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On-Line Learning with Minimal 
Degradation in Feedforward Networks 

Vincente Ruiz de Angulo and Carme Torras 

Absfrmf-Dealing with nonstationary processes requires quick 
adaptation while at the same time avoiding catastrophic forget- 
ting. A neural learning technique that satis6es these require- 
ments, without sacrifying the benefits of distributed representa- 
tions, is presented. It relies on a formalization of the problem 
as the minimization of the error over the previously learned 
input-output (i-o) patterns, subject to the constraint of perfect 
encoding of the new pattern. Then this constrained optimization 
problem is transformed into an unconstrained one with hidden- 
unit activations as variables. This new formulation n a t u d y  
leads to an algorithm for solving the problem, which we call 
learning with minimal degradation (LMD). Some experimental 
comparisons of the performance of LMD with back propagation 
are provided which, besides showing the advantages of using 
LMD, reveal the dependence of forgetting on the learning rate 
in backpropagation. We also explain why overtraining affects 
forgetting and fault tolerance, which are seen as related problems. 

I. INTRODUCTION 

EARNING new patterns quickly without dramatically L degrading recall of old patterns is a requirement of 
adaptive on-line systems. 

Algorithms of the backpropagation type are not well suited 
for applications where learning cannot be confined to an off- 
line phase. If a very different and representative input-output 
(i-o) pattern needs to be learned after the training of the main 
set of patterns has been completed, one gets into trouble. There 
are two possibilities: 

-To train the network with the new pattern isolatedly. 
This may produce catastrophic forgetting of the old 
information. Then one has to retrain the network with 
the old information and the new pattern. Although the 
performance will recover quicker than learning from 
scratch, the net will still behave very poorly for a long 
time. 

-To retrain the network directly with an appropriate mix- 
ture of the new and the old patterns. The net will not 
suffer from catastrophic forgetting, but a correct response 
to the new pattern will be available only after a long 
time. Moreover, the time to recover the previous level of 
performance over the learning set increases greatly with 
the growth of this set. 
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For succeeding in an application of this kind it is clearly 
necessary to mitigate forgetting. Up to our knowledge, very 
few works have tackled this issue. Ratcliff [ 11 and McCloskey 
and Cohen [2], after many systematic studies, simply arrive 
to the conclusion that this problem cannot be satisfactorily 
solved. French [3] claims that the cause of forgetting is the 
overlap between the representations of the different patterns 
and, therefore, he modifies backpropagation so as to produce 
semi-distributed representations. In these representations, only 
a few hidden units take the value one, while the majority take 
the value zero. But there is no guarantee whatsoever that in 
the process of introducing new i-o patterns with this sort of 
representations there will be no interference with old patterns, 
even if they have no ones in common. This type of approach 
has very serious convergence problems and requires a much 
larger number of hidden units than straight backpropagation 
[4]. Reducing the distributedness of the representations has 
also the very undesirable effect of losing some of the most 
interesting neural network properties, like generalization (as 
French himself points out) and damage resistance. 

Smieja [5] suggests that reducing the length of the weight 
vector impinging on some hidden units before introducing a 
new pattern may be a good heuristic to avoid interference. 

Brousse and Smolensky [6] hold that there is no forgetting 
problem in what they call a “combinatorial environment,” 
because in such an environment there are many virtual mem- 
ories (error-free novel patterns) that do not interfere with old 
patterns. But their results can be accounted for by the drastic 
restriction of the possible i-o patterns that can appear in a 
combinatorial environment (as Hetherington [7] recognizes) 
and by the use of autocoder networks. Both facts help gener- 
alization, as it actually happens also in some of Hetherington’s 
own experiments regarding the influence of increasing the 
training set size. We think that results about forgetting obtained 
with autocoder networks and low-error patterns must not be 
extrapolated to more general situations. 

Krusche [8] has pointed out that the huge receptive field 
of the weighted-sum units is responsible for interference in 
neural networks. Units with a limited receptive field are 
increasingly being used [9]-[l l]. Locally tuned units that use 
radial basis functions (RBF) are the common choice. This can 
be a valid solution, but an important drawback of RBF units 
is that they need many more examples than weighted-sum 
units to generalize well, especially in high-dimensional input 
spaces. The problem comes from the very local representa- 
tions formed by this type of units, which can be avoided 
(for instance by allowing large radia). But it is precisely 
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this locality which allows the prevention of forgetting. The 
more the receptive fields grow and overlap, the more the 
interference problem comes back to scene. There exists a trade- 
off between resistance to interference-local representations 
and generalization-distributed representations. 

Our approach does not require information to be stored 
in special types of representations. In fact we even try to 
take advantage of the distributed ones. We simply investigate 
what can be reasonably done to introduce a new pattern 
into a previously trained network, while increasing minimally 
the error in the recall of the previously trained items. An 
algorithm, which we call LMD for “leaning with minimal 
degradation,” is developed to accomplish a i s  task efficiently 
in a general feedforward net. 

The previous work most closely related to ours is that of 
Park et al. [ 121. They state the problem in a very similar way to 
that in Section 111, but their resolution method is considerably 
different, it being based on the gradient reduced method for 
nonlinear constrained optimization. Their cost function is also 
different, but in Section VI and the Appendix we show that 
it can be somehow related to ours. The implications of this 
relation are explored in an experiment included in Section 
IX-B. 

11. A PRIORI LIMITATIONS 

We would like to warn the reader that success for any 
procedure with the same objective as LMD must be necessarily 
limited. For the different settings in which such a procedure 
can be applied, we will spell out some existing a priori 
limitations. 

When a feedforward network with a fixed number of units 
has enough capacity to encode a fixed set of patterns, there is a 
bound on how fast learning can take place, since this problem 
has been proven to be NP-complete [13], [14]. Therefore, 
we cannot aim at finding a procedure that in approximately 
constant time learns a new pattern while leaving the old ones 
intact, because by iterating this procedure learning could be 
carried out in time linear in the number of patterns. 

