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Stratifications of the Euclidean motion group

with applications to robotics

Abstract

In this paper we derive stratifications of the Euclidean motion
group, which provide a complete description of the singular locus in
the configuration space of a family of parallel manipulators, and we
study the adjacency between the strata. We prove that classically
known cell decompositions of the flag manifold restricted to the open
subset parameterizing the affine real flags are still stratifications, and
we introduce a refinement of the classical Ehresmann-Bruhat order
that characterizes the adjacency between all the different strata. Then
we show how, via a four-fold covering morphism, the stratifications of
the Euclidean motion group are induced.

Keywords: Flag manifold, stratification, Euclidean motion group, cell
decomposition, singular locus, parallel manipulators.

1 Introduction

The spatial fully-parallel manipulator [6] can abstractly be described as two
bodies, base and platform, joined by six segments (or legs) of variable lengths.
The points where the legs are located on the base and the platform are called
endpoints. The configuration space which describes all possible platform
locations with respect to the base is R3 × SO3(R), the Euclidean motion
group. It is a differentiable manifold of dimension 6, and this is why the
platform and the base are joined by six legs: to achieve the six degrees of
freedom which enable the platform to reach every point in the configuration
space.
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The direct (or forward) kinematics problem consists in finding the location
of the platform with respect to the base from the lengths of the six legs, that
is, in determining the pre-images of the (differentiable) map

Φ : R3 × SO3(R) −→ R6 . (1)

The set of configurations at which Φ is singular is called the singular locus
of the manipulator. For a detailed formulation of kinematics mappings and
their singularities, the reader is referred to [7].

Technically, singular configurations cause problems: at such configura-
tions the derivative of Φ does not have full rank, and hence the manipulator
loses some degree(s) of constraint (or gains some degree(s) of freedom) and
becomes uncontrollable. Furthermore, the actuator forces in the legs may
become very large, which could result in a breakdown of the robot. There-
fore it is desirable to have a complete overview of the singular locus of the
manipulator. Such a complete characterization of the singular locus in the
configuration space would permit identifying the non-singular regions sepa-
rated by singularities, the restriction on manoeuverability occurring in each
singular region, as well as the adjacency between all non-singular and singu-
lar regions [6]. This would be most useful for manipulator design, including
the use of redundant actuators to eliminate certain singularities, and also
to plan trajectories away from singularities, or crossing them in a controlled
way.

In this paper we derive stratifications of the Euclidean motion group,
from classically known stratifications of the flag manifold, which provide a
complete description of the singular locus in the configuration space of a fam-
ily of parallel manipulators, called flagged manipulators. This class of robots
was first identified in [20], and is worked out in detail in [2] (being expanded
from a basic manipulator) where it is shown to contain large subfamilies of
parallel and three-legged spatial manipulators (by substituting 2-leg groups
by different serial chains).

The stratifications of R3 × SO3(R) derived in the present paper have
become a valuable tool in the field of robot kinematics and have been the
source of inspiration of several works in that field: they were already applied
in [20] to give explicitly all the singular strata and their connectivity, for
all members in the class of flagged manipulators, irrespective of the met-
rics of each particular robot design. Moreover, [20] also showed that these
strata admit an easy control strategy to cross them, because it is possible
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to assign local coordinates to each stratum (in the configuration space of
the manipulator) which correspond to uncoupled rotations and/or transla-
tions. The applicability of these stratifications to come up with robot designs
which admit control strategies free of singularities has been exploited as well:
in [1] redundant actuators have been introduced by adding an extra leg to a
given flagged manipulator, which admits a control strategy (by appropriately
choosing which leg remains passive) that completely avoids singularities.

The organization of the paper is as follows. Section 2, after recalling some
concepts and results concerning the manifold parameterizing the projective
real flags, is devoted to derive stratifications of the space parameterizing the
affine real flags, and to determine the adjacency between those strata. Section
3 shows how the stratifications for the affine real flags induce stratifications of
the Euclidean motion group, and studies the adjacency between the higher
dimensional strata. Then, in Section 4, we explain the connection of the
stratifications of the Euclidean motion group derived in this paper with the
kinematics of flagged robot manipulators. Finally, Section 5 sketches other
possible applications of the developed stratifications.

