
IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 6, NO. 3, MAY 1995 651

On-Line Learning with Minimal
Degradation in Feedforward Networks

Vincente Ruiz de Angulo and Carme Torras

Absfrmf-Dealing with nonstationary processes requires quick
adaptation while at the same time avoiding catastrophic forget-
ting. A neural learning technique that satis6es these require-
ments, without sacrifying the benefits of distributed representa-
tions, is presented. It relies on a formalization of the problem
as the minimization of the error over the previously learned
input-output (i-o) patterns, subject to the constraint of perfect
encoding of the new pattern. Then this constrained optimization
problem is transformed into an unconstrained one with hidden-
unit activations as variables. This new formulation n a t u d y
leads to an algorithm for solving the problem, which we call
learning with minimal degradation (LMD). Some experimental
comparisons of the performance of LMD with back propagation
are provided which, besides showing the advantages of using
LMD, reveal the dependence of forgetting on the learning rate
in backpropagation. We also explain why overtraining affects
forgetting and fault tolerance, which are seen as related problems.

I. INTRODUCTION

EARNING new patterns quickly without dramatically L degrading recall of old patterns is a requirement of
adaptive on-line systems.

Algorithms of the backpropagation type are not well suited
for applications where learning cannot be confined to an off-
line phase. If a very different and representative input-output
(i-o) pattern needs to be learned after the training of the main
set of patterns has been completed, one gets into trouble. There
are two possibilities:

-To train the network with the new pattern isolatedly.
This may produce catastrophic forgetting of the old
information. Then one has to retrain the network with
the old information and the new pattern. Although the
performance will recover quicker than learning from
scratch, the net will still behave very poorly for a long
time.

-To retrain the network directly with an appropriate mix-
ture of the new and the old patterns. The net will not
suffer from catastrophic forgetting, but a correct response
to the new pattern will be available only after a long
time. Moreover, the time to recover the previous level of
performance over the learning set increases greatly with
the growth of this set.

Manuscript received January 29, 1993; revised August 21, 1994. This work
was supported in part by the Comision Interministerial de Ciencia y Tecnologia
(CICYT) under project TIC 91-0423.

V. Ruiz de Angulo is with the Institute for System Engineering and
Informatics, Commission of European Communities, Joint Research Centre
TP 361, 210204spra (VA), Italy.

C. Torras is with the Institut de Cibemktica, 08028 Barcelona, Spain.
IEEE Log Number 9409150.

For succeeding in an application of this kind it is clearly
necessary to mitigate forgetting. Up to our knowledge, very
few works have tackled this issue. Ratcliff [11 and McCloskey
and Cohen [2], after many systematic studies, simply arrive
to the conclusion that this problem cannot be satisfactorily
solved. French [3] claims that the cause of forgetting is the
overlap between the representations of the different patterns
and, therefore, he modifies backpropagation so as to produce
semi-distributed representations. In these representations, only
a few hidden units take the value one, while the majority take
the value zero. But there is no guarantee whatsoever that in
the process of introducing new i-o patterns with this sort of
representations there will be no interference with old patterns,
even if they have no ones in common. This type of approach
has very serious convergence problems and requires a much
larger number of hidden units than straight backpropagation
[4]. Reducing the distributedness of the representations has
also the very undesirable effect of losing some of the most
interesting neural network properties, like generalization (as
French himself points out) and damage resistance.

Smieja [5] suggests that reducing the length of the weight
vector impinging on some hidden units before introducing a
new pattern may be a good heuristic to avoid interference.

Brousse and Smolensky [6] hold that there is no forgetting
problem in what they call a “combinatorial environment,”
because in such an environment there are many virtual mem-
ories (error-free novel patterns) that do not interfere with old
patterns. But their results can be accounted for by the drastic
restriction of the possible i-o patterns that can appear in a
combinatorial environment (as Hetherington [7] recognizes)
and by the use of autocoder networks. Both facts help gener-
alization, as it actually happens also in some of Hetherington’s
own experiments regarding the influence of increasing the
training set size. We think that results about forgetting obtained
with autocoder networks and low-error patterns must not be
extrapolated to more general situations.

Krusche [8] has pointed out that the huge receptive field
of the weighted-sum units is responsible for interference in
neural networks. Units with a limited receptive field are
increasingly being used [9]-[l l]. Locally tuned units that use
radial basis functions (RBF) are the common choice. This can
be a valid solution, but an important drawback of RBF units
is that they need many more examples than weighted-sum
units to generalize well, especially in high-dimensional input
spaces. The problem comes from the very local representa-
tions formed by this type of units, which can be avoided
(for instance by allowing large radia). But it is precisely

1045-9227/95$04.00 0 1995 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 12, 2010 at 11:12 from IEEE Xplore. Restrictions apply.

658 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 6, NO. 3, MAY 1995

this locality which allows the prevention of forgetting. The
more the receptive fields grow and overlap, the more the
interference problem comes back to scene. There exists a trade-
off between resistance to interference-local representations
and generalization-distributed representations.

Our approach does not require information to be stored
in special types of representations. In fact we even try to
take advantage of the distributed ones. We simply investigate
what can be reasonably done to introduce a new pattern
into a previously trained network, while increasing minimally
the error in the recall of the previously trained items. An
algorithm, which we call LMD for “leaning with minimal
degradation,” is developed to accomplish a i s task efficiently
in a general feedforward net.

The previous work most closely related to ours is that of
Park et al. [121. They state the problem in a very similar way to
that in Section 111, but their resolution method is considerably
different, it being based on the gradient reduced method for
nonlinear constrained optimization. Their cost function is also
different, but in Section VI and the Appendix we show that
it can be somehow related to ours. The implications of this
relation are explored in an experiment included in Section
IX-B.

11. A PRIORI LIMITATIONS

We would like to warn the reader that success for any
procedure with the same objective as LMD must be necessarily
limited. For the different settings in which such a procedure
can be applied, we will spell out some existing a priori
limitations.

When a feedforward network with a fixed number of units
has enough capacity to encode a fixed set of patterns, there is a
bound on how fast learning can take place, since this problem
has been proven to be NP-complete [13], [14]. Therefore,
we cannot aim at finding a procedure that in approximately
constant time learns a new pattern while leaving the old ones
intact, because by iterating this procedure learning could be
carried out in time linear in the number of patterns.

