over ~ and the languages that
they describe are defined recursively as follows.

1. 0* is a regular expression and describes the empty
set.

2.)~ is a regular expression and describes the set {,~ }.
3. For each ai C ~(1 < i < m),ai is a regular

expression and describes the set {ai}.
4. If P and Q are regular expressions describing the

languages Lp and L a, respectively, then (P + Q), (PQ),
and (P*) are regular expressions that describe the
languages Lp U L 0 (their union), LpLQ (their concatena-
tion) and Lp (the closure of Lp), respectively.

5. No other expressions are regular unless they can
be generated in a finite number of applications of the
above rules.

By convention, the precedence of the operations in
decreasing order is * (star), (concatenation), + (union).
This precedence together with the associativity of the
concatenation and union operations allows omittance of
many parentheses in writing a regular expression.

A language is said to be regular if and only if it can
be described by a regular expression (RE). We write
L(R) for the language described by RE R. Two regular
expressions P and Q are said to be equivalent, denoted
by P = Q, if they describe the same language. The
following are some basic equivalence rules that involve
the star operation:

;~* = ~ (1)

0" = k (2)

R'R* = R* (3)

RR* = R*R (4)

(R*)* = lC (5)

)~ + RR* = R* (6)

(PQ)*P = P(QP)* (7)

(P + Q)* = (P'Q*)* = (P* + Q*)* (8)

(P + Q)* = P*(QP*)* = (P*Q)*P* (9)

It is well known (Kleene's theorem ~5)) that every
language accepted by a finite-state automaton (FSA) can
be represented by a regular expression and every
language denoted by a regular expression can be
recognized by an FSA. Given an FSA A, there can be

cetto
Rectangle

Recognition and learning of a class of contextensitive languages 165

many equivalent REs R such that L(A) = L(R). Several
algorithms have been proposed to find a regular
expression that describes the language accepted by a
given FSA. (5'1°) By selecting a specific algorithm, a
deterministic mapping ~b can be established from FSA to
REs, this is, a canonical RE R can be chosen for each
FSA A, R = ~(a) .

2.2. A basic method to find an RE describing the
language accepted by a given FSA

A basic method proposed by Arden (l°'H) is recalled
here. This method is used with some modifications to
derive REs from FSA in learning AREs from examples
(see Section 5). The following theorem, the proof of
which can be found in Kohavy, (1°) is behind Arden's
method.

Theorem 2.1. Let Q, P and R be regular expressions over
a finite alphabet. Then, if L(P) does not contain A, the
equation R = Q + RP has a unique solution given by
R =QP*.

Let A = (E,Q, 3 ,q0,F) be an FSA, where E is a
finite set of input symbols (alphabet), Q is a finite set of
states, q0 E Q is the initial state, F C Q is a set of final
states, and di : (Q x ~,) --* 2 0 is a state transition
function. Let us assume that Q has n states and a total
order (<) is established among them, which can be
arbitrary except that the first element is the initial state
q0, i.e. Q = (qo , . . . ,qn- l) . This order can also be
applied to the final states, i.e. F = (qfl,- • •, ~ 1) ' where

O< fl < . . . <flFl < n - - 1 .
Let c~ be the RE that denotes the set of strings from

E* that take the automaton from state qi to state qj
without passing through a state qk with k < l; c~ will
include only the direct transitions from qi to qj, whereas
c~ ° will be the whole set of strings that lead from qi to q~.
Let Rj be a synonym for c~°j, the RE that describes the
set of strings that take the automaton from the initial
state qo to state qj It is clear that a valid RE for L(A) is
given by

R = R A + . . . +Rfe, (10)

Hence, a procedure that determines all the Rj, for
0 < j < n, may be used to yield R. Such a procedure is
given by solving the following system of symbolic
equations:

using the rule of Theorem 2.1, A ~ L (P) ~ (Rj =
Q + RiP ¢* Rj = QP*), and Rj is substituted into the
rest of equations (~+1), i # j. Whenever Theorem 2.1 is
not applicable, the right hand side of the equation can be
directly used to replace Rj.

The above p r o c e d u r e y i e l d s a l l the REs
a ~ (l _ < l _ < n , 0 < j < n , 0 < i < l) , although some of
them may be empty. A subset of 2n 2 of these REs can be
used to parse a string by an RE efficiently with the help
of the source FSA A, as shown in Alqutzar and
Sanfeliu. (12) However, it must be noted that the time
complexity of Arden's algorithm is exponential 0(2 ") in
the number of states of the given FSA in the worst case,
due to the fact that the length of the returned equivalent
RE might be exponential in n. This occurs, for example,
when the FSA is fully connected (i.e. its state transition
diagram is a clique). Nevertheless, in many cases, when
the given FSA presents some limitations on the
connectivity and degree of circuit embedment in its
state transition graph, a run-time polynomial in n can be
achieved in practice (e.g. for FSA equivalent to REs of

the form a*la 1 . . . a*ai. . , a*nan(ai E ~), a run-time cubic
in n is experimentally obtained). Indeed, a best-case
complexity of ~(n 3) can be shown by realizing that a
number cubic in n of REs c~ are yielded (see above).

3. AUGMENTED REGULAR EXPRESSIONS

In order to define the Augmented Regular Expres-
sions (AREs) some preliminary concepts are needed,
which are introduced in the following subsections.

3.1. Star variables and star tree of a regular expression

Definition 3.1. Let R be a given RE and let us say that R
includes ns star symbols (ns _> 0). The set V of star
variables associated with R is an ordered set of natural-
valued variables { v l , . . . , Vns}, which are associated one-
to-one with the star symbols that appear in R in a left-to-
right scan.

Let pos(V,i) be a function 2 that returns the position in
R of the star symbol associated with the star variable Vg;
moreover, i f p is the position in R of a star symbol, then
i = p o s - l (V , p) gives the index of the corresponding
star variable vi. The function pos can be used to order
the set V : viv j ¢ff pos(V, i) < pos(V,j).

Definition 3.2. For vi, vj E V, we say that vi contains vj if
and only if the operand of the star associated with vi in R

(eg): R0 = R0otg 0 + Rlc~0
(eT): RI ---- R0o~gl + RlO~71

(e~_l): Rn-l = g0c~g(n_l) + glc~7(n_l)

+ "'" + Rn 10~(n-1) 0

+ . . . + Rn-lc~n 1)1

+ "'" + Rn lC~n_l)(n_ U

+~

where e] are labels to identify each equation. This
system can be solved in n steps. At each step from
j = n - 1 down to j = 0, equation (3 ÷1) is processed 2Actually, it can be represented as an attribute of each vi.

cetto
Rectangle

166 R. ALQUI~ZAR and A. SANFELIU

includes the star corresponding to vj; and we say 1) i
directly contains vj if and only if v i contains vj and there
is no vg E V such that vi contains Vk and Vk contains vj.

Definition 3.3. Given an RE R, its associated star tree
J - = (N, E, r) is a general tree in which the root node r
is a special symbol, the set of nodes is N = V U {r}, and
the set of edges E is defined by the containment
relationships of the star variables in the following
manner:

i) for all the star variables vi E V that are not directly
contained by other star variables, an edge (r, vi) is
created (vi is said to be a son of r), and therefore vi is
located in the first level of the tree; 3

ii) for all vi, vj C V, if vi directly contains vj, then an
edge (vi, vj) is created (and vj is said to be a son of vi).

Furthermore, let us assign an integer identifier to each
node of the star tree ~--: let the identifier of the root r be
0, and let the identifier of any other node be the index i
of the star variable vi corresponding to the node
(1 < i < ns). A simple algorithm to build the star tree
~- associated with a given RE R has been reported, (lz)
with a time complexity of O(I R I .h(R)), where h(R) is
the depth of non-removable parentheses in R.

A star variable v can take as a value any natural
number, whose meaning is the number of consecutive
times (cycles) the operand of the corresponding star (an
RE) is instantiated while matching a given substring. In
such a case, we say that the star variable is instantiated,
and sometimes we refer to its value as an actual
instance. For computational purposes, we will see that it
is useful to assign a special value, say - 1 , to a star
variable v when its father in the star tree 9 - is
instantiated but v is not during the matching process.

3.2. Star instances data structure

Since an RE R describes a language L(R) of strings
(over E), it is convenient to parse a given string s E E*
with respect to R. A parsing algorithm must return yes or
not depending on whether s E L(R) or not, and in the
first case, it must also return a kind of " ins tance" of R
that just describes s (something similar to a derivation
tree in parsing a string by a grammar). An RE R is
ambiguous if there exists a string s E L(R) for which
more than one " instance" of R can be built. Next, a data
structure is presented which is designed to store the
information of the instances of the star variables that
occur in parsing a string s by an unambiguous RE R.
This structure can be regarded as a partial representation
of the " ins tance" of R for s, since the matched sub-
expressions themselves are not recorded.

When a string s is parsed by an unambiguous R E R,
the associated star variables vi C V(1 < i < ns) will be
instantiated zero, one, or more times, depending both on
the instances of the star variables that directly contain

them and on which terms of the union-type REs in R are
selected to parse a substring of s. If the operand of a star
in R consists of a union of two or more REs (called
terms), which term is used for each match of the
operand can be traced. Consequently, for each cycle,
only the star variables that are located in the matched
term can be instantiated, while the special value - 1 can
be given to the rest of star variables that are directly
contained by the same father. In this way, all the star
variables that are brothers in the star tree 3- will have
the same structure of potential instances for a given
string, whether they are actually instantiated or not. Let
us put it more formally.

Let S I s (V) = {S l s (V l) , . . . , S l s (vns) } be the set of
instances of the star variables in V resulting from the
parsing of a string s by the RE R (from which V has been
defined). Each member of the set is a list of lists
containing instances of a particular star variable:

Vi c [1..ns] : Sls(vi) (1il,. i : . . , ln l is ts (i))

where nlists(i) > 0

Vi C [1..ns]Vj E [1..nlists(i)] : tj = (e j l , . . . , ej(nelems(i,j)))

where nelems(i , j) > 1

The instances stored in the lists are organized
according to the containment relationships of the star
variables described by the star tree ~ ' . This is carried
out by defining for each list lj two pointersfather_list(lj)
and father_elem(Ij) that identify the instance of the
father star variable from which the instances of vi in lj
are derived.