2 From projective real flags to affine real flags

It is classically known that the flag manifold, which parameterizes the set
of projective flags, admits well-behaved topological decompositions, namely
stratifications (in fact, cell decompositions); see [16], [10]. Moreover, the
classical Ehresmann-Bruhat order describes all the possible degenerations of
a pair of flags in a linear space V under linear transformations of V . We
shall deal with the flag manifold over Rn, that is, the linear space V = Rn,
motivated, as explained in the introduction, by the issues in the field of robot
kinematics. This same motivation leads us to consider affine flags. In this
section we prove that some stratifications of the flag manifold restricted to the
set of the affine flags are still stratifications, and we introduce a refinement
of the classical Ehresmann-Bruhat order that characterizes the adjacency be-
tween all the different strata, that is, describes all the possible degenerations
of any configuration to more special ones.

Given a positive integer n, the flag manifold F lag(n + 1) over Rn+1 pa-
rameterizes the set of flags in Pn = Pn(R), where a flag in Pn is a sequence
(V0, . . . , Vn) of projective subspaces with V0 ⊂ · · · ⊂ Vn = Pn and dim Vi = i
for 1 ≤ i ≤ n. The nested subspaces between the point V0 and the hyperplane
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Vn−1 defining a flag will be referred to as flag features. Once a distinguished
hyperplane H∞ in Pn is chosen, the affine flags are the flags (V0, . . . , Vn) in
Pn satisfying V0 6∈ H∞. Let FA(Pn) denote the open subset of the affine flags
in F lag(n + 1).

The notion of well-behaved topological decomposition is formalized in the
following definition. A stratification of a subset S of a smooth manifold M is
a partition S = ∪i∈ISi such that: I is finite, Si is a smooth submanifold of M
for any i ∈ I, and if Si∩Sj 6= ∅, then Si ⊂ Sj, where Sj stands for the closure
of Sj. The Si’s are called strata. The third boundary condition guarantees
that the boundary of a stratum is the union of the entire strata which are not
disjoint from it, that is, there are not “exceptional” degenerations between
strata: if a configuration of a stratum Si is a degeneration of a configuration of
a stratum Sj, then any configuration in Si can be considered as a degeneration
of some configuration of Sj.

Next, let us summarize the classical theory on stratifications of the flag
manifold, following [9] as main reference. Fix a reference flag (V0, . . . , Vn).
Let Σn+1 be set of permutations of n + 1 elements, and consider w ∈ Σn+1.

Definition 1 (Bruhat or Schubert cell). The Bruhat or Schubert cell
Bw associated with the permutation w is the set of all flags whose flag fea-
tures have incidence relations with the reference flag determined by w in the
following way:

Bw = {(V ∗

0 , . . . , V ∗

n ) ∈ F lag(n+1) : dim(V ∗

p ∩Vq) = rw(p, q) for 1 ≤ p, q ≤ n}

where rw(p, q) = #{i ≤ p : w(i) ≤ q} − 1.

Given a flag (V0, . . . , Vn), we can choose a projective reference frame
{a1, . . . , an+1; a} of Pn satisfying ai ∈ Vi−1 for 1 ≤ i ≤ n + 1, which will
be called a frame attached to the flag V. To each permutation w in Σn+1, we
associate the distinguished flag

V(w) = (aw(1), aw(1) ∨ aw(2), . . . , aw(1) ∨ . . . ∨ aw(n+1)) ,

where ai1 ∨ ai2 ∨ . . . ∨ ais denotes the projective linear variety spanned by
the points ai1 , ai2 , . . . , ais. Notice that then Bw is the set of the flags in
F lag(n + 1) whose flag features have the same incidence relations with V as
the flag features of V(w).

It is a classical result that each choice of a reference flag gives a stratifi-
cation (in fact, cell decomposition) of the flag manifold:
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Theorem 1 (Stratification of the flag manifold F lag(n+1)). (see [10]
Ch. 13, Th. 4.3 or [9] Ch. 10): The disjoint union of all Bruhat cells Bw

with w ∈ Σn+1 is a stratification for F lag(n + 1):

F lag(n + 1) = ∪w∈Σn+1B
w . (2)

The structure of each cell and the adjacency between them are also clas-
sically well established:

Proposition 1. (see [10] Ch. 13, Prop. 4.7 or [9] Ch. 10, Prop. 7):

1. Bw is isomorphic to the affine space Rlength(w), where the length of a
permutation w is defined as the number of inversions in w, that is,
length(w) = #{i < j : w(i) > w(j)}.