Now suppose that the chosen architecture is unable to
encode all the patterns perfectly. Let E be the error function
over the patterns 1 . . n - 1, E’ be the error function over
the patterns 1 . . . n, and Ep be the individual error in pattern
p. Applying an ideal procedure to learn pattern n when the
network is at the minimum of E, the sole unlikely possibility
to arrive at the minimum of E’ is that E, = 0 at this minimum.
Note that in general the value of E in the minimum of E‘ will
be almost surely higher than the minimum of E. Therefore, if
the final aim is to arrive at the minimum of E’, introducing
perfectly the nth pattern can be worse than doing nothing.
As you can see in Fig. 1, it is possible that E’ grows when
we constrain the net to modify the surface it is producing to
pass over a point. The network whose results are displayed
in the figure has one input and one bias unit connected to
one output unit. The axes in the diagram stand for the i-o
coordinates, each point thus representing a pattern. The best
approximation the network can do of the old patterns is the
continuous line. Learning the new pattern while minimizing

0

Fig. 1. The points represent the leamed patterns, which are approximated by
the network with the continuous line. Constraining the network to perfectly
encode the new association (little circle), while minimizing the error over
the old patterns, gives a global approximation (dashed line) worse than the
previous one.

the error over the old patterns results in weights giving the
dashed line interpolation. Note that this figure presents the
worst possible case: a huge number of points that only can
be interpolated with a surface having low frequency-high
amplitude oscillations, a network with few parameters that is
completely unable to fit the surface, and a new pattern far
away from the mean of the old patterns.

The moral of this discussion is that not only it is impossible
to devise a “perfect” algorithm for the nondismptive encoding
of a new pattern, but that even if we had such an algorithm,
to apply it indiscriminately in an incremental way could be
inappropriate in many situations.

The most natural setting for the application of LMD is that
in which the set of patterns to be learned is not fixed but
time-varying, in the sense that there is a moving window for
the error function so that when new patterns arrive, some of
the oldest ones are no longer taken into account. In this case
the previous arguments cannot be applied. When introducing
a new pattern the emphasis must be put in quick adaptation
and some forgetting of the old patterns is desirable. m i c a l
applications of this kind are time series prediction and some
control problems.

nI. FORMALIZATION OF THE PROBLEM

We can formulate the problem as the minimization of the
error over the n - 1 previously trained patterns, constrained
by perfect encoding of the new pattern. It is convenient to
consider the current weights (before the application of LMD)
as constants and then write each error Ep as a function of
weight increments

Min E (A W) = E p (A W)
p=l ... n-1

En(AW) = 0.

Evaluating the Ep’s accurately for a given AW would entail
presenting the whole set of patterns to the network. If the
optimum is to be found through some search process, this
evaluation has to be performed repeatedly, leading to a high
computational cost.

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 12, 2010 at 11:12 from IEEE Xplore. Restrictions apply.

R U E DE ANGULO AND TORRAS: ON-LINE LEARNING WITH MINIMAL DEGRADATION 659

An alternative solution to accurate evaluation is to ap-
proximate the error function over the old patterns through a
decoupled quadratic function' of AW. Then the problem can
be written as

subject to the neural network constraints

where Wjk is the weight of the connection from unit k to unit
j , b j k , and C j k are constants, fj is the activation function of
unit j that given the total input xj provides its output yj, and
Incu) is the index set of the units from which unit j receives
direct input. Observe that the y's corresponding to inputs and
outputs are constant in this formulation, since they take the
values of the new i-o pattern to be encoded, while the y's
corresponding to hidden units remain variable.

This problem can be solved through recourse to a standard
decomposition technique. Assuming a fixed Y = [yj], one
can find the unique solution Awfk(Y) for each decoupled
subproblem associated with unit j 0 belonging to hidden and
output layers) under the assumption that fj is one-to-one, since
each subproblem is a quadratic optimization problem with a
linear equality constraint (see the following section). Thus,
the initial constrained minimization problem in weight space
is converted into an unconstrained one in the smaller space of
hidden-unit activations

m$ F(AW* (Y)) . (4)

The benefits of this problem transformation are:
-The original constrained minimization problem has been

turned into an unconstrained one.
-The new pattern is always perfectly encoded, thus obvi-

ating the trade-off between cost minimization and con-
straint satisfaction mentioned in the preceding section.

-There are far less variables than in the original formu-
lation.

-The domain of each variable is more restricted, because
hidden-unit activation functions are normally of limited
range.

Iv . RESOLUTION OF THE SUBPROBLEM ASSOCIATED
WITH EACH NODE

The subproblem associated to unit j can be stated as follows

minFj(AW) = cjkAwj2k + bjkawjk (5)
k€Inc(j) k€Inc(j)

subject to the constraint

(wjk + AWjk)Yk - fyl(Yj) = 0. (6)
kEInc(j)

'We dispense with cross-terms because, besides adding great complexity to
the algorithm, they have costly requirements in computations and memory.

This can be easily solved by using, for instance, the La-
grange multipliers method. The function to be minimized
becomes

Gj (AW) = Fj (AW)

(wjk -k AWjk)Yk - f f l (Y j) . (7)
+ t [k E Inc(j) 1

Using the fact that dGj/dWjk must be zero in the solution,
together with the constraint (6), the following expression for
the function Awfk(Y) can be readily obtained (see [16] for
more details)

Observe that for the case in which C j k = 1 and bjk =
0, this is the Widrow-Hoff rule [17]. This formula will be
simplified further, but we can conclude now that Awfk(Y) is
a well-defined function if and only if

At least one input arriving to each unit is not zero. This
is not a real danger unless threshold units that take zero
as one of their states are used.
All the C j k are nonzero. We have to take care of this
when selecting the parameters of the quadratic function
(see Section VI).
The denominator of the first fraction must be nonzero.
The opposite is an unlikely event that is avoided by
choosing positive cjk (see again Section VI).

V. THE LMD ALGORITHM

We can now derive a gradient algorithm for carrying out
the minimization in (4). Let us begin by giving F = cj Fj
a more explicit form. From (8)

where E, = fyl(y,) - caw3aYz + E, e and M, =

E, $. Substituting this expression for Aw,*k into (5)

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 12, 2010 at 11:12 from IEEE Xplore. Restrictions apply.

660 EEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 6, NO. 3, MAY 1995

where the definition of M j was used in the last step. Observe
that M j and €j can be taken out from the sumatories

so finally

To greatly reduce complexity, it is convenient to work with
the parameters w i k = W j k - b j k / 2 c j k , since then € j =
f Y Y Y j) - E; W51Yi.

Thus, the first step in the algorithm will be the transforma-
tion of all the weights W j k into W i k , and the last step will be
the translation of the optimal hidden-unit configuration into
the new increments Aw$k. which result also simplified

(10)

Let us now derive the gradient of F . To prevent that during
the search the y's would travel beyond their valid ranges, since
the activation functions fj have usually a limited range, we
choose to calculate dF/dx j . Note that, using x3 = f j (x j) , xj
appears explicitly in &j and therefore in Fj, but also implicitly
in all F, such that s E Out(j).