Now suppose that the chosen architecture is unable to 
encode all the patterns perfectly. Let E be the error function 
over the patterns 1 . . n - 1,  E’ be the error function over 
the patterns 1 . . . n, and Ep be the individual error in pattern 
p. Applying an ideal procedure to learn pattern n when the 
network is at the minimum of E,  the sole unlikely possibility 
to arrive at the minimum of E’ is that E, = 0 at this minimum. 
Note that in general the value of E in the minimum of E‘ will 
be almost surely higher than the minimum of E.  Therefore, if 
the final aim is to arrive at the minimum of E’, introducing 
perfectly the nth pattern can be worse than doing nothing. 
As you can see in Fig. 1, it is possible that E’ grows when 
we constrain the net to modify the surface it is producing to 
pass over a point. The network whose results are displayed 
in the figure has one input and one bias unit connected to 
one output unit. The axes in the diagram stand for the i-o 
coordinates, each point thus representing a pattern. The best 
approximation the network can do of the old patterns is the 
continuous line. Learning the new pattern while minimizing 

0 

Fig. 1. The points represent the leamed patterns, which are approximated by 
the network with the continuous line. Constraining the network to perfectly 
encode the new association (little circle), while minimizing the error over 
the old patterns, gives a global approximation (dashed line) worse than the 
previous one. 

the error over the old patterns results in weights giving the 
dashed line interpolation. Note that this figure presents the 
worst possible case: a huge number of points that only can 
be interpolated with a surface having low frequency-high 
amplitude oscillations, a network with few parameters that is 
completely unable to fit the surface, and a new pattern far 
away from the mean of the old patterns. 

The moral of this discussion is that not only it is impossible 
to devise a “perfect” algorithm for the nondismptive encoding 
of a new pattern, but that even if we had such an algorithm, 
to apply it indiscriminately in an incremental way could be 
inappropriate in many situations. 

The most natural setting for the application of LMD is that 
in which the set of patterns to be learned is not fixed but 
time-varying, in the sense that there is a moving window for 
the error function so that when new patterns arrive, some of 
the oldest ones are no longer taken into account. In this case 
the previous arguments cannot be applied. When introducing 
a new pattern the emphasis must be put in quick adaptation 
and some forgetting of the old patterns is desirable. m i c a l  
applications of this kind are time series prediction and some 
control problems. 

nI. FORMALIZATION OF THE PROBLEM 

We can formulate the problem as the minimization of the 
error over the n - 1 previously trained patterns, constrained 
by perfect encoding of the new pattern. It is convenient to 
consider the current weights (before the application of LMD) 
as constants and then write each error Ep as a function of 
weight increments 

Min E ( A W ) =  E p ( A W )  
p=l ... n-1 

En(AW) = 0. 

Evaluating the Ep’s accurately for a given AW would entail 
presenting the whole set of patterns to the network. If the 
optimum is to be found through some search process, this 
evaluation has to be performed repeatedly, leading to a high 
computational cost. 
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An alternative solution to accurate evaluation is to ap- 
proximate the error function over the old patterns through a 
decoupled quadratic function' of AW. Then the problem can 
be written as 

subject to the neural network constraints 

where Wjk is the weight of the connection from unit k to unit 
j ,  b j k ,  and C j k  are constants, fj is the activation function of 
unit j that given the total input xj provides its output yj, and 
Incu) is the index set of the units from which unit j receives 
direct input. Observe that the y's corresponding to inputs and 
outputs are constant in this formulation, since they take the 
values of the new i-o pattern to be encoded, while the y's 
corresponding to hidden units remain variable. 

This problem can be solved through recourse to a standard 
decomposition technique. Assuming a fixed Y = [yj], one 
can find the unique solution Awfk(Y) for each decoupled 
subproblem associated with unit j 0 belonging to hidden and 
output layers) under the assumption that fj is one-to-one, since 
each subproblem is a quadratic optimization problem with a 
linear equality constraint (see the following section). Thus, 
the initial constrained minimization problem in weight space 
is converted into an unconstrained one in the smaller space of 
hidden-unit activations 

m$ F( AW* (Y)) .  (4) 

The benefits of this problem transformation are: 
-The original constrained minimization problem has been 

turned into an unconstrained one. 
-The new pattern is always perfectly encoded, thus obvi- 

ating the trade-off between cost minimization and con- 
straint satisfaction mentioned in the preceding section. 

-There are far less variables than in the original formu- 
lation. 

-The domain of each variable is more restricted, because 
hidden-unit activation functions are normally of limited 
range. 

Iv .  RESOLUTION OF THE SUBPROBLEM ASSOCIATED 
WITH EACH NODE 

The subproblem associated to unit j can be stated as follows 

minFj(AW) = cjkAwj2k + bjkawjk ( 5 )  
k€Inc(j)  k€Inc(j)  

subject to the constraint 

(wjk + AWjk)Yk - fyl(Yj) = 0. (6) 
kEInc(j)  

'We dispense with cross-terms because, besides adding great complexity to 
the algorithm, they have costly requirements in computations and memory. 

This can be easily solved by using, for instance, the La- 
grange multipliers method. The function to be minimized 
becomes 

Gj (AW) = Fj (AW) 

(wjk -k AWjk)Yk - f f l ( Y j )  . (7) 
+ t [  k E Inc(j) 1 

Using the fact that dGj/dWjk must be zero in the solution, 
together with the constraint (6), the following expression for 
the function Awfk(Y) can be readily obtained (see [16] for 
more details) 

Observe that for the case in which C j k  = 1 and bjk = 
0, this is the Widrow-Hoff rule [17]. This formula will be 
simplified further, but we can conclude now that Awfk(Y) is 
a well-defined function if and only if 

At least one input arriving to each unit is not zero. This 
is not a real danger unless threshold units that take zero 
as one of their states are used. 
All the C j k  are nonzero. We have to take care of this 
when selecting the parameters of the quadratic function 
(see Section VI). 
The denominator of the first fraction must be nonzero. 
The opposite is an unlikely event that is avoided by 
choosing positive cjk (see again Section VI). 