2. If Bw and Bu are two cells of consecutive dimensions length(w) =
length(u) + 1, then Bw ⊃ Bu if and only if there exists a transposition
t ∈ Σn+1 such that w = tu.

Example 1. To illustrate the case n = 3, Fig. 1 shows the cells of dimensions
6 and 5 and their adjacencies. The rectangle represents the 6D cell B (4,3,2,1),
while the ellipses are the 5D cells: B(4,3,1,2), B(3,4,2,1) and B(4,2,3,1). Each 5D
cell is labelled also with v−p∗, p−v∗ and l ·l∗, respectively, which characterize
the incidence relations between the flag features of the flags v∗ ⊂ l∗ ⊂ p∗ ⊂ P3

in each cell and those of the reference flag v ⊂ l ⊂ p ⊂ P3. Note that v, l
and p stand for vertex, line and plane, respectively, to ease recall. A hyphen
between two elements denotes that one is included in the other, and a dot
means that they meet at a single point.PSfrag replacements

B(4,3,2,1)B(4,3,1,2) B(3,4,2,1)

B(4,2,3,1)

v − p∗ p − v∗

l · l∗

Figure 1: Adjacency between the higher dimensional cells of the flag manifold
Flag(4): the rectangle represents the 6D cell, and the ellipses are the 5D cells.
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To describe for which pairs u and w of permutations the stratum Bu

is contained in the closure of Bw, the Ehresmann-Bruhat order is defined
in the set Σn+1: u ≤ w if, and only if, there is sequence of transpositions
(j1, k1), . . . , (jr, kr) with ji < ki for all i connecting w and u (i.e. if we
set w0 = w and wi = w · (j1, k1) · · · · · (ji, ki) then wr = u) and satisfying
wi−1(ji) > wi−1(ki) at each step 1 ≤ i ≤ r.

Remark 1. (see [9] 10.5): A canonical way to construct such a sequence
from w to u is as follows: for 1 ≤ i ≤ r take ji as the smallest integer
such that wi(ji) > u(ji), and ki as the smallest integer greater than ji such
that wi(ji) > wi(ki) ≥ u(ji). This procedure can be carried out for any w
and u, and if the chain does not arrive at u, then u is not less than w in
the Ehresmann-Bruhat order. For example, if n = 3, w = (4, 2, 3, 1) and
u = (2, 1, 4, 3), then the canonical sequence is

w = (4, 2, 3, 1) ≥ (2, 4, 3, 1) ≥ (2, 3, 4, 1) ≥ (2, 1, 4, 3) = u ,

where the pair switched at the next step is underlined. Besides, the first step
shows, for example, that w � (3, 4, 1, 2).

Proposition 2. (see [9] 10.5): For u and v in Σn+1, the following are equiv-
alent:

1. u ≤ v,

2. ru(p, q) ≥ rv(p, q) for all p and q,

3. Bu ⊂ Bv.

Let us show that some stratifications of the flag manifold F lag(n + 1)
induce a stratification of the set of affine flags FA(Pn). Fix from now on an
affine reference flag, that is, V0 ⊂ . . . ⊂ Vn = Pn with V0 /∈ H∞. Consider the
corresponding cell decomposition of F lag(n + 1) as in (2). When restricted
to the open subset of the affine flags FA(Pn) the partition (2) clearly induces
a partition:

FA(Pn) = ∪w∈Σn+1(B
w ∩ FA(Pn)). (3)

Since the reference flag is an affine flag, none of the above intersections is
empty. However it might happen that some cell Bw would split off into two
connected components: indeed, Bw ∩ FA(Pn) is a unique connected compo-
nent if and only if the permutation w starts with w(1) = 1. To see this,
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choose an affine reference frame {V0; e1, . . . , en} attached to the reference
flag, where e1 is a vector representing the improper point e∞

1 = V1 ∩ H∞, e2

is a vector representing another point e∞
2 on the improper line V2 ∩H∞, and

so on. Let (x1, . . . , xn) denote the projective coordinates in its associated
projective reference {V0, e