The gradient when j is a hidden unit index is then

(1 1)
This formula is valid for networks with whatever number

of layers, and even with jumps between layers. The gradient
formula is easily implemented by an algorithm with a data
flow in two phases, which resembles backpropagation. In the
first forward phase, &j and M j are computed for all units
with incoming connections. Then the first gradient term is
easily calculated and each of the second term addends is
backpropagated to get the total gradient. Do not be misled by
the "forward" and "backward" names, since the similarity with
backpropagation is limited by the fact that here the information
needed by a unit in both phases is already available locally,
without any time delay required to wait for information from
remote layers. Because of this independence, the updating
order can be anyone, allowing even total overlapping. This
makes complete parallelism in the implementation possible,
not only within a layer, but also among layers.

The LMD algorithm is, therefore, as follows
W'. + w j k - b j k / 2 C j k 3k
Fix the input and output pattem in the network input
and output and derive x j for all output units. Choose
initialization values for all the hidden-unit total inputs
Xi.
Repeat until a given stopping criterion
a) Calculate M j and &j for all units with incoming

connections (forward pass).

b) Backpropagate the second term in (1 1) and update x j

for all hidden units using x j t zj t - p e (backward
pass).

3) Change weights using (10).
Remember that every time x j is changed, y j must also be

updated because they are binded variables.
It may seem excessive to dedicate a sequence of cycles for

only one pattern. Perhaps a solution could be approximated,
for example linearizing the network or with another heuristic.
It all depends on the difference between a solution of this
kind and the true minimum, how this difference is reflected in
E , and how the increase in damage has repercussion on the
recovery leaming time over the previous patterns and the new
pattern. It can be supposed that it is worthwhile to spend some
more time with only one pattern, trying to trim a bit E, if in
exchange one avoids some cycles over the whole learning set.

VI. CHOOSJNG THE COEFFICIENTS OF THE COST FUNCTION

The most obvious election for the coefficients b j k and Cjk is
that yielded by an instantaneous second-order approximation
of the error function E(AW) ignoring the off-diagonal terms.

With this choice, F is exactly the local estimation of E
assumed by several authors [HI-[20] to justify this simple
pseudo-Newton rule for optimizing E

Then, c j k = d 2 E / a W ; k and b j k = d E / a w j k .

A W j k = - p - -
a W j k aE I a zE aWjk*

Note that step 0) in the LMD algorithm, when the Cjk # 0,
is exactly one of these pseudo-Newton steps. The implicit aim
of this step is to bring the network to the minimum of F ,
cancelling out first derivatives. Unfortunately, the minimum
of F normally is not the minimum of E, and first derivatives
could remain still significative. The conclusion is that this
step is scarcely useful and, in fact, what we really need is to
minimize the first derivatives of E by whatever means before
the aplication of Lh4D. Later in Section X-B, we will give
some advice to reduce first derivatives during training.

Then, if step 0) is taken out of the algorithm, we are
minimizing the cost function

In the minimum, this is still a diagonal second-order approx-
imation. In an arbitrary point, it can be shown [21] that, for a
function of the type C j k c j k A w j k , this choice of coefficients
is in average the best for estimating E.

To prevent the nullity of the Cjk to Mfill condition c) in
the last section, we can add a very little constant (range of the
hidden activation function/lOOO, for instance) to everyone of
the second derivatives. Even when some Cjk are not null, but
very close to zero, this helps to ameliorate the behavior of the
algorithm. Because, as we said, it is necessary to have positive
Cjk, we should take absolute values of the second derivatives.
Note that when the network is in the minimum, these second
derivatives are already positive.

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 12, 2010 at 11:12 from IEEE Xplore. Restrictions apply.

RUIZ DE ANGULO AND TORRAS: ON-LINE LEARNING WITH MINIMAL DEGRADATION 66 I

The cost function in [12] is based on approximating
& A E i by means of the network output sensitivities to
weight changes. In the Appendix, we show that the sum of the
diagonal terms of this cost function can be approximated by a
weighted sum of the second derivatives of error components,
the weights being the error in the corresponding components.
This weighting could be useful in practice in points out of the
minimum. In points with almost zero error, however, these
coefficicients lose their sense.

There exists another way of using the coefficients to realize
a coarser estimation of the damage to the net. By making all
the C j k parameters equal to one and all the b j k equal to zero,
the algorithm is somewhat simpler and permits either saving
the cost of calculating C j k (though it is relatively cheap) or
working when they are not available. What LMD is calculating
in this case is the nearest solution for the new pattern in
the weight space. This is a good heuristic to look for the
intersection of the solution space of patterns 1, - 1 . , n- 1 and
the solution space of pattern n. Under total uncertainty about
the shape of the solution space for the new pattern, using this
version amounts to introducing white noise in the network with
a uniform probability distribution. This type of noise seemed to
do little injury in a study performed by Hinton and Sejnowsky

We have always taken p- = .5 and p+ = 1.3. Observe
that, according to (9), A F can be easily calculated from the
old value of F and the new values of € j and M j obtained in
the forward pass. The dF/dxj are always those computed
in 2b) and thus, they do not need to be recomputed. The
initial value of p is only important for a quicker convergence,
because convergence is guaranteed. The most convenient value
depends on the size of the network and, therefore, for the
scaling experiment we scale also the initial p; in the other
experiments the networks are of comparable size and a value
of two is always used. As a refinement to the basic algorithm,
it is possible to use a much larger p+ and a very small p-
in the first iteration of LMD until a mistaken step is done (if
the initial step is not overshot) or a valid step is done (if the
initial step is overshot) and afterward use the normal values.

B. Stopping Criterion

The search is finished when

where n H is the total number of hidden units-and Gmin is a
constant that regulates the accuracy in finding the minimum.
Dividing by \/7LK seems convenient to obtain values inde-
pendent of the network dimensionality. In normal practice,

1221.
In sum, two versions of LMD have been mainly explored in

the experiments: the standard one that uses C j k = l d 2 E / d ~ 3 k l
and the coarse one that uses C j k = 1.

VII. IMPLEMENTATIONS DETAILS
One of the features that must characterize the application of

the algorithm is total automation. We can neither expect to test
and correct parameters each time we introduce a new pattern,
nor to watch over to decide convergence completion. Besides,
we need a reliable algorithm in all situations to bring the
network to the minimum without risk of catastrophes. There-
fore, in the following subsections we describe the rationale
underlying the determination of parameters and initialization
values.

A. Advance Rate
The current implementation of LMD follows pure gradient

descent but with adaptive step size. The strategy is very simple.
When the last step is beneficial (i.e., it leads to a decrement in
the cost function), the advance rate p is multiplied by a number
p+ slightly greater than one. In the opposite case (increment
in F) the step is partially undone, the advance rate reduced
by a factor of p- and then the step is redone. This can be
implemented with little more computation than a forward pass.
The advance rate control routine, that runs after step 2b), is
as follows

if A F < 0 then p c pp+
while A F 2 0

dF
xj +- xj - (1 - p-)p- axj
P +- w-
Forward pass 2a)

end while.