For all the star variables that are in the first level of
3-, the following structure arises:

Vvi, (r, vi) @ 9 =¢, SIs(vi) = (lil) A 1~ = (eiu)

A father_list(lil) = - 1

A father_elem(l~) = - 1

i.e. nlists(i) = 1 and nelems(i , 1) -- 1; furthermore, if vi
is not instantiated in parsing s then e~l = - 1 else
e~l > 0 is the number of matches of the star operand in
the only instance of vi. Otherwise, let vf be the father of
vi in 3-. For all the star variables that are in the second
level of ~-, the list of instance lists is either empty
(when ~1 < 0) or its structure is:

Vvi, (r, vf), (vf, vi) C J A ~ , > 0 =>

s i , (v ,) = (l ' ,) ' ' ' All = (e l l , , - ' - e l (~))

A fatherdis t (l i l) = 1

A fa ther_elem(l~l) = 1

i.e. nlists(i) = 1 and nelems(i , 1) = ~1; and, if vi is not
instantiated in the k-th match of the star operand of v¢
then e~k = --1, else e~k > 0 is the number of matches of
the star operand of vi in the k-th cycle. Finally, for all the
star variables vi that are in the higher levels of 3 - (with
father v¢), we have the following general rule: 4

4This rule is also met, in fact, by the star variables in the
3The root r is at level 0. second level of Y.

cetto
Rectangle

Recognition and learning of a class of contextensitive languages 167

nlists(i) = #{4k I 4k > 0} A Vj E [1..nlists(i)]:

nelems(i , j) = 4k ' A father_list(l~) = j '

A fatherelem(lj) = k'

and ejk is either a natural (the instance of vi in the k-th
cycle of the instance of vf identified by the pointers
{j', k'}) or - 1 (if vi is not instantiated in such a cycle).
Fig. 2 shows an example of the star instances for a given
string and RE, in which the star tree ~'- has four levels.
Two algorithms for unambiguous RE parsing that build
the star instances structure have been reported. °2)

3.3. Definition and expressive power o f AREs

Definition 3.4. An Augmented Regular Expression (or
ARE) is a four-tupla (R, V, 9"-, L), where R is a regular
expression over an alphabet ~, V is its associated set of
star variables, Y is its associated star tree, and L is a set
of independent linear relations { l l , . . . , l nc} each one
involving the variables in V, that is

li = ailVl q- ' ' ' q- aijvj q- " ' ' + ai(ns)Vns + aio = 0

for 1 < i < nc

where ns is the number of star variables and nc
(0 < nc < ns) is the number of relations (or con-
straints). A preferred equivalent formulation of the set

L is given by partitioning the set of star variables V into
two subsets V i"d, V dep of independent and dependent star
variables, respectively, and expressing the latter as linear
combinations of the former:

! ind - - t ind li -~ v dep =- ailv 1 + ' " d-aijv j -}- . . .
,' ind t

q- ai(niVni q- aio , for 1 < i < n c

where ni and nc are the number of independent and
dependent star variables, respectively.

The definition of V restricts the allowed values for the
star variables to natural numbers, Vk E [1, ns] : vk C JV.
Consequently, the set of linear relations L is only well-
defined when the involved variables take natural
numbers as values. This also implies that some of the
star variables may be implicitly constrained to a smaller
range inside the natural numbers (e.g. vk _> z, z c Y ; vk
always odd; vk always even; etc.). Moreover, the
coefficients aij(or a~j) of the linear relations will always
be rational numbers.

Definition 3.5. Let R = (R, V, ~--, L) be an ARE, the
language L(R) represented by R is the set of strings
from E* such that a E L(R) and there exists a parsing of
a by R in which the star instances SI~(V) satisfy all the
l inear constraints in L (let the predicate satisfy
(SI~ (V), L) denote this condition).

R = (a(b(ce*c+df*d)*)*)* R(V/*) = (a(b(ceV'c+dfV2d)V')v') v5
V={Vl,V2,V3,V4,V5} ~-= (VUr,{(r, v5),(v5,v4)~(va,v3),(v3~vl),(v3,v2)},r)

s = a b c c d f f d c e c b d d b d f d c e e c a b c e e e c

S i s (V 5) = ((2) {-1'-1})

S i s (v 4) = ((3 1) {1'1})
Sls (l :3) = ((3 1 2){1'1}(1) {1'2})

Sls(Vl) = ((0 - 1 1){l'1}(-1){1'2}(-1 2){1'3}(3) {2'1})
Sl=(v2) = ((- 1 2 - 1){1'1}(0){1'2}(1 - 1){1'3}(-1) {2'1))

Star tree
V
4

3

V V
1 2 (0 -1

r

(3 1 ~) Star instances

(3 1 2~)) (~ 1)

Fig. 2. An example of star instances data structure.

cetto
Rectangle

168 R. ALQUI~ZAR and A. SANFELIU

The AREs permit description of a class of context-
sensitive languages by imposing a set of rules that
constrain the language of a regular super-set. A very
s imple example is the language of rec tangles
{amb~amb"]m,n >_ 1}, which is well known to be
context-sensitive (see grammar CSG1 in Appendix A),
and which is descr ibed by the ARE 1~ 1 = (R1,
V1, if'-l, L1), where

Rl = a*ab*ba*ab*b

V 1 ~--- {Vl, V2, V3, V4}

RA (V l / *) ~--- a v~ abVZbaV3abV4b

9-1 = (El U r, {(r, vl), (r, v2), (r, v3), (r, 124)}1 r)

LI = {v3 = Vl,V4 = v2}

(i.e. V ina = {Vl, v2} g dep = {v3, v4}

and nc = 2).

However, more complex languages with an arbitrary
level of star embedment and multiple linear constraints
(even among stars at different levels of embedment) can
be described as well by the ARE formalism. Consider,
for instance, the ARE R2 = (R2, V2, ~ - 2 , L 2) with

R2(V2 /*) = (C vl (dV2bV3)V4cVSaV6cVT(bVsdV9)VlOcVlleVl2) v'3

and

L 2 = {vii = v 1 + v5 -- v7,

V12 = V6~

v2 = v 4 - - 1,

V3 = V4 -- 1,

v8 = 0.5v10 + 0.5,

V 9 = 0.5V10 + 0.5}

The set of constraints L2 (besides an unambiguity
requirement for parsing R2) implies that v2,v3,
v8,v9 _> 1;v4 > 2; and Vl0 will always be odd. Fig. 3
and Fig. 8 show some examples that belong to the

language represented by /)2, given an alphabet of
graphical primitives {T a, ,7 b, ---* c, ~ d, 1 e}. The
context-sensitive grammar CSG2 in Appendix A gen-
erates L(/)2). The reader is encouraged to compare the
compact and descriptive representation provided by the
ARE R2 with the obscure grammar CSG2, that
comprises 79 rules.

The following question naturally arises: Can all the
context-sensitive languages be represented by AREs?
The answer is in the following theorem.

Theorem 3.1. The Augmented Regular Expressions do
not describe all the context-sensitive languages.

Proof. The context-sensitive grammar CSG3 (see
Appendix A) that generates the language {a k I k = 2 i
Ai > 1} is a counter example. This language is not
describable because AREs can only filter the range of
values of the star variables through linear relations, and
these relations only involve the star variables but not any
external variable (such as i in L(CSG3)). Therefore, there
is no ARE k = (R, V, ~'-, L) such that L can represent
the constraint V 1 = 2 i A i _> 1 for R(V/*) = a v'. []

The context-sensitive language {a k I k is a prime} is
another counter example. Indeed, it seems reasonable to
expect that a large class of CSLs will not be described
by AREs either, due to the limited type of context
constraints that can be represented.

Consider now the language {xx I x E (0 + 1) +}
generated by the context-sensitive grammar CSG4.
L(CSG4) corresponds to the pattern language (8) xx over
the binary alphabet E = {0, 1}, where the variable x
stands for any string in P,+. The ARE (0 + 1) v~ (0 + 1) ~
with {v2 =Vl} cannot express that the substrings
associated with the instances of the operands of the
stars denoted by Vl and v2 are identical. However, if the
equivalence rule (0 + 1)* = (0" 1)*0" is applied before,

Primitives a b / ~ / ~ / ~
and ~ c

symbols e d

../N

- - N / N / - A

Sl = c5 d3 b3 d3 b3 d3 b 3 d3 b3 c3 al° c3 b2 d2 bZ d2 bZ d2 c5 e l° c 6 dbdbc8 al ° c 4 bdcl° e 10

[R2(V2/*) = (c v' (dV2b~3)V4cV~aV6cVT(bV"dV")V'°cV"eV'2)v"]

[Slsl (v13) = ((2){-1'-1})]

Sls,(vl) = ((5 6) {1'1})
Slsl (Vs) = ((3 8) {1'1})

Slsl(v6) =- ((10 10) {1'1})
Slsl (V4) = ((4 2) {1'1l)

SI$1(V2) = ((3 3 3 3){1'1}(11) {1'2})
Sls~(V3) = ((3 3 3 3){1'1}(11) {1'2})

Sls,(V7) = ((3 4) {1'1})

gist(Vii) = ((5 10) {1'1})
3151 (v12) = ((10 10) {1'1})

Slsl (Vl0) = ((3 l) {1'1})
SIsI(V8) = ((2 2 2){1'1}(1) 0'2})
SIs,(v9) = ((2 2 2)0'1}(1) {1'2})

Fig. 3. An example of pattern recognized by the ARE R2 with its corresponding star instances.

cetto
Rectangle

Recognition and learning of a class of contextensitive languages 169

the ARE (0 v~ 1)Ov2Ov3(ov41)vsO v6 with {v5 = v2; v6 = v3;
v4 = vl } is able to describe the above pattern language.