∞
1 , . . . , e∞

n ; a}.
First, let us give a construction of the isomorphism of Proposition 1. We

say that a (n+1)×(n+1) matrix M represents a flag V∗ = (V ∗
0 , . . . , V ∗

n ) ∈ Bw

if the first n rows of M span the flag features of V∗, and the whole of its rows
span V ∗

n = Pn. Observe that there is a unique (n + 1) × (n + 1) matrix M
representing the flag V∗ and satisfying the extra requirement that, for any
1 ≤ p ≤ n + 1, its p-th row has a 1 in the w(p)-th column, with all 0’s at
the right and below of this 1. This M will be called the canonical matrix
representing the flag V∗. For example, for n = 3 and w = (3, 4, 2, 1) the cell
Bw is isomorphic to the set of matrices of the form




∗ ∗ 1 0
∗ ∗ 0 1
∗ 1 0 0
1 0 0 0


 ,

where the stars denote arbitrary real numbers; in this case Bw is the set of
all flags whose vertex lies on the plane V2 : {x4 = 0}. The number of stars
appearing in the canonical matrices parameterizing the flags of Bw (for an
arbitrary w) turns out to be the length of w (see [9] 10.2).

If we switch to affine flags and we take up again the example of the
permutation w = (3, 4, 2, 1), the affine flags of Bw are the disjoint union of
two strata: one of them is isomorphic to the set of matrices of the form




a ∗ 1 0
∗ ∗ 0 1
∗ 1 0 0
1 0 0 0


 , (4)

where the stars denote arbitrary real numbers and a denotes a positive real
number; the other stratum is isomorphic to the set of matrices of the same
form (4) where the stars denote arbitrary real numbers and a denotes a
negative real number. The matrices of the form (4) where a is zero correspond
to flags which are not affine.

For a permutation w with w(1) > 1, let Bw
+ denote the connected com-

ponent of Bw ∩ FA(Pn) formed from the flags {(V ∗
0 , . . . , V ∗

n ) ∈ Bw : V ∗
0 =
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(x1, . . . , xn+1) with x1xw(1) > 0} and let Bw
− equal {(V ∗

0 , . . . , V ∗
n ) ∈ Bw : V ∗

0 =
(x1, . . . , xn+1) with x1xw(1) < 0}. Observe that the quotient x1

x
w(1)

is the (1, 1)

entry of the canonical matrix of any flag belonging to Bw. If w(1) = 1, set
Bw

+ = Bw
− = Bw.

The interesting point of partition (3) is that it provides a stratification of
FA(Pn) and that the adjacency between the strata may also be determined
by considering a refinement of the Ehresmann-Bruhat order:

Theorem 2. 1. The partition

FA(Pn) =
⋃

w∈Σ
n+1

w(1)6=1

(Bw
+ ∪ Bw

−) ∪
⋃

w∈Σ
n+1

w(1)=1

Bw (5)

is a stratification for the affine flags.

2. Let u and w be two permutations of Σn+1.

(a) If u ≤ w, then Bu
+ ⊆ Bw

+ and Bu
− ⊆ Bw

−.

(b) If u ≤ w and u(1) < w(1), then Bu
+ ⊆ Bw

− and Bu
− ⊆ Bw

+.

(c) If Bu
ε ∩Bw

ε′ 6= ∅, then u ≤ w. If moreover ε 6= ε′, then u(1) < w(1)
also holds. That is, there are no other adjacency between strata
than those determined in (a) and (b).

Proof. We will prove Assertion 2, since it directly implies Assertion 1. Let
u, w ∈ Σn+1 be two permutations such that u ≤ w. Reasoning by induction
on the finite number of transpositions connecting u and w, we need only to
consider the case where u = w · (j, k), with j < k and w(j) = u(k) > w(k) =
u(j). Take first any flag E ∈ Bu

+ and suppose M is its canonical matrix; we

will show that E ∈ B
w

+ and, if u(1) < w(1) (i.e., j = 1), then also E ∈ B
w

−.
In the sequel, if A is a matrix, its i-th row will be denoted by ai, its j-th

column by aj, and its element in the i-th row and the j-th column by ai
j.

Since E ∈ Bu, there is an unipotent lower triangular matrix, denoted by L,
such that M = MV(u)L, where MV(u) is the canonical matrix representing

the flag V(u). Moreover, as m1
1 = l

u(1)
1 and E ∈ Bu

+, it follows that l
u(1)
1 > 0.