V. THE LMD ALGORITHM 

We can now derive a gradient algorithm for carrying out 
the minimization in (4). Let us begin by giving F = cj Fj 
a more explicit form. From (8) 

where E, = fyl(y,)  - caw3aYz + E, e and M, = 

E, $. Substituting this expression for Aw,*k into (5) 
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where the definition of M j  was used in the last step. Observe 
that M j  and €j can be taken out from the sumatories 

so finally 

To greatly reduce complexity, it is convenient to work with 
the parameters w i k  = W j k  - b j k / 2 c j k ,  since then € j  = 
f Y Y Y j )  - E; W51Yi. 

Thus, the first step in the algorithm will be the transforma- 
tion of all the weights W j k  into W i k ,  and the last step will be 
the translation of the optimal hidden-unit configuration into 
the new increments Aw$k. which result also simplified 

(10) 

Let us now derive the gradient of F .  To prevent that during 
the search the y's would travel beyond their valid ranges, since 
the activation functions fj have usually a limited range, we 
choose to calculate dF/dx j .  Note that, using x3 = f j ( x j ) ,  xj 
appears explicitly in &j and therefore in Fj, but also implicitly 
in all F, such that s E Out(j). 

The gradient when j is a hidden unit index is then 

(1 1) 
This formula is valid for networks with whatever number 

of layers, and even with jumps between layers. The gradient 
formula is easily implemented by an algorithm with a data 
flow in two phases, which resembles backpropagation. In the 
first forward phase, &j and M j  are computed for all units 
with incoming connections. Then the first gradient term is 
easily calculated and each of the second term addends is 
backpropagated to get the total gradient. Do not be misled by 
the "forward" and "backward" names, since the similarity with 
backpropagation is limited by the fact that here the information 
needed by a unit in both phases is already available locally, 
without any time delay required to wait for information from 
remote layers. Because of this independence, the updating 
order can be anyone, allowing even total overlapping. This 
makes complete parallelism in the implementation possible, 
not only within a layer, but also among layers. 

The LMD algorithm is, therefore, as follows 
W'. + w j k  - b j k / 2 C j k  3k 
Fix the input and output pattem in the network input 
and output and derive x j  for all output units. Choose 
initialization values for all the hidden-unit total inputs 
Xi. 
Repeat until a given stopping criterion 
a) Calculate M j  and &j for all units with incoming 

connections (forward pass). 

b) Backpropagate the second term in (1 1) and update x j  

for all hidden units using x j  t zj t - p e  (backward 
pass). 

3) Change weights using (10). 
Remember that every time x j  is changed, y j  must also be 

updated because they are binded variables. 
It may seem excessive to dedicate a sequence of cycles for 

only one pattern. Perhaps a solution could be approximated, 
for example linearizing the network or with another heuristic. 
It all depends on the difference between a solution of this 
kind and the true minimum, how this difference is reflected in 
E ,  and how the increase in damage has repercussion on the 
recovery leaming time over the previous patterns and the new 
pattern. It can be supposed that it is worthwhile to spend some 
more time with only one pattern, trying to trim a bit E, if in 
exchange one avoids some cycles over the whole learning set. 

VI. CHOOSJNG THE COEFFICIENTS OF THE COST FUNCTION 

The most obvious election for the coefficients b j k  and Cjk is 
that yielded by an instantaneous second-order approximation 
of the error function E(AW) ignoring the off-diagonal terms. 

With this choice, F is exactly the local estimation of E 
assumed by several authors [HI-[20] to justify this simple 
pseudo-Newton rule for optimizing E 

Then, c j k  = d 2 E / a W ; k  and b j k  = d E / a w j k .  

A W j k = - p -  - 
a W j k  aE I a zE  aWjk* 

Note that step 0) in the LMD algorithm, when the Cjk # 0, 
is exactly one of these pseudo-Newton steps. The implicit aim 
of this step is to bring the network to the minimum of F ,  
cancelling out first derivatives. Unfortunately, the minimum 
of F normally is not the minimum of E, and first derivatives 
could remain still significative. The conclusion is that this 
step is scarcely useful and, in fact, what we really need is to 
minimize the first derivatives of E by whatever means before 
the aplication of Lh4D. Later in Section X-B, we will give 
some advice to reduce first derivatives during training. 

Then, if step 0) is taken out of the algorithm, we are 
minimizing the cost function 

In the minimum, this is still a diagonal second-order approx- 
imation. In an arbitrary point, it can be shown [21] that, for a 
function of the type C j k  c j k A w j k ,  this choice of coefficients 
is in average the best for estimating E. 

To prevent the nullity of the Cjk to Mfill condition c) in 
the last section, we can add a very little constant (range of the 
hidden activation function/lOOO, for instance) to everyone of 
the second derivatives. Even when some Cjk are not null, but 
very close to zero, this helps to ameliorate the behavior of the 
algorithm. Because, as we said, it is necessary to have positive 
Cjk,  we should take absolute values of the second derivatives. 
Note that when the network is in the minimum, these second 
derivatives are already positive. 
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The cost function in [12] is based on approximating 
& A E i  by means of the network output sensitivities to 
weight changes. In the Appendix, we show that the sum of the 
diagonal terms of this cost function can be approximated by a 
weighted sum of the second derivatives of error components, 
the weights being the error in the corresponding components. 
This weighting could be useful in practice in points out of the 
minimum. In points with almost zero error, however, these 
coefficicients lose their sense. 