Gmin = 0.005 seems a good choice, and this is the value used
in all the experiments reported.

C. Initial Hidden- Unit Conjguration
We have used several architectures with different weights

to test the existence of local minima. This was done by using
a great number of random initial hidden-unit configurations
and measuring the cost function in the final points reached.
The result has been that networks that are able to learn, i.e.,
those with moderately saturated units, rarely lead to landscapes
with local minima. Only using random weights of increasing
magnitude, local minima begin to appear more numerous and
higher. Because of the scarcity of local minima, the initial
hidden-unit configuration is not a crucial question, but the
number of cycles required for convergence can increase with
a bad selection of the initial point.

There seem to be two privileged initial points: one is the
hidden-unit configuration that results from propagating activity
through the network and the other is the one with all the unit
activations in the middle of the activation range. The first is
good in the case that the error in the new pattern is low, since
then the weight modifications needed to get the new pattern are
small, and as a consequence the ideal hidden-unit configuration
is near this point. The second point has the advantage that each
hidden unit is completely free to go in one or other direction
(in fact, this is also useful to avoid local minima) and the
gradient of the activation function is maximum (at least for
sigmoids). Here all the experiments use the second option. A
more elaborate decision could be to switch to the first option
when the error in the new pattern is small.

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 12, 2010 at 11:12 from IEEE Xplore. Restrictions apply.

662 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 6, NO. 3, MAY 1995

VIII. PERFoRMANCE MEAsURES the distance by the instantaneous velocity of the system, the

In this section we develop tools for evaluating the compu- went
tational savings provided by LMD, which tum out to have
wider application.

One method of mea$uring the benefits of using LMD would
be comparing E', the global error over the pattems 1 - . n,
before and after applying LMI) to the nth pattern. This should
be indicative of haw much the search of the E' minimum
is facilitated. Surprisingly, it is not like this. Fot instance, if
the error after the application of LMD is slightly higher, we
have systematically observed that LMD helps nevertheless to
shorten learning times. Probably this phenomenon is similar to
the accelerated releatning times registered in [22] when some
disturbance is inOroduoed in trained networks.

It is a knotty problem to measure the computation costs
of arriving at a minimum from two different points. Here we
suggest two measures that are independent of any algorithm
parameters and rely only on the landscape of the error function.
Therefore they reflect objectively some aspect of the difficulty
to find a minimum from different initial points. We have
checked that both give results qualitatively similar if it is
not required to arrive very accurately to the minimum. For
instance, the phenomenon mentioned above appears indepen-
dently of the measure used.

The first measure is the time a dynamical system driven by
the system of equations

8E a W
aw at
-= -

would take to go from one point to another of its trajectory.
We call this measure backpropagation time, because these
are the learning equations of backpropagation as a continu-
ous dynamical system. To estimate backpropagation time we
constrain pure gradient backpropagation to take only steps
which produce error decrements that can be predicted by a
linear approximation of the error function, i.e., we take the
criterion

Therefore, the time to complete a trajectory is Ck p k) when
all the steps satisfy the linear constraint (12).

It is possible to adapt p near optimally during the training
with an algorithm similar to the one presented below.

Using this measure, we have observed that the backprop-
agation time required to eliminate the last residuals of the
error is much bigger than the that needed to eliminate the
main part of the error. This is due to the fact that velocity
slows down very much in flat regions and especially in the
neighborhood of a minimum. Algorithms more sophisticated
than raw backpropagation are expected to behave in a rather
different manner.

We propose another measure that overcomes the above
shortcoming, while at the same time allowing quicker com-
pdtation. The measure is the standard curve length defined for
rectificable functions

where tl is the initial time point and t 2 is the final time point.
We could compute it in a similar way to the one used for
back-propagation time, taking only linearly predictable steps.
Instead, we have developed a more efficient, although more
complicated algorithm, that will be of use later for other
purposes.

The idea is that to calculate curve length approximating
system trajectory we can relax the linearity constraint of
magnitude predictability to only angle continuity between two
steps, i.e., we only accept one step if the angle with the next
step is close enough to zero. In this way we profit from the fact
that, unlike back-propagation time, curve length is independent
of the velocity with which E comes down and can always be
computed in one step in the zones where the gradient direction
does not change. The only inconvenience, which adds some
complexity to the algorithm, is that to know whether one step
is too big to be accepted, we must know the direction of the

IEstAE') - - E')) I
(12) < exigence

(Ek+') - Ek))EstAEk)

next step. This is the algorithm used to estimate curve-length
to accept the learning rate pk) that produced AwiL as correct,
where EstAEk) is the linear estimation of the error increment
based on the first derivatives

repeat until stopping criterion
AW +- pOE/aW
W + W + A W

If all the steps along the learning process satisfy this
criterion, we can say that the trajectory followed by the
algorithm approximates the trajectory that would follow the
dynamical system above. The fidelity to the continuous path
will be controlled by the exigence parameter.

If step IC satisfies the criterion, W(t) is approximately
linear in the section between W k) and Wk+'), and, thus, we
can estimate the time to perform AW') by dividing directly

while ang (AW, aE/aW(W)) > exigence
W +- W - a A W
AW + (1 - a) A W
P + (1 - a b
A +- A + llAWll

P + PP.
Exigence regulates the fidelity to the continuous system

trajectory. m is adapted to grow slightly at a geometrical
rate of P > 1 when one step is accepted and decrease more
quickly at a rate of 1 - a, 1 < a < 0 when it is not.
This is to keep m near the highest values allowed by the
angle continuity constraint. In our simulations, a = 0.5 and

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 12, 2010 at 11:12 from IEEE Xplore. Restrictions apply.

R U E DE ANGULO AND TORRAS: ON-LINE LEARNING WITH MINIMAL DEGRADATION

Patterns
Coarse LMD
Standard

~

663

0.064 0.111 0.018 0.032 0.002 0.002
0.38 0.087 0.012 0.028 0.001 0.002

-D- complele cycles

+ forward passes alone

4

0 lowoo

number of connections

Fig. 2. Scaling experiment: Number of LMD complete cycles and feed-
forward steps alone (due to overshot steps) as a function of network size
(number of connections).

TABLE I
ERROR INCREMENTS AFTER APPLYING LMD WITH C,k = 1

AND C J k = la2E/dW:kl. THE EXPERIMENT WAS PERFORMED
WITH DIFFERENT NUMBERS OF ALREADY LEARNED PATTERNS.

THE RESULTS ARE AVERAGED OVER 20 NEW PATERNS

Architecture I 8-3-1 I 13-12-4 I 300-30- 10
Nr. of 15 110 110 125 150 1150

I LMD

,!3 = 1.2. To compute ang(AW,dE/dW(W)), a complete
back-propagation cycle is required to get the E gradients
(which, when the while condition fails, can be reused without
further computations for the next step), but weights and weight
increments must not be updated.