Consider now, for any t ∈ R, t 6= 0, the flag G(t) represented by the
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matrix B whose rows are as follows:

bi(t) = ew(i) = eu(i) , for i 6= j, k,

bj(t) = t(1
t
ew(k) + ew(j)) = eu(j) + teu(k) ,

bk(t) = −1
t
(ew(k) − bj(t)) = eu(k) ,

(6)

where ei ∈ Rn+1 is the vector all whose components are zero but for the i-th
one, which equals one. On the one hand, from the first expression, it follows
that G(t) ∈ Bw for any t ∈ R, t 6= 0. On the other hand, the rightmost
expression shows that the limit of G(t) is the flag V(u) as t → 0. Therefore
the flag F (t) represented by the matrix A(t) = B(t)L also belongs to Bw for
all nonzero t, and the limit of F (t) is the flag E as t → 0. The last step that
remains to be proved is whether F (t) ∈ Bw

+, i.e., a1
1(t)a

1
w(1)(t) > 0. There are

two possibilities:

• w(1) = u(1). In this case, j, k > 1. Then we have, on one side,

a1
1(t) = b1(t)l1 = eu(1)l1 = l

u(1)
1 ,

which is positive by hypothesis. On the other side,

a1
w(1)(t) = b1(t)lw(1) = eu(1)lu(1) = l

u(1)
u(1) = 1 ,

since L is unipotent. Therefore

a1
1(t)a

1
w(1)(t) = l

u(1)
1 > 0 .

This shows F (t) ∈ Bw
+ for any nonzero t ∈ R, and thus E ∈ B

w

+.

• w(1) > u(1). This means j = 1, and then

a1
1(t) = b1(t)l1 = (eu(1) + tew(1))l1 = l

u(1)
1 + tl

w(1)
1 ,

a1
w(1)(t) = b1(t)lw(1) = (eu(1) + tew(1))lw(1) = l

u(1)
w(1) + tl

w(1)
w(1) = t ,

since L is lower triangular and unipotent. Hence

a1
1(t)a

1
w(1)(t) = tl

u(1)
1 + t2l

w(1)
u(1) .

Recall that l
u(1)
1 is positive by hypothesis. Thus, if t → 0+ the value of

a1
1(t)a

1
w(1)(t) is positive, and then F (t) ∈ Bw

+; but if t → 0− the value

is negative and F (t) ∈ Bw
−. Therefore, in this case both inclusions

E ∈ B
w

+ and E ∈ B
w

− hold.
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If we start the reasoning for any E ∈ Bw
−, the proof is analogous, since

now we have l
u(1)
1 < 0, but for the case u(1) = 1, for which l

u(1)
1 = 1 > 0.

This exceptional case is handled similarly, taking into account that Bu
+ = Bu

−,
when u(1) = 1.

Claims (a) and (b) being proved, it remains to show that there are no
other adjacency relations between the strata. If u 6≤ w, in virtue of Propo-
sition 2, we know that Bu 6⊆ B

w
, and this implies that Bu

a 6⊆ B
w

b for any
a, b ∈ {+,−}. If u ≤ w and u(1) = w(1), assume that there is a flag
E ∈ Bu

+∩B
w

−. Since E ∈ B
w

−, there is a sequence {Fm}m ⊆ Bw
− of flags whose

limit is E as m → ∞. Looking at the vertices of these flags, we have a se-
quence of projective coordinates of points vm = (vi

m), for which v1
mv

w(1)
m < 0,

whose limit as m → ∞ is v = (vi), which satisfies v1vu(1) = v1vw(1) > 0,
which is impossible. Thus Bu

+ ∩B
w

− = ∅. Analogously Bu
−∩B

w

+ = ∅, and this
completes the proof.

Example 2. To illustrate the case n = 3, Fig. 2 shows the strata of dimen-
sions 6 and 5 of FA(P3) and their adjacency. The rectangles represents the

two 6D strata B
(4,3,2,1)
+ and B

(4,3,2,1)
− , while the ellipses are the six 5D strata:

B
(4,3,1,2)
ε , B

(3,4,2,1)
ε and B

(4,2,3,1)
ε , with ε ∈ {+,−}. For the sake of clarity,

each 5D stratum is labelled also with (v − p∗)ε, (p − v∗)ε and (l · l∗)ε, re-
spectively, to make explicit the incidence relations between the flag features
of the flags v∗ ⊂ l∗ ⊂ p∗ ⊂ P3 in each stratum and those of the reference flag
v ⊂ l ⊂ p ⊂ P3.