Theorem 3.2. The Augmented Regular Expressions do
cover all the pattern languages, but the size of an ARE
describing a pattern language over E is exponential with
respect to the number of alphabet symbols I E].

Proof. Let p be a pattern language over E = { a l , . . . ,
am} (m _> 2) including some finite number of variables
{Xl, . . . ,xl} (1 > 0). Each variable xi(1 < i < l) can be
represented by an RE R ~ - - (a l ÷ ' " + a m) * . By
applying repeatedly equation (9) an equivalent RE R~,
without union operators is obtained that contains 2 m - 1

~ /

stars (this is easily shown by induction). Let Rz, be an
ARE with no constraint such that the stars of R~ are
replaced by independent star variables. Let t(i) be the
number of occurrences of xg in p. Each occurrence x U of

~ ¢

x~ in p gives rise to a duplicate of Rz with new star
~ l ~ /

variables: Rij. An ARE Rp describing the pattern
language p can be stated by letting the star instances

~ / , . .

of the AREs Ril be independent and estabhshing a set L
of (2 m - 1). ~ l = l (t (i) - 1) equations of the form
Pijk = Filk (1 _< i < 1; 2 < j _< t(i); 1 < k < 2 m - 1). []

On the other hand, it is obvious that the class of
pattern languages (8) does not cover the languages
represented by AREs. For example, the language of
rectangles L(/?l) and the context- f ree language
{ 0v~ IV20V~ I v2 = Vl + v3} cannot be described by any
pattern language.

4. STRING RECOGNITION THROUGH AUGMENTED
REGULAR EXPRESSIONS

The recognition of a string s as belonging to a
language L(/~) can be clearly divided in two steps:
parsing s by R, and if successful, checking the
satisfaction of constraints L by the star instances SIs(V)
that result from the parsing. If R is unambiguous, a
unique parsing and set of star instances SIs(V) is possible
for each s E L(R), and therefore a single satisfaction
problem must be analysed to test whether s C L(/~).

4.1. Parsing strings by REs to build the star instances

Two algorithms for unambiguous RE parsing have
been reported °2) which, given a string s and an RE R,
respond whether s E L(R) or not, and in the first case,
build the corresponding star instances SIs(V). The
processing of the input string is clearly divided in two
phases: the recognition and construction phases. The
first algorithm uses the RE R (alone) for recognition.
The construction phase is a kind of re-run of the
recognition phase in which it is known in advance
that the string will be successfully parsed by the
RE, and therefore, the true instances of the star
variables can be recorded. To this end, the current
star variable that is involved in parsing is tracked,
and the value of each new instance is computed by
counting the number of consecutive matches of the
operand of the related star. The time complexity of the

first algorithm is O(1 s t •]R 1) globally and for both
phases.

A more efficient parsing method is attainable if the
unambiguous RE R has been obtained from an
equivalent DFA A which is also given. This is the case
if R has been inferred from examples by applying the
DFA-to-RE mapping, described in Section 5, to the
result of a DFA learning method. The second parsing
algorithm (12) is such an efficient method which uses the
DFA A, some of the REs a t yielded by Arden's
algorithm, and the skeleton 5 of R. The key point is that A
(instead of R) is used for recognition O([s [), and that
the path of visited states obtained, guides the construc-
tion of the star instances structure for the input string s.
There are two achievements that permit reduction of the
time complexity of the construction phase also. The
former is to locate the substrings of s that are associated
with the cycles of the involved star-type REs by finding
subpaths of visited states that start and end with the
same state without passing through it. The latter is to
select directly the term of the involved union-type REs
that actually matches the corresponding substring with-
out the need of attempting to parse the non-matched
terms) ~2) Hence, the second algorithm has a time
complexity of O(max{I skel(R) [, n. Is]}), due to the
construction phase, where n is the number of states of A,
Is I and I skel(R)[denote the lengths of the input
string and the skeleton of R, respectively, and
I skel (R) I<1 e I.

4.2. Constraint satisfaction

Algorithm 1 (in Appendix B) is proposed to evaluate
the predicate satisfy(Sis(V), L) given a set of star
instances, previously recorded in a successful parsing,
and a set of linear constraints among the star variables.
It provides the second step in recognizing a string
through an ARE, and its theoretic time complexity is

O(I L I . h (Y). I VI . I (SIs(V))) where ILl and IVI are
the number of constraints and star variables, res-
pectively, h(J-) is the height of 9"-, and I (S L (V)) =

n l i s t s (i) n l ' maxi=l,lVl ~-~j=l e ems(I,j) is the maximal number of
potential instances of a star variable (i.e. including those
assigned to - 1) yielded by parsing s.

It must be noted that every valid constraint can only
involve a set of star variables which share a common
structure of instances, i.e. the number of instances of
each of them is the same, and these can be grouped, one
instance of each variable, in rows, one row for each
cycle of the instances of a common selected ancestor. In
principle, this means that the set of related star variables
should be brothers in .~- (and their father being the
common ancestor).

However, this is not exactly the case. It could happen
that the values of the assigned instances of a certain son
were constant for each instance of its father. In such a

SThe skeleton of an RE describes R in terms of the languages
corresponding to a determined subset of the paths of A and it is
formed in a simplifying step after running Arden's algorithm
(see Section 5).

cetto
Rectangle

170 R. ALQUI~ZAR and A. SANFELIU

case, a unique value might be associated with the
father's instance and, furthermore, both values (of father
and son instances) might be related by a constraint. In
other words, regarding the star instances, the son would
be promoted to a lower level in the tree and share with
its father the instance structure determined by the
instances of its grandfather; we could say that, with
respect to the promoted son, the father is a degenerated
ancestor and the grandfather is the housing ancestor.
This promotion process could continue until a non-
degenerated ancestor were found, for which the
instances of the promoted variable would not have a
common value for each instance of the ancestor, or until
a default node were reached as a housing ancestor. This
default node can be the root node r of the star tree or a
selected ancestor (e.g. a housing ancestor that is shared
with other star variables, as is explained next). Each
time a star variable is promoted to a lower level, all of its
redundant instances must be collapsed into a single one
in order to keep the common structure of instances. The
procedure determine_ancestor_and_instances, (12)
whose cost is O(h(J -) . I (SIs (V))) , implements the
process described.

Moreover, even if a common housing ancestor is not
found, a set of star variables can be related by a
constraint whenever all of their housing ancestors are
related by a strict equality. This fact ensures that a
common instance structure is available, even though the
star instances are not constant, as it occurs in the AREs
describing pattern languages. For example, in the ARE
(OVll)V2ov3(ov41)Vso v6 with {v5 = v2; 1:6 ~-- V3; V4 = V1},

the constraint v4 = Vl is valid because v5 and v2 are the
housing ancestors of v 4 and vl, respectively, and
V 5 :---- 1: 2.

In summary, each constraint in L can only be satisfied
by the star instances SIs(V), gathered during the parsing
of a string s, if the star variables involved either share a
common housing ancestor or their housing ancestors
satisfy a strict instance equality. Let the constraint l~ in
L(1 < i < nc) be expressed as

vdi ep ~- ail Vil nd ÷ ' ' " ÷ ailvl nd ÷ aio,

where the set of independent variables fulfils the
restriction that Vj E [1..l] : aij ~ O.

In order to test 1 i the instances of the dependent star
variable vdi ep, obtained in the parsing of s, are analysed.
If there is no actual instance of vi dep, the constraint is
considered to have been met. Otherwise, the deepest
c o m m o n ances tor of the star var iab les {vai ep,

ind ind 1 v I , . . . , v l ~, i.e. the first common ancestor going
from each of these nodes to the root of ~--, is selected as
a candidate to common housing ancestor. To check the

linear constraint I / i t is mandatory that the instances of
all the star variables involved in the relationship can be
arranged in the structure of instances caused by the
housing ancestor of vi dep (call it Vhi). Consequently, if
any of them (say v~ nd) has a housing (non-degenerated)
ancestor (say Vhk) that is deeper than the common
housing ancestor candidate and the equation Vhk = Vhi is
not met by the instances, then it means that a shared
structure of instances is not available for the string s, and
therefore, the constraint li is considered to be violated.
In the particular case of a star variable of an ARE
always having a constant value (vdi ep = aio) regardless
of its level in ~-, its housing ancestor will be the root
node, and obviously, all actual instances must be
collapsed to the value aio to verify the constraint.

Finally, when the housing ancestor of all the star
variables in li coincides with their deepest common
ancestor or all the housing ancestors are related by strict
equality, the constraint is tested on all the actual
instances of v/aep. To this end, these instances are
arranged in a column vector B, whereas the correspond-
ing instances of the involved independent variables are
orderly put as columns in a matrix A, together with an
al l - l ' s column associated with the constant term of the
constraint. Then, it suffices to test A - X :- B, where X is
the vector of coefficients in the right hand side of the
constraint.

Consider the example of Fig. 3. Given the constraints
L2 and the star instances displayed (for the string sl),
Algorithm 1 would set v13 as housed descendant of
the root node r, and the rest of star variables of v2 as
housed descendants of v13. In the main loop, the six
constraints of L2 would be checked. The first one,
V l l = vl ÷ v5 - v7, would lead to the successful test of
the equality A . X - - B shown in Fig. 4. The rest of
constraints would be verified in a similar manner.
Therefore, the string Sl of Fig. 3 would be accepted as
belonging to L(/~2).

5. I N F E R R I N G AREs F R O M S T R I N G E X A M P L E S .

Now, let us consider the problem of learning AREs. A
possible approach is to split the process in two main
stages: inferring the underlying RE, and afterwards,
inducing the constraints that bear the context sensitivity
of the language. For the first stage, some regular
grammatical inference (RGI) method is required. Al-
most all of the known RGI methods return an FSA, and
consequently the RGI step will have to be followed
usually by an FSA to RE mapping. For the second stage,
the tasks of building the star tree, parsing a set of
example strings, and inferring the constraints from the
collected star instances, are needed.