Ix . EXPERIMENTAL RESULTS

A. Scaling Properties
Fig. 2 gives an idea of the number of steps needed to reach

the minimum and the scaling properties of LMD. Networks
of several sizes were used in this experiment, all with the
same' proportion of units in each layer. The smallest was a
8-3-1 network and the others were obtained by multiplying
by 10, 2 0 . . . the number of units in each layer of this
network. The initial p for the 8-3-1 network was one, and
was multiplied in the same manner above for the rest of the
networks. The abcises indicate the number of connections. The
ordinates show the average of forward-backward cycles and
forward steps alone (due to mistaken steps) for 20 random
new patterns. The cost function was F = and each
weight W j k in the network was obtained randomly with the
uniform distribution [- 1.5 / I Inc (j) I , 1 .5/ I Inc (j) I].

It can be Peen that the number of steps is not excessive, in-
dicating the great simplicity of the unconstrained search space.
Scaling properties are good, making less indispensable the
development of an acceleration algorithm. Other experiments

also indicate that scaling with the number of layers is better
than for backpropagation.

B. Solution Quality for Different CoefJicients Settings
Table I presents results for three different networks trained

with two different numbers of patterns. It shows the average
error increment in the output units for the previously trained
pattern when LMD is applied, with C j k = 1 and C j k =
ld2E/dW3kl. The error measure used is

a = l . . , N o

where No is the number of output units and is the difference
between the desired value and the network response value
in ouput unit z for pattern j . Net structure is expressed
in the obvious way (net 8-4-1 has eight input units, four
hidden units, and one output unit). Both the previously learned
patterns and the new ones were generated randomly from
a uniform distribution in [-1.2, 1.21. A symmetric sigmoid
ranging from -1.712 to 1.712 was used for the hidden-unit
activations. The activation functions of the output units were
linear. Take into account that these conditions are bad to reduce
the error increment: Linear output units allow the error to
grow unlimitedly, and the big ranges of the i-o patterns and
hidden-unit activation functions lead to a great variance in the
output of the network. The table shows averages over 100 new
patterns. When the networks have been trained with a lot of
patterns, the error increments are larger for the two versions.
This is due to the fact that a network with more random
patterns has more output variance, and thus the error average
of the new learned random patterns is higher (more than double
in the network 32-12-4). Also the advantage of the standard
version over the coarsest one is lower with more patterns,
because second derivatives are more uniform, indicating that
the network is more saturated with information, parameters are
less free to vary and, as a consequence, there are no privileged
directions. When the patterns are not random, the networks
become saturated more gradually. We can also guess that, in
the case of many patterns, the quadratic estimation of the
error function is poorer, because the very large errors force
the network to look for solutions far from the present position
in weight space.

Finally, another experiment was made to test the solution
quality provided by differet settings of the coefficients in
networks outside the vicinity of a minimum of the learning set.
Table I1 presents results for the 8-3-1 architecture trained with
five patterns until some fixed error is reached. Five networks
with the error levels shown in the table were used, and each
of them underwent the introduction of a new pattern with
the coarse and standard versions of LMD. Also the weigthed
squared derivatives (15) inspired in [12] and derived in the
Appendix were tested for comparison. As before, results were
averaged over 20 new patterns. It can be noticed that the
standard version of LMD still gets significatively better results
than the coarse one. On the other hand, the weighted squared
derivatives (15) work also well, but when the error over the
old patterns is very low they become very risky.

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 12, 2010 at 11:12 from IEEE Xplore. Restrictions apply.

664 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 6, NO. 3, MAY 1995

TABLE I1
EXPERIMENT OUT OF THE MINIMUM. ERROR bCREMENTS ARE SHOWN FOR THE

Two DIFFERENT VERSIONS OF LMD IN A NEIWORK m DIFFERENT
ERROR LEVELS IN THE PREVIOUSLY LEARNED PATTERNS. AN 8-3-1

ARCHITECTURE w m Flm Om PAT~ERNS WAS USED. THE RGURES
REPRESENT AVERAGES OVER 20 NEW PA'ITERNS. THE RESULTS FOR
LhfD ARE COMPARED WlTH USING THE CJK'S " E D IN (15).

WHICH ARE L i \ ~ u n , AS WEIGHTED SQUARED DERIVATIVES

Old patternsErmr .I .05 .01 .001 .0005 .OW1

Coarse LMD OM') ,054 ,057 Iffil .Ob2 (6 3

I WeightedSquared I ,031) I ,034 I ,042 I .OX3 I .I21 I 2 3 5 I
Derivnlives

I I I I I I I I

C. Computational Savings Derived from the Application
of LMD

We present now some experimental results regarding the
improvement in training times provided by the use of LMD.
The networks are the same as those in the preceding exper-
iment, with the same already learned patterns and the same
20 new patterns. Let W:.,.n-l be the weight configuration
at which the minimum error Er...n-l for the set of patterns
1 . . . n - 1 is attained, and E be the error function over
patterns 1 . . n. For each network and new pattern, we first
calculate very accurately the minimum error E* for the set of
patterns 1 . . . n, then we measure curve length from W;,..n-l
to the first point in the trajectory with an error minor than
E* + .2(E(W....n-1) - E*), and after from the same original
point transformed by applying LMD with pattern n, to the
first point with the same level of error as before. Table III
shows the results. The differences in curve length should be
indicative of the advantage of using LMD to tune the network
before applying any algorithm of the backpropagation type,
because length only depends on the error function shape. The
computational effort to introduce the new pattern with LMD
is negligible, since the number of LMD cycles is usually less
than the number of patterns in the training set. The table
reveals that it is more advantageous to use LMD when there
are few patterns than when there are many. The main reason
is the same one pointed out in the preceding subsection:
growth of the new pattern errors leads to growth of the
damage to the network. This is a very abnormal situation,
however, because in typical applications the error in the
new patterns tends to decrease when the number of learned
associations grows. Moreover, to be always advantageous
under this incremental scheme, LMD (and any other algorithm)
needs to be presented with new patterns yielding progressively
smaller errors, because in the long term a highly-erroneous
new pattern can lead to a situation of the type we talked about
in Section I1 and exemplified in Fig. 1. This shortcoming could
be overcome, for example, by reducing wisely only a fraction
instead of the complete error of the new pattern. We have left
these refinements for future work.