3 Stratification of R3 ×SO(3) and adjacencies

between the higher dimensional strata

In the sequel we restrict to the case n = 3. Consider an Euclidean reference
frame attached to a given flag V∗. Observe that the group of Euclidean
transformations leaving this flag invariant is HV∗ = {I,Rx,Ry,Rz}, where
I is the identity transformation, and Rk stands for a rotation of π radians
about the k-axis (in the above mentioned reference frame attached to V ∗).

Fixed an affine reference flag V, any q ∈ R3 ×SO(3) defines a unique flag
q(V). On the other hand, for any flag V∗, there is some q ∈ R3 ×SO(3) such
that q(V) = V∗. In fact, the set of 4 configurations yielding this same flag
V∗ is {Tq | T ∈ HV∗}. This gives a four-fold covering morphism π : R3 ×
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PSfrag replacements B
(4,3,2,1)
+

B
(4,3,2,1)
−

(v − p∗)+ (l · l∗)+

(p − v∗)+ (p − v∗)−

(v − p∗)− (l · l∗)−

Figure 2: Adjacency between the higher dimensional strata of the set of affine
flags FA(P3): the rectangles represent the 6D strata, and the ellipses are the
5D strata.

SO(3) → FA(P3)1 sending q to q(V) [17]. Via this 4-fold covering morphism
π, the stratification of FA(P3) induces a stratification of R3 × SO(3). For
instance, via π, the two 6-dimensional disjoint strata of FA(P3) correspond
in R3 ×SO(3) to 8 6D strata, that is, 8 connected components. Analogously,
the 6 5D strata of FA(P3), correspond to 24 5D strata in R3 × SO(3). We
say that a 5D stratum of R3 × SO(3) is of type v∗ − p, v − p∗ or l · l∗ if it is
one of the connected components of the inverse image of a stratum (v∗− p)ε,
(v−p∗)ε or (l·l∗)ε, respectively, for some ε ∈ {+,−} (see notation of Example
2). We shall focus on these strata of dimensions 5 and 6 and in determining
their adjacency. To this aim we need to recall some concepts and results on
paths and path lifting.

Definition 2. A path in a manifold S is a continuous map γ from the unit
real interval [0, 1] to S; γ(0) and γ(1) are called the origin and end, respec-
tively, of γ; γ is also called transition between γ(0) and γ(1). The path is
closed if γ(0) = γ(1). The inverse path of γ is defined as γ−1(t) = γ(1 − t).

Given a covering morphism π : S̃ → S, a lift of the path γ : [0, 1] → S is

a path on S̃, γ̃ : [0, 1] → S̃, such that π ◦ γ̃ = γ.

Theorem 3 (Unicity of the lifting; see [13] 17.6). Let π : S̃ → S be a

covering morphism. Given a path γ : [0, 1] → S and a point x ∈ S̃ such that

1This morphism corresponds to the restriction of what is known as the four-fold covering
morphism between the partially oriented flag manifold G(1, 1 | 1, 1) in P3 and F lag(4) [17].
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π(x) = γ(0), there is a unique lift γ̃ of the path γ such that γ̃(0) = x.

To characterize each of the 8 6D strata of R3 × SO(3) we use the triple
of signs corresponding to the orientation of the three tetrahedra defined as
follows. Suppose that the flag features of the affine reference flag V are
spanned by three affine points a1, a2, a3, that is, V = (a1, a1 ∨ a2, a1 ∨ a2 ∨
a3, P3). Given q ∈ R3 × SO(3), consider the points bi = q(ai) for 1 ≤ i ≤ 3.
Observe that q lies on a 5D stratum if, and only if, b1 lies on the plane
a1 ∨ a2 ∨ a3, the lines a1 ∨ a2 and b1 ∨ b2 intersect, or a1 lies on the plane
b1 ∨ b2 ∨ b3. Equivalently, q lies on a 6D stratum if, and only if, the points
in the sets

{a1, a2, a3,b1}, {a2, a3,b1,b3}, {a3,b1,b2,b3} (7)

form three non-degenerate tetrahedra. The orientation of a non-degenerate
tetrahedron is given by the sign of the determinant of the matrix whose rows
are the coordinates of the vertices of the tetrahedron. Hence, by assigning
to any q ∈ R3 × SO(3) the triple of signs corresponding to the orientation of
its three associated tetrahedra, we obtain a partition of the 6D strata into 8
disjoint open sets which, by connectivity arguments, must correspond to the
8 6D strata. Notice that the four 6D strata (ε, +, +), (ε, +,−), (ε,−, +) and

(ε,−,−) map by the covering π to B
(4,3,2,1)
ε for ε ∈ {+,−}.