There exists another way of using the coefficients to realize 
a coarser estimation of the damage to the net. By making all 
the C j k  parameters equal to one and all the b j k  equal to zero, 
the algorithm is somewhat simpler and permits either saving 
the cost of calculating C j k  (though it is relatively cheap) or 
working when they are not available. What LMD is calculating 
in this case is the nearest solution for the new pattern in 
the weight space. This is a good heuristic to look for the 
intersection of the solution space of patterns 1, - 1 . , n- 1 and 
the solution space of pattern n. Under total uncertainty about 
the shape of the solution space for the new pattern, using this 
version amounts to introducing white noise in the network with 
a uniform probability distribution. This type of noise seemed to 
do little injury in a study performed by Hinton and Sejnowsky 

We have always taken p- = .5 and p+ = 1.3. Observe 
that, according to (9), A F  can be easily calculated from the 
old value of F and the new values of € j  and M j  obtained in 
the forward pass. The dF/dxj  are always those computed 
in 2b) and thus, they do not need to be recomputed. The 
initial value of p is only important for a quicker convergence, 
because convergence is guaranteed. The most convenient value 
depends on the size of the network and, therefore, for the 
scaling experiment we scale also the initial p; in the other 
experiments the networks are of comparable size and a value 
of two is always used. As a refinement to the basic algorithm, 
it is possible to use a much larger p+ and a very small p- 
in the first iteration of LMD until a mistaken step is done (if 
the initial step is not overshot) or a valid step is done (if the 
initial step is overshot) and afterward use the normal values. 

B. Stopping Criterion 

The search is finished when 

where n H  is the total number of hidden units-and Gmin is a 
constant that regulates the accuracy in finding the minimum. 
Dividing by \/7LK seems convenient to obtain values inde- 
pendent of the network dimensionality. In normal practice, 

1221. 
In sum, two versions of LMD have been mainly explored in 

the experiments: the standard one that uses C j k  = l d 2 E / d ~ 3 k l  
and the coarse one that uses C j k  = 1. 

VII. IMPLEMENTATIONS DETAILS 
One of the features that must characterize the application of 

the algorithm is total automation. We can neither expect to test 
and correct parameters each time we introduce a new pattern, 
nor to watch over to decide convergence completion. Besides, 
we need a reliable algorithm in all situations to bring the 
network to the minimum without risk of catastrophes. There- 
fore, in the following subsections we describe the rationale 
underlying the determination of parameters and initialization 
values. 

A. Advance Rate 
The current implementation of LMD follows pure gradient 

descent but with adaptive step size. The strategy is very simple. 
When the last step is beneficial (i.e., it leads to a decrement in 
the cost function), the advance rate p is multiplied by a number 
p+ slightly greater than one. In the opposite case (increment 
in F )  the step is partially undone, the advance rate reduced 
by a factor of p- and then the step is redone. This can be 
implemented with little more computation than a forward pass. 
The advance rate control routine, that runs after step 2b), is 
as follows 

if A F  < 0 then p c pp+ 
while A F  2 0 

dF 
xj +- xj - (1 - p-)p- axj 
P +- w- 
Forward pass 2a) 

end while. 

Gmin = 0.005 seems a good choice, and this is the value used 
in all the experiments reported. 

C. Initial Hidden- Unit Conjguration 
We have used several architectures with different weights 

to test the existence of local minima. This was done by using 
a great number of random initial hidden-unit configurations 
and measuring the cost function in the final points reached. 
The result has been that networks that are able to learn, i.e., 
those with moderately saturated units, rarely lead to landscapes 
with local minima. Only using random weights of increasing 
magnitude, local minima begin to appear more numerous and 
higher. Because of the scarcity of local minima, the initial 
hidden-unit configuration is not a crucial question, but the 
number of cycles required for convergence can increase with 
a bad selection of the initial point. 

There seem to be two privileged initial points: one is the 
hidden-unit configuration that results from propagating activity 
through the network and the other is the one with all the unit 
activations in the middle of the activation range. The first is 
good in the case that the error in the new pattern is low, since 
then the weight modifications needed to get the new pattern are 
small, and as a consequence the ideal hidden-unit configuration 
is near this point. The second point has the advantage that each 
hidden unit is completely free to go in one or other direction 
(in fact, this is also useful to avoid local minima) and the 
gradient of the activation function is maximum (at least for 
sigmoids). Here all the experiments use the second option. A 
more elaborate decision could be to switch to the first option 
when the error in the new pattern is small. 
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VIII. PERFoRMANCE MEAsURES the distance by the instantaneous velocity of the system, the 

In this section we develop tools for evaluating the compu- went 
tational savings provided by LMD, which tum out to have 
wider application. 

One method of mea$uring the benefits of using LMD would 
be comparing E', the global error over the pattems 1 - . n, 
before and after applying LMI) to the nth pattern. This should 
be indicative of haw much the search of the E' minimum 
is facilitated. Surprisingly, it is not like this. Fot instance, if 
the error after the application of LMD is slightly higher, we 
have systematically observed that LMD helps nevertheless to 
shorten learning times. Probably this phenomenon is similar to 
the accelerated releatning times registered in [22] when some 
disturbance is inOroduoed in trained networks. 

It is a knotty problem to measure the computation costs 
of arriving at a minimum from two different points. Here we 
suggest two measures that are independent of any algorithm 
parameters and rely only on the landscape of the error function. 
Therefore they reflect objectively some aspect of the difficulty 
to find a minimum from different initial points. We have 
checked that both give results qualitatively similar if it is 
not required to arrive very accurately to the minimum. For 
instance, the phenomenon mentioned above appears indepen- 
dently of the measure used. 