[!l ivy1 tcyc of sto ev v7]
2nd cycle of instance V I 3 = 2 in Sl 6 8 4 1 L 10 [

Fig . 3. Ver i f i ca t ion o f the cons t ra in t v i i = vl + v5 - v7 t h r o u g h the m a t r i x p r oduc t A • X = B (the top r o w o f
the displayed A and B is just for labeling purposes).

cetto
Rectangle

Recognition and learning of a class of contextensitive languages 171

Projective view S"

Primitives (16 ex.) (48 ex.)
- - a

/ b

] c Sample data: S = (S +,S
\ d I

aaaaacccbdccccaaaaaccccbdccc Regular

Regular Expression / I Active Grammatical Inference (AGI)

I
a(a*cc*bdcc*a)*a*cc*bdcc* - ~ /

method

FSA to RE v
Inductionof / ~ S A a ~ c

a(aVlccV2bdccV3a) V4aVSccV6bdcc v7

I v4=l L7
with v5 = vl

v6 = v3 a,b,c,d
v7 = v2

Augmented Regular Expression Deterministic FSA

Fig. 5. An example of application of the proposed method for inferring AREs.

5.1. Description of the overall procedure

Before proceeding to describe the details of the
proposed method for learning AREs, it is worthwhile to
give, first, a global picture of it in terms of an actual
example. Fig. 5 displays a simple but illustrative case.
The problem at hand is to learn a recognizer for the class
of contours coming from a frontal view of variable-size
cylinders with a fixed-size dent at a variable position
along the axis. It is clear that the language associated
with such an object is context-sensitive, 6 and, conse-
quently we cannot expect that a regular or even a
context-free language learning algorithm returns a
suitable recognizer for this class of objects. Never-
theless, an adequate description like amcnbdcPamcPbdc ~
should be reachable from a few examples. In fact, our
ARE learning method is a rather straightforward (but, as
far as we know, unexplored) approach for inferring
syntactic descriptions of this kind.

In the case of Fig. 5, a sample S = (S+,S -) of 16
positive and 48 negative examples was provided,
corresponding to some variable-size instances of the
contours shown at the top of the figure. Even though the
target language is context-sensitive, one may try to enter
this sample into an FSA learning algorithm and analyse
the usefulness of the result. 7 The application of the
(regular) active grammatical inference method recently

6The length of the two horizontal segments is the diameter of
the cylinder, and the lengths of the vertical segments separated
by the dent are obviously the same at each side of the axis.

7A strategy that resembles "the drunk searching the keys
under the lamp."

reported, C23) to the given S yielded the deterministic
FSA displayed in Fig. 5, which accounts for the basic
repetitive structure of the model but which over-
generalizes a lot, accepting rather arbitrary contours
without any length restriction. However, this result is a
good starting point to search for a more accurate
description that includes the context constraints (i.e. an
ARE). The next step is to obtain an equivalent compact
representation that facilitates the induction of the
constraints, and this turns out to be an RE. In our example,
the method explained in next subsection was used yield-
ing the RE shown in Fig. 5. Finally, from the automatic
analysis of the star instances of the RE that were produced
by parsing the positive examples, a set of constraints
could be derived that, in conjunction with the regular
expression, perfectly described the target language.

The data flow of the process followed to infer an ARE
from examples is depicted in Fig. 6. Once the regular
expression R is determined from the inferred FSA A, the
associated star variables Vand the star tree ~ must be
obtained. These are used both to build an "array of star
instances" ASI, containing the information recorded
from parsing the examples, and to analyse it in order to
induce the set of constraints L. The result of the process
can be expressed as the tupla k -- (R, V, ~-, L). Algo-
rithm 2 (in Appendix B) is a more detailed description
of the overall learning procedure. Note that a wide range
of algorithms is available to perform the regular
grammatical inference step. O7-23) This must not be
interpreted, however, as if the choice of the regular GI
method were irrelevant. On the contrary, the implicit or
explicit biases of the selected method may or may not

cetto
Rectangle

172 R. ALQUI~ZAR and A. SANFEL1U

) S + >

S + ~ Regular
. / G r a m m a t i c a l

S :" : ~ 1 Inference

> R - - ~ Star tree
I [construction

:- A :~ Parsing [
Constraint

S + /
- R :- ~-> ASI - -~ Induction

~ ~ b y] ~ V ~ fmmStar

R 7" Instances

< R, V , ' f f , L > = R

~ L

Fig. 6. Flow diagram of main data in the process of learning Augmented Regular Expressions from string
examples.

help to reach a "natural" (the simplest in some sense)
regular expression for the data that supports the
discovery of the underlying context constraints.

A drawback of the preceding approach must be noted:
all negative examples (if any) will be rejected by the
inferred RE, whereas, in fact, some of them could
belong to the language accepted by the RE in the target
ARE (provided that they did not satisfy the constraints).
Therefore, an alternative learning scheme may be
applied such that, initially, the negative examples are
not supplied to the RGI step, but if any of them is
accepted by the inferred ARE, then the process is
restarted incorporating the conflictive negative exam-
ples to the RGI step. In this way, several runs could be
necessary to reach a consistent ARE; in the worst case,
after a finite number of runs (bounded by the number of
negative examples), all the negative sample would be
given to the RGI step, as in Fig. 6, thus guaranteeing the
consistency of the inferred ARE. In any case, it would
be helpful to have available an informant who
partitioned the negative sample in the two subsets of
strings to be accepted and rejected respectively by the
RE in the target ARE.

5.2. FSA to RE mapping

The method that is suggested to be used for the FSA-
to-RE transformation is based on Arden's algorithm
described in Section 2, but a final simplifying step and
an inner modification of the algorithm are proposed to
"improve" the resulting regular expression.

The RE given by equation (10) can be simplified a lot
by determining the common factors (prefixes) in the
sum terms and applying repeatedly the equivalence rule
PQ + PS = P(Q + S). First, let us find a simplified RE
for the union of the regular languages Rj for all the states
qj E Q. It is easy to show, by replacing recursively the Rj
variables in equations (3) by the expressions given in
equations (el), for 0 < j < n and 0 < i < j, that the
following equivalence holds:

~ R j : RO -4-'" +Rn-1 = Ro(A +RolPQI(n_I) + " "
qjEQ

+ Ro(n-llP~n_l)(n_l)) = RoPOo(n_I) (11)

where R/j = ~//j, and Pi Q denotes the set of strings that
lead from state qi to any state qj C Q with i < j < k
without passing through a state ql with 1 < i, and it can
be defined recursively as

RO#O
= + (12)

j=i + l ,k

Next, we define a relation qi ~ qj in the following way:

qi ~ qj ==~ (j < i) A Rij ~ O

Now, let Q¢ C Q be any subset of states, and let C(Q') be
the transitive closure of Q~ with respect to the relation
~. It can be proved that

P~ = 0 ¢~ qi~C((f), Vk >_ i (13)
t

Hence, PQ can be computed recursively using C(Q ~) for
filtering null terms as follows:

, v-,R~j#OAqj~C(Q') a/ Qt
Pig = A -1- ~..aj:i+l,k RijP)k if qi @ (14)

Z-.~j=i+I,k~-~Rij#OAqjEC(Q~) RIjP~ o t h e r w i s e

Then the union of the regular languages associated with
the states of Q~ is equivalent to a simplified RE with the
extracted common factors:

Rj : RoP~,_I) (15)
qj~:Q'

Furthermore, if Q' ~ O then P0~,-U = P0Cz ' where qz is
the state of Q' with the largest index.

Finally, for the RE equivalent to the given automaton
A, we obtain

R=~b(a) = RopFoofle, (= ~-~ RI I (16)
\ qyEF zl

We refer to the string that is obtained by substituting in
R the REs corresponding to Ro and Rij by the symbols
"R0" and "Ri j" as the skeleton of R.

Consider, for example, the 4-state FSA that is
displayed in Fig. 7(a). The two equivalent REs, given
by equations (10) and (16), after running Arden's
algorithm, are shown in Fig. 7 (c) and (d), respectively.
The skeleton of the simplified one is displayed in
Fig. 7 (e).

cetto
Rectangle

Recognition and learning of a class of contextensitive languages 173

a

(a)

Ro = ((a + ba*b)(baa*b)*(a + bb))*

RI = ((a + ba*b)(baa*b)*(a + bb))*(a + ba*b)(baa*b)*

R2 = ((a + ba*b)(baa*b)*(a + bb))*(ba* + (a + ba*b)(baa*b)*baa*)

R3 = ((a + ba*b)(baa*b)*(a + bb))*(a + ba*b)(baa*b)*b

(b)

R2 + R3 = ((a + ba*b)(baa*b)*(a + bb))*(ba* + (a + ba*b)(baa*b)*baa*)

+ ((a + ba*b)(baa*b)*(a + bb))*(a + ba*b)(baa*b)*b

(c)

D ~,{q2q3} = ((a + ba*b)(baa*b)*(a + bb))*((a + ba*b)(baa*b)*(baa* + b) + ba*) R = ~ 0 r 0 3

(d)

skel(R) -- R0(R0_I (R1S2 + Rl_3) + R0_2)

(e)

Fig. 7. (a) An example FSA A with 4 states; (b) regular languages associated with its states given by Arden's
algorithm; (c) straightforward RE f o r A : ~ q r E F R f ; (d) simplified RE for A : R = ~b(A)= RoP00~l;

(e) skelelton of R.

Moreover, in order to be able to describe (and induce)
the greatest number of significant context relations
using the ARE formalism, the underlying RE should be
selected among the REs in its equivalence class
according to the following two (somewhat opposite)
heuristics:

1. Maximize the number of stars.
2. Preserve unambiguity.

The aim of the first heuristic is to increase the
potential for inferring context relations from the star
instances obtained in parsing the examples by the RE.
The aim of the second is to ease both the RE parsing and
constraint induction processes. Note that applying any
of the equations (3), (5), (8) or (9) (the former two in
reverse) to an RE leads to an equivalent RE with a larger
number of stars. However, equations (3), (5) and (8)
introduce a great deal of ambiguity in the resulting RE.
On the other hand equation (9) not only preserves, but
enforces unambiguity, since an RE containing a union
operation is transformed into an RE containing just
concatenation and star operations. For instance, let
(P + Q)* = (a + b)* and take a3ba3ba 3 as input string,

it results that (a + b) 11 is the "parse" by (a + b)* while
(aab)2a 3 is the "parse" by (a*b)*a*.