Theorem 4. Each pair of 6D strata of R3×SO(3) differing in only one sign
are separated by two different 5D strata which are both of type p − v∗, l · l∗

or v − p∗, if the differing sign occupies the first, second or third position,
respectively.

Proof. Directly due to the 4-fold covering π, there are two different 5D strata
of type p− v∗ separating each pair of 6D strata (+, ε1, ε2) and (−, ε1, ε2) for

any ε1, ε2 ∈ {+,−}. Fix a flag V∗ = q(V) ∈ B
(4,3,2,1)
ε , with ε ∈ {+,−}.

We will consider in FA(Pn) four different paths with origin V∗ that will lie

entirely in B
(4,3,2,1)
ε except at a point, at which a 5D stratum will be crossed.

Namely, ρx and ρz are the rotations from 0 to π radians about the x-axis
and z-axis, respectively, of an Euclidean reference frame attached to the flag
V∗; ρ−1

x and ρ−1
z are the respective inverse paths, i.e., rotations from 0 to −π

radians. Observe that the path ρx(t) = (v∗, l∗, p∗(t)) crosses the 5D stratum
(v − p∗)ε at the point ρx(t0) = (v∗, l∗, p∗(t0)) at which the platform plane
p∗(t0) touches the vertex v of the base plane, and that ρz(t) = (v∗, l∗(t), p∗)

13
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Figure 3: The graph shows the adjacency between the higher dimensional
strata of the stratification of the Euclidean motion group. The rectangles
represent the 6D strata, and the ellipses the 5D strata.

crosses the 5D stratum (l · l∗)ε at the point ρz(t1) = (v∗, l∗(t1), p
∗) at which

the platform line l(t1) goes through the point p∗ ∩ l.
Let {q,Rxq,Ryq,Rzq} be the 4 points in the fiber of V∗ = q(V). Con-

sider the lifts of the paths ρx, ρ−1
x , ρz and ρ−1

z with origin q (cf. Theorem

3): ρ̃x, ρ̃−1
x , ρ̃z and ρ̃−1

z . Notice that the transitions ρ̃x and ρ̃−1
x do not in-

tersect except at the ends; the different configurations qt0 and q′
t0

at which

ρ̃x and ρ̃−1
x , respectively, cross a 5D stratum share the same flag ρx(t0), that

is, π(qt0) = π(q′
t0
) = ρx(t0); at qt0 and q′

t0
the volume of the last tetrahedra

appearing in (7) becomes zero. Hence each transition crosses a different 5D
stratum in R3 ×SO(3) of type v− p∗ and both transitions join two 6D strata
whose differing sign occupies the third position. An analogous reasoning ap-

plies for transitions ρ̃z and ρ̃−1
z : each of them crosses a different 5D stratum

in R3 × SO(3) of type l · l∗ and both transitions join two 6D strata whose
differing sign occupies the second position. Finally a similar reasoning can be
carried out with the lifts of the paths ρx and ρ−1

x with origin Rzq, and with
the lifts of the paths ρz and ρ−1

z with origin Rxq proving, thus completely,
the statement of the Theorem and the adjacency displayed in Fig. 3.
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4 Applications to the kinematics of robots

Let us show that the stratification of the Euclidean motion group just inferred
characterizes the singular locus of a wide class of spatial parallel manipula-
tors, hence its significance for the design and control of parallel robots.

A parallel manipulator whose singularities can be described in terms of
incidences between two flags adequately placed on its platform and base,
respectively, is called a flagged manipulator. As an example, Figure 4 shows
a parallel manipulator, known as 3/2 Hunt-Primrose manipulator [11], in a
singular configuration characterized by the point v of the base flag lying on
the line l∗ of the platform flag.
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l
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Figure 4: A singular configuration of a 3/2 Hunt-Primrose manipulator, in
which two of the tetrahedra defining its forward kinematics are degenerate.