The first measure is the time a dynamical system driven by 
the system of equations 

8E a W  
aw at 
-= -  

would take to go from one point to another of its trajectory. 
We call this measure backpropagation time, because these 
are the learning equations of backpropagation as a continu- 
ous dynamical system. To estimate backpropagation time we 
constrain pure gradient backpropagation to take only steps 
which produce error decrements that can be predicted by a 
linear approximation of the error function, i.e., we take the 
criterion 

Therefore, the time to complete a trajectory is Ck p k )  when 
all the steps satisfy the linear constraint (12). 

It is possible to adapt p near optimally during the training 
with an algorithm similar to the one presented below. 

Using this measure, we have observed that the backprop- 
agation time required to eliminate the last residuals of the 
error is much bigger than the that needed to eliminate the 
main part of the error. This is due to the fact that velocity 
slows down very much in flat regions and especially in the 
neighborhood of a minimum. Algorithms more sophisticated 
than raw backpropagation are expected to behave in a rather 
different manner. 

We propose another measure that overcomes the above 
shortcoming, while at the same time allowing quicker com- 
pdtation. The measure is the standard curve length defined for 
rectificable functions 

where tl is the initial time point and t 2  is the final time point. 
We could compute it in a similar way to the one used for 
back-propagation time, taking only linearly predictable steps. 
Instead, we have developed a more efficient, although more 
complicated algorithm, that will be of use later for other 
purposes. 

The idea is that to calculate curve length approximating 
system trajectory we can relax the linearity constraint of 
magnitude predictability to only angle continuity between two 
steps, i.e., we only accept one step if the angle with the next 
step is close enough to zero. In this way we profit from the fact 
that, unlike back-propagation time, curve length is independent 
of the velocity with which E comes down and can always be 
computed in one step in the zones where the gradient direction 
does not change. The only inconvenience, which adds some 
complexity to the algorithm, is that to know whether one step 
is too big to be accepted, we must know the direction of the 

IEstAE') - - E')) I 
(12) < exigence 

(Ek+') - Ek))EstAEk) 

next step. This is the algorithm used to estimate curve-length 
to accept the learning rate pk) that produced AwiL as correct, 
where EstAEk) is the linear estimation of the error increment 
based on the first derivatives 

repeat until stopping criterion 
AW +- pOE/aW 
W + W + A W  

If all the steps along the learning process satisfy this 
criterion, we can say that the trajectory followed by the 
algorithm approximates the trajectory that would follow the 
dynamical system above. The fidelity to the continuous path 
will be controlled by the exigence parameter. 

If step IC satisfies the criterion, W(t) is approximately 
linear in the section between W k )  and Wk+'),  and, thus, we 
can estimate the time to perform AW') by dividing directly 

while ang (AW, aE/aW(W)) > exigence 
W +- W - a A W  
AW + (1 - a ) A W  
P + (1 - a b  
A +- A + llAWll 

P +  PP. 
Exigence regulates the fidelity to the continuous system 

trajectory. m is adapted to grow slightly at a geometrical 
rate of P > 1 when one step is accepted and decrease more 
quickly at a rate of 1 - a, 1 < a < 0 when it is not. 
This is to keep m near the highest values allowed by the 
angle continuity constraint. In our simulations, a = 0.5 and 
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Patterns 
Coarse LMD 
Standard 

~ 

663 

0.064 0.111 0.018 0.032 0.002 0.002 
0.38 0.087 0.012 0.028 0.001 0.002 

-D- complele cycles 

+ forward passes alone 

4 

0 lowoo 

number of connections 

Fig. 2. Scaling experiment: Number of LMD complete cycles and feed- 
forward steps alone (due to overshot steps) as a function of network size 
(number of connections). 

TABLE I 
ERROR INCREMENTS AFTER APPLYING LMD WITH C,k = 1 

AND C J k  = la2E/dW:kl. THE EXPERIMENT WAS PERFORMED 
WITH DIFFERENT NUMBERS OF ALREADY LEARNED PATTERNS. 

THE RESULTS ARE AVERAGED OVER 20 NEW PATERNS 

Architecture I 8-3-1 I 13-12-4 I 300-30- 10 
Nr. of 15 110 110 125 150 1150 

I LMD 

,!3 = 1.2. To compute ang(AW,dE/dW(W)), a complete 
back-propagation cycle is required to get the E gradients 
(which, when the while condition fails, can be reused without 
further computations for the next step), but weights and weight 
increments must not be updated. 

Ix .  EXPERIMENTAL RESULTS 

A. Scaling Properties 
Fig. 2 gives an idea of the number of steps needed to reach 

the minimum and the scaling properties of LMD. Networks 
of several sizes were used in this experiment, all with the 
same' proportion of units in each layer. The smallest was a 
8-3-1 network and the others were obtained by multiplying 
by 10, 2 0 . . .  the number of units in each layer of this 
network. The initial p for the 8-3-1 network was one, and 
was multiplied in the same manner above for the rest of the 
networks. The abcises indicate the number of connections. The 
ordinates show the average of forward-backward cycles and 
forward steps alone (due to mistaken steps) for 20 random 
new patterns. The cost function was F = and each 
weight W j k  in the network was obtained randomly with the 
uniform distribution [ - 1.5 / I  Inc ( j  ) I , 1 .5/ I Inc (j) I]. 

It can be Peen that the number of steps is not excessive, in- 
dicating the great simplicity of the unconstrained search space. 
Scaling properties are good, making less indispensable the 
development of an acceleration algorithm. Other experiments 

also indicate that scaling with the number of layers is better 
than for backpropagation. 