D. LMD Versus Backpropagation
We present now some experiments comparing LMD and

standard backpropagation with different advance rates /I. This

TABLE 111
THE FIRST Row SHOWS THE CURVE LENGTH FROM THE POINT OF MINIMUM

ERRORFORTHESETOFPATERNS l , . . . , n - l TOTHEVICINITYOF
THE POINT OF MINIMUM ERROR FOR THE SJiT OF PATERNS 1,. . . , R.
b THE SECOND ROW, THE MEASUREMENTS WERE MADE TAKING AS
INITIAL POINT THAT RESULTING FROM APPLYING LMD TO THE n m

PATTERN. AVERAGES OVER 20 NEW PATERNS ARE SHOWN

Architeclure I 8 - 3 -1 I 3 2 - 1 2 - 4

Nr. of Patterns S 10 10 2s so 150

Length (wilhoul LMD] (1.335 1b.546 11.334 1b.456 O. lX2 0.16s)

, Length (After LhlD) (I.OXX 0.347 ll.1~54 0.262 O.IW12 0.061

parameter turns out to be a very important factor in the
comparison.

In Fig. 3(a) the net 32-12-4, trained with 10 random pat-
terns, undergoes the introduction of a new pattern with differ-
ent backpropagation learning rates. The pattem is considered
to have been learned when the average absolute error in the
output units is 0.01. The distance from the starting point to
the final one in the weight space and the number of cycles
needed are shown. The limit to which the distance tends when
,u + 0 can only be approximated with large computational
costs. Fig. 3(b) displays how the distances to the starting point
showed in Fig. 3(a) affect the error in the old patterns and how
this in turn affects the recovery time (measured in terms of
backpropagation time) needed to relearn both the new and the
old patterns. The distance lower bound for backpropagation
when ,u 4 0 (0.69), as well as results with the coarsest
(c j k = 1) and standard (c j k = J@E/~w;~I) versions of LMD
are also shown here.

The different weight solutions provided by back-propaga-
tion are in random directions with respect to the starting
point, because they were obtained independently of E, but a
neat linear relation appears between the distance and the error
increment. An important finding for our investigation is that
the recovery time follows an exponential-like curve, implying
that it is very important, with respect to recovery time, to trim
as much as possible the damage caused to the old patterns,
even if the possible reductions are small.

This example also shows how the distance for the coarsest
version of LMD must be by definition of the cost function
always the shortest one. The difference between the true
minimum distance found by the coarsest version of LMD
and the approximation made in the limit by back-propagation
is variable, especially for highly erroneous new patterns, but
usually the two points are close.

Finally, note that the standard version of LMD provided by
far the best results (very small error increment and recovery
time), and it did so by moving a long distance away from
the initial point, thus proving the existence of a privileged
direction.

X. DISCUSSION
A. The Influence of the Backpropagation Advance Rate
on Forgetting

One of the main results we have obtained is the dependence
of backpropagation forgetting on the learning rate. Cohen [2]

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 12, 2010 at 11:12 from IEEE Xplore. Restrictions apply.

RUIZ DE ANGULO AND TORRAS: ON-LINE LEARNING WITH MINIMAL DEGRADATION 665

500

4<

distance

300

200

i 00

0.00 0.02 0.04 0.06 0.08 0.10 [

ieaming rate

(a)

1 .o

0.S

0.8

0)

C -
V

0.7

3.6

0.06

0.05

U

i
0.04

.d

L. e
al

0.03

I 0'4 - error increment - back-propagation time
a error increment after coarse LMD

back-prop. time after coarse LMD
0 error increment after standard LMD

back-prop. time after standar

I
I
I

I
+ I

standard LMD I
I back-propagation limit i , , , , , , T I

0.02

0.6 0.7 0.8 0.9 1 .o

distance

(b)
Fig. 3. (a) Starting with a network in the minimum of the error function for the old patterns, a new pattem is introduced with different back-propagation
learning rates. The graphic shows the number of cycles needed to learn the pattern and the total distance covered from the initial point in each case. It is clear
that, when the learning rate tends to zero, the distance tends to a limit. (b) Another aspect of the experiment described in (a). The distances represented in (a) are
now in the axis of abcises. The two curves represent the error increments and the backpropagation times beginning after the introduction of the new pattem and
ending in the global minimum of the error function including the new pattem. Coarsest LMD (cJb = 1) minimizes explicitly distance and so, it must obtain
results better than the backpropagation limit. Standard LMD (c J k = l a 2 E / a ~ : k I) , however, which does not take into account distance, gets the best results.

already observed this in a systematic variation of all back-
propagation parameters. We can now provide an explanation
of this dependence. The gradient of the error function for the
new pattern can lead the network anywhere in principle, but
it is a good heuristic for finding one of the nearest solutions.
The problem is that backpropagation with usual learning rates
does not follow the true gradient line because of its discrete
nature. Since the solutions for the new pattern pervade the
weight space, a too big step may lead to a point crossed by
a gradient line driving the network to a different and farther
solution. If backpropagation is forced to closely follow the
true gradient descent line (as it is the case when the advance
rate tends to zero), it becomes a reasonable application of
the coarsest version of LMD, but with high computational
cost. Usual accelerating algorithms, taking bold steps, can only
worsen forgetting.

Contrarily, the algorithm for measuring curve length follows
the gradient line with the desired accuracy, but with the
highest learning rates possible in each step, alleviating the
inefficiency-catastrophic forgetting trade-off in backpropaga-
tion, thus finding another use complementary to the one for
which it was designed in Section VIII. For instance, applying
the curve length algorithm with exigence = .99 in the last
experiment of the preceding section, the distance obtained was
.693, which is only slightly higher than the backpropagation
limit, and only 27 cycles were used, almost half of those
needed by backpropagation with the appropriate /I to get the
same distance. The algorithm to compute backpropagation
time could also do the job in a simpler but more inefficient
way.

B. How to Prepare a Network for Damage or the Relation of
LMD with Fault Tolerance

A conclusion from the exponential-like curve for the recov-
ery time reported in Section IX-D, as well as the reasoning
about the convenience of dispensing with the b j k parameters
presented in Section VI, is that one must wait as long as
possible to the completion of the learning of the previous pat-
terns (by second-order, standard backpropagation or whatever
means) before introducing the new patterns.

The overtraining effect had been observed, but not ex-
plained, in studies of forgetting [2] and fault-tolerance [23].
Avoidance of forgetting and increasing fault-tolerance can be
seen as intimately related goals. Both try to minimize the
effect of weight perturbations on the information stored in
the network. The only difference is that, to avoid forgetting,
one can control somewhat the form of the perturbation. This
similarity can be profited directly. Here, for example, the
explanation for damage reduction after overtraining can be
easily transferred from one domain to the other.

Through the Taylor series expansion of the error-increment
function produced by a perturbation, it is evident that minimiz-
ing the first derivatives of E (the b j k parameters) is the first
priority to reduce the error increment. A minimum of E is also
a minimum of the absolute value of its first derivatives, but
moving across the weight space while decreasing the emor
function does not imply decreasing derivatives, unless the
network is really near the minimum of E. Examining the
curves produced by the learning rate = .002 in Fig. 4(a)-
(b), it can be seen that, when the training is finished, the

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 12, 2010 at 11:12 from IEEE Xplore. Restrictions apply.