All the stars in the output RE of Arden's algorithm
originate by applying the rule of Theorem 2.1 in solving
the equations (el+l), 0 < 1 < n, i.e.

1+1 o ~ l + 1 Rl = (R 0 o t / + 1 -I- - • • + Rl-lOl(l_l)l) + r~lt~ll

I/z, _ / + 1 D /+1 \ /+1" Rt = kr, oetol + "'" + t,l-lO~(l_l)l)OQl .

Therefore, if the RE air +1 is of the form (P + O), we
may apply equation (9) to the subexpression c~l~ - r to
yield a "better" result in terms of the above heuristics.
In the general case, there can be many ways of
decomposing atl[1 into the P and Q union operands. A
meaningful decomposition is given by P = a~ and
Q = al +1 - a~, where P denotes the direct transitions
from ql t o itself (the loops of qt) and Q denotes the
circuits starting and ending in qt that only can traverse
states qk with k > l. In this way, loops can be
discriminated from the rest of cycles of the given FSA
in the resulting equivalent RE. This is important for
pattern recognition tasks, where the loops of an FSA
model usually account for (indefinite) length or duration
of a basic primitive, a meaningful structure in the

cetto
Rectangle

174 R. ALQUI~ZAR and A. SANFELIU

A

S 2

W m

84

Sl =cSd3b3d3b3d3b3d3b3c3al°c3b2d2b2d2b2d2c5el°c6dbdbcSal°c4bdcl°el°

SE--_c2dEbEdEbEd2bEc4a7c2bdc4e7c4dbdc6a9c5b3d3b3d3b3d3bad3b3d3c5e 9

S 3 -~c2dbdbc2a8c~b2d2b~d2b2d~c2e8c3d2b~d2b~d2b2c4a6c4bdc~e6c~d~b2d~b2d~b~c2a8c2b2d~b~d~b~d2c~e 8

s4=cd3b•d3b3d3b3d3b3c2a5cb3d3b3d3b3d3b3d3b3d3c2e5c2dbdbc2a5c3bdce5cdbdbca8cb2d2b2d2b2d2ce 8

Fig. 8. Four example strings from L(R)2 which are used to inferthe cons~ntL2.

pattern (specially if tools are provided to relate the
lengths, or durations, of different parts).

Consider the example of Fig. 5. The application of
Arden's algorithm to the FSA of Fig. 5, plus the
simplifying step, led to the RE R = a(a + cc*bdcc*a)*
cc*bdcc*, while the above modification on the algorithm
yielded R r = a(a*cc*bdcc*a)*a*cc*bdcc*. Although we
could further transform R' into the more intuitive
description Rrr= aa*cc*bdcc*(aa*cc*bdcc*)* by using
equation (7) and equation (4), R r is good enough as an
underlying RE to enable the inference of all the
contextual constraints displayed by the modelled pattern
(see Fig. 5). Note that not all the constraints are
inferrable from R.

5.3. Inducing the constraints of an ARE from recorded
star instances

Once an RE R is inferred, the star variables Vand the
star tree J - associated with R are easily determined. °2~
Then, the aim is to induce an ARE R = (R,V,~-,L)
such that L contains the maximal number of (linear)
context relations that are met by all the examples
provided. In other words, we want k to represent the
smallest language covering the positive sample that may
be accepted by an ARE with the same given RE. To this

end, the example strings must be parsed by R giving rise
to an array of sets of star instances ASI, and those
regularities that consistently appear throughout the
star instances must be discovered. Algorithm 3 (in
Appendix B) carries out this last process returning a
set of linear constraints L among the star variables V.
Its time complexity is O(I V 13 .I(ASIs+(V))), where
I(ASIs÷(V)) is the maximal number of potential
instances of a star variable yielded by parsing the set
of strings S +.

Algorithm 3 is based on establishing a tree of linear
systems according to the housing ancestor concept.
Each housing ancestor will have its own partition of
independent and dependent star variables among its
housed descendants. To construct this partition, each
ancestor node of ~- keeps track of its housed
descendants that have been determined to be indepen-
dent. All the variables of Y are visited by levels, and for
each one (say vj), its housing ancestor (say vk) is found
and a vector of its non-redundant instances is formed.
Then a matrix is built that contains the instances of the
independently housed descendants of vk. Initially, the
number of columns of the matrix is the number of
independently housed descendants plus one (an al l - l ' s
column) and the number of rows is the number of (non-
redundant) actual instances of vj, which is bounded by

cetto
Rectangle

Recognition and learning of a class of contextensitive languages 175

1st cycle of instance v13 = 2 in sl
2nd cycle

1st cycle of instance v13 : 2 in s2
2nd cycle

1st cycle of instance v13 = 3 in s3
2nd cycle
3rd cycle

1st cycle of instance vl3 = 3 in s4
2nd cycle
3rd cycle

Vl V4 I,'5 1J 6 V7 VI0

1 5 4 3 10 3 3
1 6 2 8 10 4 1
1 2 3 4 7 2 1
1 4 2 6 9 5 5
1 2 2 2 8 2 3
1 3 3 4 6 4 1
1 2 3 2 8 2 3
1 1 4 2 5 1 5
1 2 2 2 5 3 1
1 1 2 1 8 1 3

X =

Vll

4
5
2
3
2
2
1
1

Fig. 9. The linear system A - X = B for the star variable vii (the top row of the displayed A and B is just for
labeling purposes). The solution is X = [0 10 10 - 1 0] T.

the number of parsed strings if vk is the root node or
otherwise by the total sum of the values of the instances
of Vk. Next, the rank of the matrix is evaluated and any
linearly dependent column is removed. Finally, it is
determined whether the vector of actual instances of vj is
linearly dependent on the column vectors of the matrix.
If it is, then the corresponding linear system can be
solved to find the constraint coefficients, and the new
constraint is appended to L; otherwise, vj is included in
the list of independently housed descendants of vk.

Let us illustrate the method with the set of strings
displayed in Fig. 8, that belong to L(R2). First, the sons
of the root node are processed; in this case, v13 is the
only one and it is found independent (since its instances
[2 2 3 3] T are not constant). Then, the sons of v13 are
visited. It turns out that v13 is the housing ancestor of all
of its sons. The star variables v1, ~'4, v5, v6, v7 and vl0 are
successively found to be independent. At this point, the
instances of vii are stored in vector B to be analysed,
while the matrix A contains the instances of the
independent housing descendants of v13 already
processed, Fig. 9 displays the corresponding linear
system. It turns out that vector B is a linear combination
of the columns of A, and solving the system yields
(vii = vl + v5 - v7). This constraint is put into L. Then,
the last son v12 is visited and the second constraint
(vj2 = vt) is similarly obtained. Next, v2 and v3 (the
sons of v~) are processed, v13 is determined as their
housing ancestor (since their instances are constant for
each instance of v4), and both are found dependent
according to (v2 = v4 - 1, v3 = v4 - 1). Finally, v8 and
v9 (the sons of vl0) are also housed by v13 and the
analysis of their instances gives rise to the last
constraints (v8 = 0.5v10 + 0.5, v9 = 0.5VlO + 0.5). In
the end, the inferred set of constraints L coincides with
the target L2 of R2.

6. C O N C L U S I O N S

A powerful new representation class called Augmen-
ted Regular Expressions (AREs) has been presented to
describe, recognize and learn a class of context-sensitive
string languages capable of expressing multiple and
complex context constraints. Moreover, the string
recognition method proposed is efficient (low-polyno-

mial in time). Although it has been demonstrated that
not all the context-sensitive languages can be described
by AREs, the class of representable objects includes
planar shapes with symmetries, which is quite important
for pattern recognition tasks.

On the other hand, it has been proved that AREs
cover all the pattem languages, (s) but the size of an ARE
describing a pattern language is exponential in the
number of alphabet symbols. Even though this is not
critical for alphabets with few symbols (including the
binary case), it is a practical impediment in the rest of
cases (say when [E [> 10). The cause of this
inefficiency is due to the fact that the constraints in
AREs only involve the number of instances of certain
subpatterns in a string but not the relations among the
subpatterns themselves.

In order to represent pattem languages such as
{xx [x E E + } more efficiently, the ARE concept should
be extended by means of the definition of constraints
(e.g. equality) among the substrings that result from
instantiating the operands of the star-type subexpres-
sions. This would require that the data structure
produced by parsing a string by an RE would register,
not only the lists of star variable instances, but also the
associated lists of matched substrings. At first, this
adaptation seems possible, and therefore, a more
powerful formalism would be achieved at the expense
of increasing the space requirements.

Another extension of the formalism is to allow the
definition of (a limited class of) non-linear constraints
among the star variables. In this way, a class of non-
linear AREs, or NAREs for short, could be defined with
a greater expressive power. Note that string recognition
by NAREs can still be efficient, since only the equation
satisfaction test should be replaced. However, inferring
such models from string examples would be extremely
hard due to the great number of combinations of
variables and terms that could arise; moreover, the
probability of inducing artificial constraints (i.e. noise)
would grow.

On the other hand, in order to apply AREs to real
pattern recognition tasks, it is quite clear that the
recognition method presented must be made more
flexible to cope with the noisy and incomplete input
data and/or imperfect data segmentation that is typical

cetto
Rectangle

176 R. ALQUI~ZAR and A. SANFELIU

of practical problems. Generally, there are two ways to
enable a parser to process imperfect data: either the
model (e.g. grammar) is extended by common errors or
the parser is made fault tolerant. In the case of AREs,
the latter approach is more easily implementable. A
flexible ARE parsing method may be attained by using a
regular error-correcting parser for the process of
matching the underlying RE in conjunction with a
"tolerant" constraint checker that may be based on
correlation and linear regression (instead of strict linear
equations). Normally, a set of possible parses of the RE
would have to be tested for constraint satisfaction in the
relaxed sense. The development of the specific tools
needed to adapt the ARE formalism to robust parsing
are the subject of present and future work. The
availability of these tools is required before trying to
apply AREs to real-world problems.