B. Solution Quality for  Different CoefJicients Settings 
Table I presents results for three different networks trained 

with two different numbers of patterns. It shows the average 
error increment in the output units for the previously trained 
pattern when LMD is applied, with C j k  = 1 and C j k  = 
ld2E/dW3kl. The error measure used is 

a = l . .  , N o  

where No is the number of output units and is the difference 
between the desired value and the network response value 
in ouput unit z for pattern j .  Net structure is expressed 
in the obvious way (net 8-4-1 has eight input units, four 
hidden units, and one output unit). Both the previously learned 
patterns and the new ones were generated randomly from 
a uniform distribution in [-1.2, 1.21. A symmetric sigmoid 
ranging from -1.712 to 1.712 was used for the hidden-unit 
activations. The activation functions of the output units were 
linear. Take into account that these conditions are bad to reduce 
the error increment: Linear output units allow the error to 
grow unlimitedly, and the big ranges of the i-o patterns and 
hidden-unit activation functions lead to a great variance in the 
output of the network. The table shows averages over 100 new 
patterns. When the networks have been trained with a lot of 
patterns, the error increments are larger for the two versions. 
This is due to the fact that a network with more random 
patterns has more output variance, and thus the error average 
of the new learned random patterns is higher (more than double 
in the network 32-12-4). Also the advantage of the standard 
version over the coarsest one is lower with more patterns, 
because second derivatives are more uniform, indicating that 
the network is more saturated with information, parameters are 
less free to vary and, as a consequence, there are no privileged 
directions. When the patterns are not random, the networks 
become saturated more gradually. We can also guess that, in 
the case of many patterns, the quadratic estimation of the 
error function is poorer, because the very large errors force 
the network to look for solutions far from the present position 
in weight space. 

Finally, another experiment was made to test the solution 
quality provided by differet settings of the coefficients in 
networks outside the vicinity of a minimum of the learning set. 
Table I1 presents results for the 8-3-1 architecture trained with 
five patterns until some fixed error is reached. Five networks 
with the error levels shown in the table were used, and each 
of them underwent the introduction of a new pattern with 
the coarse and standard versions of LMD. Also the weigthed 
squared derivatives (15) inspired in [12] and derived in the 
Appendix were tested for comparison. As before, results were 
averaged over 20 new patterns. It can be noticed that the 
standard version of LMD still gets significatively better results 
than the coarse one. On the other hand, the weighted squared 
derivatives (15) work also well, but when the error over the 
old patterns is very low they become very risky. 
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TABLE I1 
EXPERIMENT OUT OF THE MINIMUM. ERROR bCREMENTS ARE SHOWN FOR THE 

Two DIFFERENT VERSIONS OF LMD IN A NEIWORK m DIFFERENT 
ERROR LEVELS IN THE PREVIOUSLY LEARNED PATTERNS. AN 8-3-1 

ARCHITECTURE w m  Flm Om PAT~ERNS WAS USED. THE RGURES 
REPRESENT AVERAGES OVER 20 NEW PA'ITERNS. THE RESULTS FOR 
LhfD ARE COMPARED WlTH USING THE CJK'S " E D  IN (15). 

WHICH ARE L i \ ~ u n ,  AS WEIGHTED SQUARED DERIVATIVES 

Old patternsErmr .I .05 .01 .001 .0005 .OW1 

Coarse LMD OM') ,054 ,057 Iffil .Ob2 ( 6 3  

I WeightedSquared I ,031) I ,034 I ,042 I .OX3 I .I21 I 2 3 5  I 
Derivnlives 

I I  I I I I I I 

C. Computational Savings Derived from the Application 
of LMD 

We present now some experimental results regarding the 
improvement in training times provided by the use of LMD. 
The networks are the same as those in the preceding exper- 
iment, with the same already learned patterns and the same 
20 new patterns. Let W:.,.n-l be the weight configuration 
at which the minimum error Er...n-l for the set of patterns 
1 . . . n - 1 is attained, and E be the error function over 
patterns 1 . . n. For each network and new pattern, we first 
calculate very accurately the minimum error E* for the set of 
patterns 1 . . . n, then we measure curve length from W;,..n-l 
to the first point in the trajectory with an error minor than 
E* + .2(E(W....n-1) - E*), and after from the same original 
point transformed by applying LMD with pattern n, to the 
first point with the same level of error as before. Table III 
shows the results. The differences in curve length should be 
indicative of the advantage of using LMD to tune the network 
before applying any algorithm of the backpropagation type, 
because length only depends on the error function shape. The 
computational effort to introduce the new pattern with LMD 
is negligible, since the number of LMD cycles is usually less 
than the number of patterns in the training set. The table 
reveals that it is more advantageous to use LMD when there 
are few patterns than when there are many. The main reason 
is the same one pointed out in the preceding subsection: 
growth of the new pattern errors leads to growth of the 
damage to the network. This is a very abnormal situation, 
however, because in typical applications the error in the 
new patterns tends to decrease when the number of learned 
associations grows. Moreover, to be always advantageous 
under this incremental scheme, LMD (and any other algorithm) 
needs to be presented with new patterns yielding progressively 
smaller errors, because in the long term a highly-erroneous 
new pattern can lead to a situation of the type we talked about 
in Section I1 and exemplified in Fig. 1. This shortcoming could 
be overcome, for example, by reducing wisely only a fraction 
instead of the complete error of the new pattern. We have left 
these refinements for future work. 

D. LMD Versus Backpropagation 
We present now some experiments comparing LMD and 

standard backpropagation with different advance rates /I. This 

TABLE 111 
THE FIRST Row SHOWS THE CURVE LENGTH FROM THE POINT OF MINIMUM 

ERRORFORTHESETOFPATERNS l , . . . , n - l  TOTHEVICINITYOF 
THE POINT OF MINIMUM ERROR FOR THE SJiT OF PATERNS 1,. . . , R. 
b THE SECOND ROW, THE MEASUREMENTS WERE MADE TAKING AS 
INITIAL POINT THAT RESULTING FROM APPLYING LMD TO THE n m  

PATTERN. AVERAGES OVER 20 NEW PATERNS ARE SHOWN 

Architeclure I 8 - 3  -1 I 3 2 - 1 2 - 4  

Nr. of Patterns S 10 10 2s so 150 

Length (wilhoul LMD] (1.335 1b.546 11.334 1b.456 O. lX2  0.16s) 

, Length (After LhlD) (I.OXX 0.347 ll.1~54 0.262 O.IW12 0.061 

parameter turns out to be a very important factor in the 
comparison. 