666

093 1

I

0 s 00 1000 1500
epoch number

200

E
t

t

*
100

0

learning rate = ,002
learning rate = ,0038

_ _ _ - _ _

0 5 0 0 1000 I500
epochs

(b)

Fig. 4. (a) Error evolution in a network with two different learning rates.
(b) Gradient norm evolutions along the learning corresponding to the. training
curves in (a).

level of error is very good, practically zero, but the gradient
norm is still relevant, of the same order of that found in the
middle of learning. This is the effect of the velocity difference
in minimizing E and its derivatives. With enough training
(overtraining) both values can be brought to zero.

On the other hand, with a higher learning rate of .0038, the
learning curve fluctuates but arrives faster to the minimum.
Notice that, in the last part of the training, the curve stabilizes
and descends uniformly, arriving at a level three times lower
than before, but nevertheless the final gradient norm is huge.
Even a minimal modification of the weights will produce cata-
strophic forgetting. The different versions of backpropagation
are normally used with the highest learning rates that allow
faster training in the long term. As a consequence, in many
occasions (even if the error function is always decreasing) the
network is often out of the bottom of the error function valleys,
in points with high derivatives. Then if one wants to alleviate
the perturbation effects in a given stadium of the learning, the
best one can do is to minimize locally the derivatives of E

, IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 6, NO. 3, MAY 1995

following for a certain time the true gradient of E. This will
bring the network to the bottom of the current valley. To follow
the gradient line, one can make some steps of backpropagation
with a very cautious learning rate or, more efficient and safe,
one can use one of the algorithms presented in Section VIII,
which find thus here still another use.

C. The Relation of LMD with Pruning

The standard version of LMD, without b j k and with C j k as
second derivatives in the minimum of E, minimizes the same
function (constrained by the new pattern) as Le Cun et al. [24]
in their pruning procedure, our C j k being their sensitivities.
In a certain sense, our technique can be seen as opposed to
pruning. F'runing detects the less profited weights to eliminate
them. Instead, LMD uses them to introduce new information.
The relation with pruning suggests that advances in pruning
techniques can be incorporated into LMD. For example, some
authors have recently used weight sensitivities that go beyond
the strict locality of second derivatives [25].

X I . CONCLUSION

After pointing out the theoretical reasons that prevent com-
plete success in avoiding forgetting in neural networks with
distributed representations, we have developed a theoretical
framework for the problem which leads MWY to the LMD
algorithm as the more efficient way to tackle it. Full paral-
lelism, both within and between layers, is one of the features
of LMD. We have shown results with the coarse and standard
versions of the algorithm, which demonstrate its good scaling
properties, as well as the solution quality. and computational
savings derived from its application. LMD, like the algorithm
in [12], can control the comparative importance of the previous
data by weighting each pattem through the coefficients cjk in
the error function. This feature can be useful in applications
of the moving-window type, strengthening for example the
remembrance of the last presented patterns. Furthermore, if the
coefficients are not rigidly used to estimate the error function,
LMD allows a great flexibility in controlling how much of a
pattem is learned by each individual connection, each unit or
each layer.

l b o measures and algorithms for measuring the costs of
going from one point to another of the weight space have been
developed. These algorithms have characteristics that make
them interesting for some other purposes, some of which have
been pointed out. They could be interesting also for those
who want to evaluate the goodness of some initial weights for
faster learning [26].

The relationship between avoiding forgetting, fault-
tolerance, and pruning has been shown, and some advice
has been given for increasing resistance to damage in a
network. Besides, we have shown that when the learning
rate of back-propagation tends to zero, the solution found
approximately minimizes C A Z U ~ ~ , which gives a crude
second-order approximation of the error increment over the
previously learned pattems when the network is at a minimum.

We have also shown that the complete avoidance of cat-
astrophic forgetting has, however, a priori limitations for

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 12, 2010 at 11:12 from IEEE Xplore. Restrictions apply.

R U E DE ANGULO AND TQRRAS: ON-LINE LEARNING WITH MINIMAL DEGRADATION 661

standard back-propagation networks with fixed size. Future
work will address the development of a wider framework
for networks including both sigmoid and IU3F units. For the
sake of clarity, we derived LMD on the basis of hidden-unit
activations, but it can be based as well on the total input to
the hidden units, so that the assumption of invertible activation
functions would no longer be needed. Also the dot product can
be substituted by the Euclidian distance, thus allowing the use
of the typical Gaussian units.

It is also worthwhile to design a general learning algorithm
with LMD at its base. This algorithm will profit from the
direct manipulation of the internal representations, just as other
similar algorithms presented recently do [27]-[29]. Another
minor question is the investigation of acceleration techniques
for LMD.

APPENDIX

In [12], the effect of A W on the previous data is modeled as

c
P

which is in turn approximated by taking linear estimations of
each of the Ep

I \ 2

F (A W) =
p = l ... n-1

Developing aE, /dwj ,

\ 2

where Or@) is the T output component of the net when the
pattern p is presented, Er(?)) = (O,(P) - O:(P)), and O:(P)
are the desired values. This function can be expressed as

X &r(P)&s (P)AwjkAWmn.

Taking only the diagonal terms j , IC = m, n and T = s

which is a function of the type Cj ,k cjkAwjk chosen in this
paper, whose coefficients are

It is easy to see c ~ = ~ . . . ~ - ~ 1, (-)2 is an approx-
imation of dE2 / d w j k , concretely -a Levemberg-Marquardt
approximation. Thus the c j k coefficients in (15) can be con-
sidered as a modified second derivative of E , weighted by the
error of the outputs of the network.