Coming back to the given definition of AREs, it must
be emphasized that the learning scheme presented is not
a method for identifying AREs from examples, which is
an open (and probably hard) problem, but a general
approach to infer data-consistent AREs, trying to
discover the maximal number of context relations.
However, the constraint induction algorithm proposed
ensures that, if the target RE is identified previously,
then the target unknown ARE, which includes it, will be
identified in the limit. This property follows from the
characteristic of inferring the smallest language contain-
ing the examples among the AREs that include the same
RE. The effectiveness of the whole procedure depends
strongly on the result of the regular grammatical
inference (RGI) step. The algorithm to be used in this
step should be biased to return preferably small DFA (or
better REs directly) with a high level of generalization
with respect to the sample. There are two reasons for
this demand: to obtain the simplest regular expression
for parsing, and to be able to induce in the following
phase the context constraints that limit the extension of
the inferred language. The constraint induction could be
impeded if the starting language, yielded by the RGI
step, were too restricted to the given examples (i.e. a
kind of sample overfitting).

Two drawbacks of the presented learning scheme
must be mentioned, namely, the processing of negative
examples, and the efficiency in the worst case. The
trouble with negative examples is that, unless an
informant is available, the learning algorithm does not
know which negative examples should be rejected by
the RE to be inferred and which should not. Hence,
either all of the negative examples are supplied to the
RGI step (thus biasing considerably the induction), or an
iterative process is carried out, in which only the
negative examples that are accepted by the ARE
obtained at the end of an iteration are incorporated into
the RGI step in the next iteration, until a consistent ARE
is inferred.

Concerning efficiency, all the parts of the learning
process run in low-order polynomial time, except the
FSA-to-RE transformation, which is exponential in the
worst case (e.g. for a fully-connected FSA). Although,

fortunately, most of the FSA that are typically induced
from object contours or other physical patterns are
sparsely connected and present quite a limited degree of
circuit embedment, thus allowing a practical computa-
tion of the equivalent RE, it is clear that the worst-case
behavior may defeat the learning approach. A possible
alternative is to obtain the RE from the RGI step to
avoid the FSA-to-RE transformation. To this end, an
RGI method returning REs should be selected; as far as
we know, the uvkw algorithm by Miclet ~3) is the only
such method among the range of known RGI meth-
ods.(14-16)

It is interesting to locate precisely our work with
respect to other methods proposed within the field of
inductive inference to approach the problem of learning
formal languages from partial information. The reported
methods can be classified depending on the class of
languages they are able to infer and depending on
whether the language is presented by examples or by
queries. (17) If the input is restricted to just examples, as
in our case, it is usual to distinguish between a positive
presentation of a language L, this is a set of positive
examples S + C L, and a (so-called) complete presenta-
tion, where two disjoint finite sets S + C_ L (examples)
and S- C_ L (counter examples) are given. The inference
problem associated with the presentation by examples is
to find a formal description D of a language L' such that
S + c L t and S- C L r, and D satisfy certain restrictions
(e.g. D is the smallest acceptor among all candidates).
This problem is traditionally referred to as grammatical
inference (GI). O4A55

Even though it is well-known that any enumerable
class of recursive languages (context-sensitive and
below) can be identified in the limit from complete
presentation (both positive and negative data), °s~8 most
part of the work in GI has been devoted to the problem
of inferring regular languages (i.e. finite-state auto-
mata). (14A6) Moreover, the majority of the reported
regular GI methods are heuristic techniques that use
only positive examples and some inductive bias, (16'19)
while just a few methods have been proposed for regular
GI from complete presentation, either in the classical
symbolic paradigm ~2°-22~ or through alternative ap-
proaches such as recurrent neural networks. (23-2s~. In
addition, some GI methods have been suggested to learn
some proper subclasses of context-free languages, such
as the even linear languages, from positive data, (26'27)
and a few more algorithms have been proposed to infer
general context-free grammars from positive structural
examples (2s) (or together with negative strings(29)).

However, in order to be used in a wider class of
problems and applications, there is a need for GI
methods that cope with the issue of learning context-
sensitive languages. This requirement is specially
significant in syntactic pattern recognition problems

8A GI method is said to identify L in the limit if for a larger
and larger collection of examples, the descriptions D eventually
converge to a correct description for L.

cetto
Rectangle

Recognition and learning of a class of contextensitive languages 177

for computer vision, ~2'3) where many objects contain Grammar CSG2:
symmetries and structural relationships that are not 1 S--+AS 2 S---+A
describable by context-free languages. Nonetheless, 3 A--+EF[aG][eH] 4 F-+aFI
work on learning context-sensitive languages is extre- 5 F---+J 6 l[aG]--+[aG]l
mely scarce in the literature. Recently, Takada has 7 J[aG]--+aG 8 l[eH]--+[eH]e
shown that a hierarchy of language families that are 9 G[eI-1]--+Ge 10 E~[LN]
properly contained in the family of context-sensitive 11 E--+[LN][cO]M 12 E-+[cK]M[LO]
languages can be learned using regular GI algo- 13 [cK]--~c[cK]M 14 [cK]--+[cN]
rithms. O°) His approach is based on using control sets 15 [cO]---+ c[cO]M 16 [cO]--+c
on grammars and establishing a recursive sequence of 17 M[LO]--+[LO]M 18 [cN][LO]--+c[LN]
controlling grammars that starts on a regular grammar. 19 [LO]-+L[cO]M 20 [LN]c-+L[cN]
However, the class of learnable context-sensitive 21 [cN]c--+c[cN] 22 [cN]L---~c[LN]
languages is restricted by the fact that the languages 23 Ma--~aM 24 [cN]a--+c[aN]
are generated through a sequence of (controlled) 25 [LN]a--~L[aN] 26 [aN]a-+a[aN]
universal even linear grammars. 27 G--+[PQR] 28 M[PQR]-+M[QR]

On the other hand, an early work by Chou and Fu {7) 29 M[PQR]-~[cP][QR] 30 [aN][PQR]--+aQ
discussed the matter of inferring transition networks 31 M[cP]--+[cP]M 32 M[cP]--+[cP]c
(TNs) from positive examples. An extension of the 33 Mc---wM 34 [aN][cP]-+a[cN]
(heuristic) k-tails regular GI method was proposed for 35 [aN]Q--~a[QN] 36 [cN]--+[QR]cQ
learning Basic TNs, thus covering the inference of 37 M[QR]--+Q[Rc] 38 MQ--+QM
context-free languages. Afterwards they gave a derived 39 M[Rc]--+[Rc]c 40 [cN]Q--*c[QN]
trial-and-error scheme (guided by a teacher) for the 41 [QN][Rc]--~Qc 42 L--+[VT][LW]
inference of Augmented TNs representing context- 43 [LW]---~T[UW] 44 [LW]--+TL[UW]
sensitive languages, which required some kind of a 45 L---~TU 46 L-+TLU
priori knowledge in the form of transformational rules. 47 TU--+TXb 48 /~UW]--+T[XW]b
In general, however, the step form BTN to ATN learning 49 bU--~Xbb 50 bX--+Xb
is a hard one, since it is not clear at all how can the test 51 b[UW]-+[XW]bb 52 b[XW]~[XW]b
conditions and register-setting actions typical of ATN 53 TX--+Ud 54 T[XW]--+[UW]d
arcs be inferred from just string examples. As far as we 55 dX--+ Udd 56 dU--+ Ud
know, no other paper following this line of research has 57 d[XW]-+[UW]dd 58 d[UW]--+[UW]d
been reported since then. 59 [VT]U--+[V~b 60 [VT][UW]--+db

In summary, our strategy to infer AREs, although it 61 [VX]X--+[dV]X 62 [VX][XW]-+[dV][XW]
still presents some drawbacks, is probably the most 63 [dV]X-+d[dV] 64 [dV][XW]--+dd
promising attempt reported so far to learn (caution, we 65 Q--+[VT']U' 66 Q---+[VT'IT'Q'U'
do not mean identify) a large class of context-sensitive 67 Q'--+T'T'Q'U' 68 Q~--+T'U'
language descriptors from examples. Moreover, these 69 T'U'---+T'X'd 70 dU'--+X'dd
descriptors, the AREs, can be used indirectly as efficient 71 dX'--+X'd 72 7'X'--+U'b
recognizers, and they provide a compact and intelligible 73 bX'--+U'bb 74 bU'--+U'b
representation. 75 [VT']U'--+[VX']d 76 [VX']X'-+[bV']X'

77 [VX']d-+bd 78 [bV']X'--~b[bV']
79 [bV']d--+bd APPENDIX A

List of context-sensitive grammars referenced in the

text Rules 3-9
Language {ambnamb n [m, n > 1 }. implement the constraint

1;12 = V 6

Grammar CSGI: Rules 10-4 1
1 S--+abab 2 S-+aAbB[aC][bD] implement the constraint
3 A---+aAE 4 A---+aF vii = !21 " r 1:5 - - •7

5 B--+bBG 6 B--+bH Rules 42--64
7 G[aC]-+[aC]b 8 Gb---~bb implement the constraints
9 G[bD]--+b[bD] 10 H[aC]--+[aC]H v2 -- v4 - 1;v3 = v4 - 1
11 Hb---+bH 12 H[bD]--+bb Rules 65-79

13 Eb---~bE 14 Ea-+aa implement the constraints
15 E[aC]--+a[aC] 16 Fb--+bF v8 : 0.5vl0 + 0.5;v9 = 0.5v10 + 0.5
17 Fa-~aF 18 F[aC]---+aa

Language {(c v'(dv=bv3)v4cv'avrc v'(bv"dvg)vl°cv''ev'2) + I
1)11 = 121 q- I~S - - V7;1:12 = V6; V2=V4--1;V3-=V4--1;
V 8 : 0 . 5 V I 0 q - 0 . 5 ; V 9 = 0 .5V10 q-O.5;V2,V3,V6,1t8,V9 ~ 1} .