In Fig. 3(a) the net 32-12-4, trained with 10 random pat- 
terns, undergoes the introduction of a new pattern with differ- 
ent backpropagation learning rates. The pattem is considered 
to have been learned when the average absolute error in the 
output units is 0.01. The distance from the starting point to 
the final one in the weight space and the number of cycles 
needed are shown. The limit to which the distance tends when 
,u + 0 can only be approximated with large computational 
costs. Fig. 3(b) displays how the distances to the starting point 
showed in Fig. 3(a) affect the error in the old patterns and how 
this in turn affects the recovery time (measured in terms of 
backpropagation time) needed to relearn both the new and the 
old patterns. The distance lower bound for backpropagation 
when ,u 4 0  (0.69), as well as results with the coarsest 
( c j k  = 1) and standard ( c j k  = J@E/~w;~I) versions of LMD 
are also shown here. 

The different weight solutions provided by back-propaga- 
tion are in random directions with respect to the starting 
point, because they were obtained independently of E, but a 
neat linear relation appears between the distance and the error 
increment. An important finding for our investigation is that 
the recovery time follows an exponential-like curve, implying 
that it is very important, with respect to recovery time, to trim 
as much as possible the damage caused to the old patterns, 
even if the possible reductions are small. 

This example also shows how the distance for the coarsest 
version of LMD must be by definition of the cost function 
always the shortest one. The difference between the true 
minimum distance found by the coarsest version of LMD 
and the approximation made in the limit by back-propagation 
is variable, especially for highly erroneous new patterns, but 
usually the two points are close. 

Finally, note that the standard version of LMD provided by 
far the best results (very small error increment and recovery 
time), and it did so by moving a long distance away from 
the initial point, thus proving the existence of a privileged 
direction. 

X. DISCUSSION 
A. The Influence of the Backpropagation Advance Rate 
on Forgetting 

One of the main results we have obtained is the dependence 
of backpropagation forgetting on the learning rate. Cohen [2] 
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Fig. 3. (a) Starting with a network in the minimum of the error function for the old patterns, a new pattem is introduced with different back-propagation 
learning rates. The graphic shows the number of cycles needed to learn the pattern and the total distance covered from the initial point in each case. It is clear 
that, when the learning rate tends to zero, the distance tends to a limit. (b) Another aspect of the experiment described in (a). The distances represented in (a) are 
now in the axis of abcises. The two curves represent the error increments and the backpropagation times beginning after the introduction of the new pattem and 
ending in the global minimum of the error function including the new pattem. Coarsest LMD (cJb = 1) minimizes explicitly distance and so, it must obtain 
results better than the backpropagation limit. Standard LMD ( c J k  = l a 2 E / a ~ : k I ) ,  however, which does not take into account distance, gets the best results. 

already observed this in a systematic variation of all back- 
propagation parameters. We can now provide an explanation 
of this dependence. The gradient of the error function for the 
new pattern can lead the network anywhere in principle, but 
it is a good heuristic for finding one of the nearest solutions. 
The problem is that backpropagation with usual learning rates 
does not follow the true gradient line because of its discrete 
nature. Since the solutions for the new pattern pervade the 
weight space, a too big step may lead to a point crossed by 
a gradient line driving the network to a different and farther 
solution. If backpropagation is forced to closely follow the 
true gradient descent line (as it is the case when the advance 
rate tends to zero), it becomes a reasonable application of 
the coarsest version of LMD, but with high computational 
cost. Usual accelerating algorithms, taking bold steps, can only 
worsen forgetting. 

Contrarily, the algorithm for measuring curve length follows 
the gradient line with the desired accuracy, but with the 
highest learning rates possible in each step, alleviating the 
inefficiency-catastrophic forgetting trade-off in backpropaga- 
tion, thus finding another use complementary to the one for 
which it was designed in Section VIII. For instance, applying 
the curve length algorithm with exigence = .99 in the last 
experiment of the preceding section, the distance obtained was 
.693, which is only slightly higher than the backpropagation 
limit, and only 27 cycles were used, almost half of those 
needed by backpropagation with the appropriate /I to get the 
same distance. The algorithm to compute backpropagation 
time could also do the job in a simpler but more inefficient 
way. 

B. How to Prepare a Network for Damage or the Relation of 
LMD with Fault Tolerance 

A conclusion from the exponential-like curve for the recov- 
ery time reported in Section IX-D, as well as the reasoning 
about the convenience of dispensing with the b j k  parameters 
presented in Section VI, is that one must wait as long as 
possible to the completion of the learning of the previous pat- 
terns (by second-order, standard backpropagation or whatever 
means) before introducing the new patterns. 

The overtraining effect had been observed, but not ex- 
plained, in studies of forgetting [2] and fault-tolerance [23]. 
Avoidance of forgetting and increasing fault-tolerance can be 
seen as intimately related goals. Both try to minimize the 
effect of weight perturbations on the information stored in 
the network. The only difference is that, to avoid forgetting, 
one can control somewhat the form of the perturbation. This 
similarity can be profited directly. Here, for example, the 
explanation for damage reduction after overtraining can be 
easily transferred from one domain to the other. 