ACKNOWLEDGMENT
The authors like to thank an anonymous referee for sug-

gesting the compact problem statement presented in Section

REFERENCES

R. Ratcliff, “Connectionist models of recognition memory Constraints
imposed by learning and forgetting functions,” Psychological Review,
vol. 97, no. 2, pp. 235-308, 1990.
M. McCloskey and N. J. Cohen, “Catastrophic interference in connec-
tionist networks: The sequential learning problem,” in The Psychology
of Leaming and Motivation, G. H. Bower Ed. New York: Academic,
1989.
R. M. French, “Using semi-distributed representations to overcome
catastrophic forgetting in connectionist networks,” Center for Research
on Concepts and Cognition, Indiana Univ., CRCC Tech. Rep. 51-1991,
1991.
J. M. J. Murre, “Categorization and learning in neural networks,” Ph.D.
dissertation, Univ. Leiden, 1991.
F. J. Smieja, “Hyperplane ‘spin’ dynamics, network plasticity and back-
propagation learning,” Tech. Rep. German National Res. Centre for
Comput. Sci. (GMD), Nov. 1991.
0. P. Brouse and P. Smolensky, “Virtual memories and massive gener-
alization in connectionist combinatorial learning,” in Proc. 11th Annual
ConJ: Cognitive Science Society, 1989, pp. 380-387.
P. A. Hetherington, “The sequential learning problem in connectionist
networks,” Master‘s thesis, Dept. Psych., McGill Univ., Montreal,
Quebec, Canada, Nov. 1990.
J. K. Kruschke, Message to the Connectionists Electronic Mail Distr-
bution List.
J. Moody and C. Darken, “Fast learning in networks of localy tuned
processing units,” Neural Computation, vol. 1, no. 2, pp. 281-294, 1989.
T. Poggio and F. Girosi, “Networks for approximation and learning,”
Proc. IEEE, vol. 78, no. 9, pp. 1481-1497, 1990.
J. Platt, “A resource-allocating network for function interpolation,”
Neural Computation, vol. 3, no. 2, 1989.
D. C. Park, M. A. El-Sharkawi, and R. J. Marks 11, “An adaptively
trained neural network,” IEEE Trans. Neural Networks, vol. 2, no. 3,
May 1991.
A. Blum and R. L. Rivest, “Training a 3-node neural network is NP-
complete,” in Proc. 1988 Workshop Computational Leaming Theory,

S. Judd, Neural Network Design and the Complexity of
Learning.
M. C. Mozer and P. Smolensky, “Skeletonization: A technique for
trimming the fat from a network via relevance assessment,” Advances
in Neural Information Processing I , D. S. Touretzky, Ed. San Mateo,
CA: Morgan Kauffmann, 1989, pp. 107-1 15.
V. Ruiz de Angulo and C. Torras, “The MDL algorithm,” in Proc.
IWANN ’91, A. Prieto, Ed., Lecture Notes on Computer Science no.
540. New York Springer-Verlag, 1991, pp. 162-172.
B. Widrow and R. Winter, “Neural nets for adaptative filtering and
adaptative pattern recognition,” Computer, Mar. 1988.
S. Becker and Y. Le Cun, “Improving the convergence of back-
propagation learning with second order methods,” in Proc. 1988 Con-
nectionist Models Summer School, D. Touretzky, F. Hinton and T.
Sejnowski, Eds., 1988, pp. 29-37.
R. Scalatter and A. Zee, “Emergence of grandmother memory in
feedforward networks. Learning with noise and forgetfulness,” in Con-
nectionists Models and their Implications, Readings from Cognitive
Science, D. Waltz and J. H. Feldman, Eds. Nonvood, NJ: Ablex,
1988, pp. 309-323.
L. P. Ricotti, S . Ragazzini, and G. Martinelli, “Learning word stress in
a suboptimal second order back-propagation neural network,” in Proc.
IEEE Int. Con$ Neural Networks, San Diego, vol. I, pp. 355-364.
V. Ruiz de Angulo, Ph.D. dissertation, in preparation.
G. E. Hinton and T. J. Sejnowski, “Learning and relearning in Boltz-
man machines,” in Parallel Distributed Processing: Explorations in the
Microstructure of Cognition, vol 1: Foundations, D. E. Rumelhart and
J. L. McCLelland, Eds.
J. Mijhuis, Hofflinger, Van Sc. Haik, and L. Spaanenburg, “Limits to
the fault-tolerance of a feedfonvard neural network with learning,” in
Proc. 20th Intemational Symp. Fault Ederance Computing, Newcastle
upon Tyne, June 1990, pp. 228-235.

1988, pp. 9-18.

Cambridge, MA: MIT Press, 1990.

Cambridge, MA: MIT Press, 1986.

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 12, 2010 at 11:12 from IEEE Xplore. Restrictions apply.

668 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 6, NO. 3, MAY 1995

[24] Y. Le Cun, J. S . Denker, and S . A. Solla, “Optimal brain damage,” Ad-
vances in Neural Information Processing Systems, David S . Touretzky,
Ed. San Mateo, C A Moigan-Kauffman, 1990.

[25] E. D. Karnin, “A simple procedure for pruning back-propagation trained
neural networks,” IEEE Trans. Neural Networks. vol. 1, no. 2, June 1990.

[26] S. Gavin, “Designing multilayer perceptrons from nearest-neighbor
systems,” IEEE Trans. Neural Networks, vol. 3, no. 2, Mar. 1992.

[27] T. Grossman, R. Meir, and E. Domany, “Learning by internal represen-
tations,” Complex Syst. 2, pp. 555-575, 1988.

[28] A. Krogh, C. J. Thorbergsson, and J. A. Hertz, “A cost function for
internal representation,” in Advances in Neural Information Processing
Systems, D. S . Twretzky, Ed. San Ma&, CA: Morgan-Kauffman,
1990.

[29] R. Rohwer, “The moving target training algorithm,” in Aa’vances in
Neural Idormution Pmcessing Systems, D. S . Touretzky, Ed. San
Mateo, CA: Morgan-Kauffman, 1990.

and their application to

Vicente Ruiz de A+o was born in Miranda de
Ebro, Burgos, Spain. He received the B.Sc. degree
in computer science from the Universidad del Pais
Vasco.

During the academic year 1988-89, he was As-
sistant Professor at the Universitat Politecnica de
Catalunya. In 1990 he joined the Neural Network
Laboratory of the Joint Reseearch Centre that the
Commission of the Europeam Communities has in
Ispra (Italy). His interests in neural networks include
fault tolerance, noisy and missing data processing

temporal series prediction and robot path finding.

Came Tomas was born in Barcelona in 1956.
She received the MSc. degree in mathematics from
the Universitat de Barcelona in 1978, the M.Sc.
degree in computer science from the University of
Massachusetts at Amherst in 1981, and the Ph.D.
degree in Computer Science from the Universitat
PolitEcNca de Catalunya in 1984.

Since 1981 she has been with the Institut de
Cibem&ca in Barcelona, conducting research on
Neumomputing and Robot Motion Planning. She

-- has been involved in several ESPRIT projects fi-
nanced by the Commission of the European C m u n i t i e s , among them
thoae atitled “Robot Control Based on Neural Network Systems” (CON”),
“Self-Organization and Analogical Modeling Using Subsymbolic Computing”
(SUBSYM), and “Behavioral Learning: Sensing and Acting” (B-LEARN 11).
At present, she holds a position of Professor of Research in the Consejo
Superior de Invsstigaciones Cientlficas (CSIC) and she teaches Ph.D. courses
in the fields of robotics and artificial intelligence at tbe Universitat Politecnica
de Catalunya

Based
Learning
Verlag, 1

on her
in Neur

985).

thesis, Dr
pal Models

. Torras’
(Lecture

authored the book Temporal-Pattern
: Notes in Biomathematics, Springer-

__ I _._- .. -.-- “-_.I ”.

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 12, 2010 at 11:12 from IEEE Xplore. Restrictions apply.