Language {a k I k : 2 ~ A i ~ 1}.

Grammar CSG3:

cetto
Rectangle

178 R. A L Q ~ A R and A. SANFELIU

1 S---+[ACaB] 2 [Ca]a--+aa[Ca] 1 S---*OE[CB] 2 S--*O[FB]
3 [Ca][aB]---~aa[CaB] 4 [ACa]a--+[Aa]a[Ca] 3 S---dE[DB] 4 S--*I[GB]
5 [ACa][aB]---~[Aa]a[CaB] 5 E---~OEC 6 E--+IED
6 [ACaB]--+[Aa][aCB] 7 [CaB]--+a[aCB] 7 E---~OF 8 E---riG
8 [aCB]~[aDB] 9 [aCB]~[aE] 9 C[OB]--~O[CB] 10 C0---+0C
10 a[Da]---~[Da]a 11 [aDB]--~[DaB] 11 C[1B]--+I[CB] 12 C1---+IC
12 [Aa][Da]--~[ADa]a 13 a[DaB]---~[Da][aB] 13 [CB]---~[OB] 14 D[OB]-~O[DB]
14 [Aa][DaB]--~[ADa][aB] 15 D0---~0D 16 D[1B]--~I[DB]
15 [ADa]---*[ACa] 16 a[Ea]--*[Ea]a 17 D1--*ID 18 [DB]--~[IB]
17 [aE]--~[Ea] 18 [Aa][Ea]--~[AEa]a 19 F[OB]--~O[FB] 20 FO---~OF
19 [AEa]--*a 21 F[1B]--d[FB] 22 F1--dF

23 [FB]--+0 24 G[OB]--~O[GB]
Language {xx I x E (0 + 1)+}. 25 G0--+0G 26 G[1B]~I[GB]

27 G1---*IG 28 [GB]--~I
Grammar CSG4:

APPENDIX B

Algorithms referenced in the text.
Algorithm 1. Evaluates the predicate satisfy (SIs(V), L).
Inputs: A set Vof star variables that are organized in a star tree J-.

A set SI containing the lists of instances of the star variables V resulting from the (successful) parsing of a
string s.
A set L of linear relations among the star variables in V.

Outputs: A boolean variable satisfy_constraints whose value will be TRUE if and only if the star instances SI satisfy
all the constraints in L.

begin
ASI[1]:= SI {The set SI is placed in the first position of an array ASljust for compatibility with the arguments of the
functions determine_ancestor and instances and sum of star_exponents.}
{Mark the star variables for which the housing ancestor has not been computed}
for v_id in [1.. [V 1] do

housing_ancestor_of_node [v_icl]~- 1
end_for
{Check the constraints L}
i:=1; satisfy_constraints~ TRUE
while i < L.nc and satisfy_constraints do {check each constraint}

vdep_id~ element of list (L. vdep, i) {get the ith dependent variable)
linear_combination[vdep_icl]~ element of list (L.right_hand_sides, i)
X.~-- linear combination[vdep_id].coefficients
list_of_indep_variables'~- linear_combination[vdep id].independent__variables
common_housing_anc_id:= deepest_common_ancestor (~,~, vdep_id, list_of_indep_variables)
node:= startree_node_identified_by (vdep_id)
determine_ancestor and instances (~-, node, vdep_id, ASI, 1, common housing_anc_id, anc_id, coef[vde-
p_id]) {returns anc_id, the identifier of the housing ancestor of node, and coef[vdep_id], the values of the
instances of vvdep~d for each instance of Vanc3d in ASI[1] }
housing_ancestor_of_node [vdep_id]'~-- anc_id
if number of actual_instances (coef [vdep_id]) > 0 then
exists_common_housing_ancestor~ TRUE

if hous&g_ancestor_of_node [vdep_id] ~ common_housing_anc_id then
exists common_housing_ancestor.----- FALSE

end_if
j := 1; 1~ length (list_of_indep_variables)

while j <_ l and satisfy_constraints do
v_id.----- element of list (list_of indep_variables, j)
if housingancestor_of_node [v_id] < 0 then
node~ startree_node_identified_by (v_id)
determineancestor and instances (~'-, node, v_id, ASI, 1, common_housing_anc_id, anc_id, coef[v_id])
{returns anc_id, the identifier of the housing ancestor of node, and coef[v_id], the values of the instances of
vv_id for each instance of Vanc3a in ASI[1] }

cetto
Rectangle

Recognition and learning of a class of contextensitive languages 179

housing_ancestor_of_node [v_icl]~ anc_id
end_if
if housing_ancestor_of_node [v_id] ~ common_housing_anc_id then
eists_common housing_ancestor~ FALSE
end_if
if not e x s t s _ c o m m o n _ h o u s i n g _ a n c e s t o r then

if not equal_instances(housing_ancestor_of_node [vdep_id], housing_ancestor_of_node [v_id], AS1, 1)
then

satisfy_constraints:= FALSE
end_if

end_if
j ~ j + l
end_while
if sa t i s f y_cons t ra in t s then
row_max_number'.-- sum of s ta r_exponents (ASI, housing_ancestor_of_node [vdep_id], 1)
column_number~ l + 1
bu i ld_sys temmat r ix (vdep_id, list_of_indep_variables, coef, row_max_number, column_number,
row_actual_number, B, A) { vector B is given by the star instances of Vvdepid, and the system matrix A is
given by the star instances of the independent variables from which Vvdepid depends, and after removing the
rows for which the instance of Vvdepld is unassigned. }
satisfy_constraints:= test_linear_system (A, X, B, row_actual_number, column_number)

end_if
end_if
i : = i + 1
end_while
{satisfy_constraints - satisfy(SIs(V), L) }
end_algorithm

Algori thm 2. Induction of augmented regular epressions
Inputs: A sample S = (S+, S) of a context-sensitive (unknown) language ~ over an alphabet E.
Outputs: A deterministic FSA A = (E, Q, 6, q0F), consistent with the sample S (i.e. S + C_ L(A) A S- C_ ~* - L(A),

that is obtained from S through a regular grammatical inference algorithm, and which is assumed to
accept a regular superset of ~ (i.e. ~q~ c_ L(A)).
The "canonical" RE R equivalent to A.
The set Vof star variables and the star tree J - associated with R.
The array of sets ASI with the lists of instances of the star variables V resulting from the parsing of the
positive examples (s E S +) by R.
A set L of linear relations among the star variables in V, that is fully satisfied in the parsing of all the
positive examples (s c S +) by R.
The inferred ARE (Augmented Regular Expression): k = (R, V, 3--, L).

begin
A := regular_grammatical_inference_algorithm (S +, S -)
n:= number of states of automaton (A)
run_Arden's_Algorithm (A, n, Rj, o~I.)~ {returns Rj and c~Ij for 0 _< j < n, 1 _< l <_ n, 0 _< i _< l}
simplify equivalent RE (A, n, Rj, a~j, _ _ skelR, R) {the "canonical"l RE R and its skeleton skelR are obtained}
run star tree construction (R, V, Y) {returns the star variables Vand star tree Y associated with R}
number_positive_examples :=-- IS + I
for example in [1.. number_positive_examples] do

s ~ read_positive_example (S +, example) {where s is a string over E}
rnn_RE_parsing_guided_by_FSA (s, A, skelR, R, V, ~-, parsed, path, skelR_instance, S1)
{returns parsed = TRUE, the path of states visited, the skeleton of the example skeIR_instance, and the most
important, the set SI of lists of star instances of the star variables V resulting from parsing s. }
ASl[example] ~ SI

end_for
run_Algorithm_3 (V, J~, ASI, number_positive_examples, L) {returns L, the induced set of linear constraints among
the star variables }
/~ ~ (R, V, ,Y--, L) {simply put the components of the ARE together}
end_algorithm

Algorithm 3. Induces a set of linear relations that hold among the star variables throughout the instances resulting
from the parsing of a set of strings.

cetto
Rectangle

180 R. A L Q ~ A R and A. SANFELIU

Inputs: A set Vof star variables, that are organized in a star tree J ' .
An array of sets ASI containing the lists of instances of the star variables V resulting from the (successful)
parsing of a set of strings.
The size of the array ASk number of_strings.

Outputs: A set L of linear relations among the star variables in V, that is fully satisfied in the parsing of all the
strings from which ASI has been built.