Through the Taylor series expansion of the error-increment 
function produced by a perturbation, it is evident that minimiz- 
ing the first derivatives of E (the b j k  parameters) is the first 
priority to reduce the error increment. A minimum of E is also 
a minimum of the absolute value of its first derivatives, but 
moving across the weight space while decreasing the emor 
function does not imply decreasing derivatives, unless the 
network is really near the minimum of E. Examining the 
curves produced by the learning rate = .002 in Fig. 4(a)- 
(b), it can be seen that, when the training is finished, the 
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Fig. 4. (a) Error evolution in a network with two different learning rates. 
(b) Gradient norm evolutions along the learning corresponding to the. training 
curves in (a). 

level of error is very good, practically zero, but the gradient 
norm is still relevant, of the same order of that found in the 
middle of learning. This is the effect of the velocity difference 
in minimizing E and its derivatives. With enough training 
(overtraining) both values can be brought to zero. 

On the other hand, with a higher learning rate of .0038, the 
learning curve fluctuates but arrives faster to the minimum. 
Notice that, in the last part of the training, the curve stabilizes 
and descends uniformly, arriving at a level three times lower 
than before, but nevertheless the final gradient norm is huge. 
Even a minimal modification of the weights will produce cata- 
strophic forgetting. The different versions of backpropagation 
are normally used with the highest learning rates that allow 
faster training in the long term. As a consequence, in many 
occasions (even if the error function is always decreasing) the 
network is often out of the bottom of the error function valleys, 
in points with high derivatives. Then if one wants to alleviate 
the perturbation effects in a given stadium of the learning, the 
best one can do is to minimize locally the derivatives of E 
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following for a certain time the true gradient of E. This will 
bring the network to the bottom of the current valley. To follow 
the gradient line, one can make some steps of backpropagation 
with a very cautious learning rate or, more efficient and safe, 
one can use one of the algorithms presented in Section VIII, 
which find thus here still another use. 

C. The Relation of LMD with Pruning 

The standard version of LMD, without b j k  and with C j k  as 
second derivatives in the minimum of E, minimizes the same 
function (constrained by the new pattern) as Le Cun et al. [24] 
in their pruning procedure, our C j k  being their sensitivities. 
In a certain sense, our technique can be seen as opposed to 
pruning. F'runing detects the less profited weights to eliminate 
them. Instead, LMD uses them to introduce new information. 
The relation with pruning suggests that advances in pruning 
techniques can be incorporated into LMD. For example, some 
authors have recently used weight sensitivities that go beyond 
the strict locality of second derivatives [25]. 

X I .  CONCLUSION 

After pointing out the theoretical reasons that prevent com- 
plete success in avoiding forgetting in neural networks with 
distributed representations, we have developed a theoretical 
framework for the problem which leads MWY to the LMD 
algorithm as the more efficient way to tackle it. Full paral- 
lelism, both within and between layers, is one of the features 
of LMD. We have shown results with the coarse and standard 
versions of the algorithm, which demonstrate its good scaling 
properties, as well as the solution quality. and computational 
savings derived from its application. LMD, like the algorithm 
in [12], can control the comparative importance of the previous 
data by weighting each pattem through the coefficients cjk in 
the error function. This feature can be useful in applications 
of the moving-window type, strengthening for example the 
remembrance of the last presented patterns. Furthermore, if the 
coefficients are not rigidly used to estimate the error function, 
LMD allows a great flexibility in controlling how much of a 
pattem is learned by each individual connection, each unit or 
each layer. 

l b o  measures and algorithms for measuring the costs of 
going from one point to another of the weight space have been 
developed. These algorithms have characteristics that make 
them interesting for some other purposes, some of which have 
been pointed out. They could be interesting also for those 
who want to evaluate the goodness of some initial weights for 
faster learning [26]. 

The relationship between avoiding forgetting, fault- 
tolerance, and pruning has been shown, and some advice 
has been given for increasing resistance to damage in a 
network. Besides, we have shown that when the learning 
rate of back-propagation tends to zero, the solution found 
approximately minimizes C A Z U ~ ~ ,  which gives a crude 
second-order approximation of the error increment over the 
previously learned pattems when the network is at a minimum. 

We have also shown that the complete avoidance of cat- 
astrophic forgetting has, however, a priori limitations for 
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standard back-propagation networks with fixed size. Future 
work will address the development of a wider framework 
for networks including both sigmoid and IU3F units. For the 
sake of clarity, we derived LMD on the basis of hidden-unit 
activations, but it can be based as well on the total input to 
the hidden units, so that the assumption of invertible activation 
functions would no longer be needed. Also the dot product can 
be substituted by the Euclidian distance, thus allowing the use 
of the typical Gaussian units. 

It is also worthwhile to design a general learning algorithm 
with LMD at its base. This algorithm will profit from the 
direct manipulation of the internal representations, just as other 
similar algorithms presented recently do [27]-[29]. Another 
minor question is the investigation of acceleration techniques 
for LMD. 

APPENDIX 

In [12], the effect of A W  on the previous data is modeled as 

c 
P 

which is in turn approximated by taking linear estimations of 
each of the Ep 

I \ 2  

F ( A W ) =  
p = l  ... n-1 

Developing aE, /dwj ,  

\ 2  

where Or@) is the T output component of the net when the 
pattern p is presented, Er(?)) = (O,(P) - O:(P)), and O:(P) 
are the desired values. This function can be expressed as 

X &r(P)&s (P)AwjkAWmn. 

Taking only the diagonal terms j ,  IC = m, n and T = s 

which is a function of the type Cj ,k  cjkAwjk chosen in this 
paper, whose coefficients are 

It is easy to see c ~ = ~ . . . ~ - ~  1, (-)2 is an approx- 
imation of dE2 / d w j k  , concretely -a Levemberg-Marquardt 
approximation. Thus the c j k  coefficients in (15) can be con- 
sidered as a modified second derivative of E ,  weighted by the 
error of the outputs of the network. 
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