begin
L.nc ~ 0 {Initialize the number of constraints (dependent star variables) in L}
L . V dep ~ 0 {Create an empty set of dependent star variables V dep }
L._rightJzand_sides ~ 0 {Create an empty set of linear combinations associated with V dep }
maxlevet := deepest_level of tree (Y) {this is the level of the deepest node in ~-}
for l in [O..max_level - 1] do {visit the father nodes of ~'- by levels}

for i in [1.. nodes_of_level_l (~-, l)] do
father.---- node_i_of_level_l (J-, l, i)
father_id.---- node_identifier_of (father)
number_of_indep_housed_descendants [father id] ~ 0
list_of_indep_housed_descendants ~ather_ia~ ~ 0
max_number_of_rows_of_system_matrix [father_id]~ sum of star_exponents (ASI, father_id, number_of_
strings)
for nson in [1.. nsons of (father)] do
son~ son_of (father, nson)
sonid.~- node_identifier_of (son)
determine_ancestor and instances (Y, son, son_id, ASI, number_of_strings, 0, anc_id, coef [son id]) {returns
anc_id, the identifier of the nearest non-degenerated ancestor of son, and coef[son_id], the values of the
instances of Vson.Jd for each instance of Vanc_id } in ASI}
housing_ancestor_of_node [son_id] := anc_id
row_max_number ~ max_number_of_rows_of system_matrix [anc_id]
column max number ~ number_of_indep_housed_descendants [anc_id] + 1
build_system_matrix (son_id, list_of_indep_housed_descendants[anc id], coef, row_max_number,
column max number, row_actual_number, B, A) {vector B is given by the star instances of vson_id, and the
system matrix A is given by the star instances of the independently housed descendants of Vanc_id, after
removing the rows for which the instance of Vson_id is unassigned. }
if row_actual_number > 0 then
rank A:= rank of matrix (A, row_actual_number, column_max_number)
if rank A < column~nax~umber then
remove_dependent_columns_from_system_matrix (A, rankA, row_actual_number, column_actual_number,
columns_mask) {matrix A is reduced by removing (in increasing order) those columns that are a linear
combination of the previous ones, column_actual_number = rankA, and columns_mask is a binary mask that
marks the selected columns}
else
column_actual_number ~ column_max_number
columns_mask := fully_marked_mask (columnmax_number)
end_if
build_extended_system_matrix (A, B, row_actual_number, column_actual_number, AB) { matrix AB is built by
appending to matrix A a column with vector B}
rank AB:= rank of matrix (AB, row_actual_number, column_actual_number + 1)
if rank AB < (columnactual_number + l) then { the appended column is a linear combination of the columns
of A}
solve_linear_system (A, B, row_actual_number, column_actual_number, X) {vector X is obtained by solving
the linear system A • X = B }
linear_combination[son_id].coefficients := X
linear_combination[son_id].independentvariables.----- extract_masked_list (list_of_indep_housed_descendants
[anc_icO,
column_max_number, column_actual_number, columns_mask)
linear_combination[son_ia~ ~remove_indep_variables_with_coef_zero (linear_combination[son id])
L.nc ~ L.nc + 1 {the number of dependent star variables is increased and the new constraint is appended to L}
L.V dep := append (L.V dep, son_id) {i.e. vso,_id E V dep }
L._rightAmnd_sides append (L.right_hand_sides, linear._combination[son_id])
else {the appended column is linearly independent}

cetto
Rectangle

Recognition and learning of a class of contextensitive languages 181

number_of_indep_housed_descendants [anc_id]~ number_of_indep_housed_d escendants [anc_id] + 1

list_of_indep_housed_descendants [anc_id] ~ append (list_of_indep_housed_desc endants [anc_id], son_id)

end_if
end_if

end_for
end_for

end_for
end_algorithm

REFERENCES

1. E. Tanaka, Theoretical aspects of syntactic pattern
recognition, Pattern Recognition 28, 1053-1061 (1995).

2. K. S. Fu, Syntactic Pattern Recognition and Applications.
Prentice-Hall, New York (1982).

3. H. Bunke and A. Sanfeliu (eds), Syntactic and Structural
Pattern Recognition: Theory and Applications. World
Scientific, Singapore (1990).

4. A. Saiomaa, Formal Languages. Academic Press, New
York (1973).

5. J. E. Hopfcroft and J. D. Ullman, Introduction to Automata
Theory, Languages and Computation. Addison-Wesley,
Reading MA (1979).

6. W.A. Woods, Transition networks grammars for natural
language analysis, CACM 13, 591-606 (1970).

7. S. M. Chou and K. S. Fu, Inference for transition network
grammars, Proc. Int. Joint Conf. on Pattern Recognition, 3,
CA, pp. 79-84 (1976).

8. D. Angluin, Finding patterns common to a set of strings, J.
Comput. System Sci. 21, 46-62 (1980).

9. A. Marron and K. Ko, Identification of pattern languages
from examples and queries, Inform. Computation 74, 91-
112 (1987).

10. Z. Kohavi, Switching and Finite Automata Theory, (2nd
edition). Tata McGraw-Hill, New Delhi, India (1978).

11. D. N. Arden, Delay logic and finite state machines, Proc.
Second Ann. Syrup. on Switching Theory and Logical
Design, 133-151 (1961).

12. R. Alqu6zar and A. Sanfeliu, Augmented regular expres-
sions: a formalism to describe, recognize, and learn a class
of context-sensitive languages, Research Report LSI-95-
17R, Universitat Politecnica de Catalunya, Spain (1995).

13. L. Miclet, Inference of regular expressions, Proc. 3rd Int.
Conf. on Pattern Recognition 100-105 (1976).

14. L. Miclet, Grammatical inference, in Syntatic and
Structural Pattern Recognition: Theory and Applications,
H. Bunke and A. Sanfeliu, eds. World Scientific, Singapore
(1990).

15. R. C. Carrasco and J.Oncina (eds), Grammatical Inference
and Applications, Proc. of the Second Int. Colloquium,
ICGI'94, Alicante, Spain, Springer-Verlag, Lecture Notes
in Artificial Intelligence 862, (1994).

16. J. Gregor, Data-driven inductive inference of finite-state
automata, Int. J. of Pattern Recognition and Artificial
lntell. 8(1), 305-322 (1994).

17. D. Angluin and C.H. Smith, Inductive inference: Theory
and methods, ACM Computing Survey 15(3), 237-269
(1983).

18. E.M. Gold, Language identification in the limit, Inform.
Control 10, 447-474 (1967).

19. M. Kudo and M. Shimbo, Efficient regular grammatical
inference techniques by the use of partial similarities and
their logical relationships, Pattern Recognition 21, 401-
409 (1988).

20. E.M. Gold, Complexity of automaton identification from
given data, Inform. Control 37, 302-320 (1978).

21. J. Oncina and P. Garcia, Identifying regular languages in
polynomial time, in Advances in Structural and Syntactic
Pattern Recognition, H. Bunke, ed. World-Scientific,
Singapore, pp. 99-108 (1992).

22. R. Alqu6zar and A. Sanfeliu, Incremental grammatical
inference from positive and negative data using unbiased
finite state automata, in Shape, Structure and Pattern
Recogniton, Proc. Int. Workshop SSPR'94, Nahariya,
Israel, D. Dori and A. Brnckstein, eds, World Scientific
Pub., Singapore, pp. 291-300 (1995).

23. C.L. Giles, C.B. Miller, D. Chen, H.H. Chen, G.Z. Sun and
Y.C. Lee Learning and extracting finite state automata
with second-order recurrent neural networks, Neural
Computation 4, 393-405 (1992).

24. A. Sanfeliu and R. Alqu6zar, Active grammatical infer-
ence: a new learning methodology, in Shape, Structure and
Pattern Recogniton, Proc. Int. Workshop SSPR'94, Nahar-
iya, Israel, D. Dori and A. Bruckstein, eds. World Scientific
Pub., Singapore, 191-200 (1995).

25. R. Alqufzar and A. Sanfeliu, An algebraic framework to
represent finite-state machines in single-layer recurrent
neural networks, Neural Computation, 7, 931 949 (1995).

26. V. Radhakrishnan and G. Nagaraja, Inference of even linear
grammars and its application to picture description
languages, Pattern Recognition 21, 55-62 (1988).

27. Y. Takada, Grammatical inference for even linear
languages based on control sets, Inform. Process. Lett.
28(4), 193-199 (1988).

28. Y. Sakakibara, Efficient learning of context-free grammars
from positive structural examples, Inform. Computation 97,
23-60 (1992).

29. P. Garcia and J. Oncina, Learning general context-free
grammars from positive structural samples and negative
strings, DSIC Research Report, Universidad Politecnica de
Valencia, Spain (1993).

30. Y. Takada, A hierarchy of language families learnable by
regular language learners, in Grammatical Inference and
Applications, Proc. of the Second Int. Colloquium,
1CG1'94, Alicante, Spain, R. C. Carrasco and J. Oncina,
eds. Springer-Verlag, Lecture Notes in Artificial Intelli-
gence, 862, 1 t~24 (1994).

About the Author--RENl~ ALQUI~ZAR received the licentiate degree in computer science from the
Polytechnical University of Catalonia (UPC), Barcelona, Spain, in 1986. From 1987 to 1991 he was with the
Spanish company NTE as technical manager of R&D projects on image processing applications for the
European Space Agency (ESA). From 1991 to 1994 he was with the "lnstitut de Cibernetica", Barcelona,
holding a pre-doctoral research grant from the Government of Catalonia and completing the doctoral courses of
the UPC on artificial intelligence. Since 1994, he has been an associate professor in the Department of
"LLenguatges i Sistemes Informhtics", UPC. His current research interests include syntactic pattern recognition,
grammatical inference, recurrent neural networks, computer vision, and artificial intelligence.

cetto
Rectangle

182 R. ALQUI~ZAR and A. SANFELIU

About the Author- -ALBERTO SANFELIU received his diploma in industrial engineering (specializing in
electrical engineering) from the School of Industrial Engineering of Barcelona in 1978, and his Ph.D. degree in
industrial engineering from the Polytechnical University of Catalonia (UPC) in 1982. From 1979 to 1981, he was
visiting researcher with Prof. K. S. Fu in Purdue University. He joined the UPC in 1981 as associate professor.
From 1975 until 1995 he was a researcher in the "Institut de Cibernbtica", Barcelona, research institute which
belonged to the National Council of Scientific Research (CSIC) and to the UPC. He is now a professor in the
Department of "Enginyeria de Sistemes, Autornhtica i Inform&tica Industrial", UPC, and a researcher in the
"Instituto de Rob6tica e lnformrtica Industrial", CSIC-UPC. Prof Sanfeliu has edited 6 books in the field of
Pattern Recognition, mainly in the field of Syntactic and Structural Pattern Recognition, published around 80
articles including book chapters, journal articles and conference papers. He was elected Fellow of the
International Association for Pattern Recognition (IAPR) in 1994. He is an Associate Editor of the International
Journal o f Pattern Recognition and Artificial Intelligence, and he has been a Co-guest editor with Horst Bunke in
a special issue on Advances in Syntactic Pattern Recognition, which was published in the Pattern Recognition
journal. He is President of the Spanish Association of Pattern Recognition and Image Analysis. He has been
Chairman of the Technical Committee on Syntactic and Structural Pattern Recognition of the IAPR. His research
interests include pattern recognition and computer vision mainly applied to robotics.

cetto
Rectangle