There are many different possible architectures for a spatial parallel ma-
nipulator, depending on the placement of the legs, from the most general
ones, in which every leg endpoint is different, to others more specialized that
have up to three legs sharing one endpoint. Clearly, the way the legs are
placed has decisive influence when computing the position of the platform
(with respect to the base) from the six lengths, and thus, when computing the
singular locus. In [2], manipulator transformations that leave singularities
invariant have been studied, which permit carrying out the singularity anal-
ysis on a single representative of each manipulator class and the obtained

15



PSfrag replacements

(a)

(b)

(c)

PSfrag replacements

(a)

(b)

(c)

PSfrag replacements

(a)

(b)

(c)
(a) (b) (c)

Figure 5: The three possible architectures for the 3-3 parallel manipulators:
(a) octahedral, (b) flagged and (c) partially-flagged.

result is guaranteed to be valid for all transformed manipulators. For the
sake of simplicity, the representative of the flagged parallel manipulators is
chosen to have a 3-3 architecture. A 3-3 manipulator is a 6-legged parallel
manipulator whose leg endpoints merge into three points (in practice, into
three multiple spherical joints).

There are only three possible architectures for this kind of manipula-
tors (refer to Fig. 5), namely the well-known octahedral manipulator, whose
forward kinematics is not solvable in closed-form [8], the basic flagged ma-
nipulator studied in this paper, and the so far barely known partially-flagged
manipulator, which will be the object of future work as mentioned in the
next section.

By applying the singularity-preserving transformations mentioned above
to the leg endpoint locations of the 3-3 flagged manipulator (Fig. 5(b)),
the large family of 6-legged flagged manipulators has been expanded [4].
It consists of 39 architectures ranging from the 3-3 basic one up to a 6-6
parallel manipulator having five points aligned in both the platform and the
base. In between, one finds some popular robot designs such as the 3/2
Hunt-Primrose manipulator [11], the (3-1-1-1)2 manipulator [5], and several
of the architectures studied by Zhang and Song [21]. All these designs had
separately attracted attention in practice because their forward kinematics
has a nice closed-form solution, which can now be interpreted in terms of
incidences between two flags (see below).

Moreover, by replacing 2-leg groups by kinematically equivalent serial
chains among the 144 identified by Ben-Horin and Shoham [3], the much
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larger family of 3-legged flagged manipulators has also been derived (see
details in [2]).
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Figure 6: The tetrahedra involved in the computation of the forward kine-
matics of the parallel manipulator in Fig. 5(b).

Now, let us concentrate our attention on the forward kinematics of the
basic flagged manipulator. Given the lengths of the legs a1b1, a2b1, and
a3b1, there are two possible mirror locations for b1 with respect to the plane
defined by a1, a2, and a3 [Fig. 6(a)]. Once one of these two solutions for
b1 is chosen, a2, a3, b1 and b3 define another tetrahedron with known edge
lengths [Fig. 6(b)]. Again, there are two possible mirror locations for b3,
in this case with respect to the plane defined by a2, a3, and b1. Finally,
after choosing one of the two solutions, a3, b1, b2, and b3 define another
tetrahedron with known edge lengths [Fig. 6(c)]. In this case there are also
two mirror locations for b2 with respect to the plane defined by b1, b3 and
a3. We conclude that if, and only if, the points in the sets {a1, a2, a3,b1},
{a2, a3,b1,b3}, and {a3,b1,b2,b3} form non-degenerate tetrahedra, there
are eight possible configurations for the moving platform compatible with a
given set of leg lengths. Otherwise, the 6-tuple of leg lengths constitutes a
bifurcation point of the map Φ (see Eq. (1)), that is, a value of leg lengths
for which the number of ways of assembling the platform to the base changes,
either increasing or decreasing.

By taking inverse images, the singularity locus of the manipulator is ob-
tained. It can also be derived by computing the zero locus of the determinant
of the analytic Jacobian of Φ [8], which is expressed as the product of the
three determinants:

det(a1, a2, a3,b1) · det(a2, a3,b1,b3) · det(a3,b1,b2,b3) = 0 .

Thus, the manipulator is at a singularity if, and only if, b1 is on the base
plane, the lines defined by a2a3 and b1b3 intersect, or a3 is on the platform
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Figure 7: The basic flagged manipulator and its attached flags.

plane. Therefore, if two flags are placed on the manipulator base and platform
as shown in Fig. 7, then the manipulator singularity locus coincide with flag
configurations in which either the vertex of one flag lies on the plane of the
other flag or the two flag lines intersect.

In sum, flagged parallel manipulators have singularity loci with a well-
structured topology that has been studied in this paper. Of special interest
in practice is the fact that each cell in the derived stratification can be char-
acterized using a single local chart whose coordinates directly correspond to
uncoupled translations and/or rotations in the workspace of the manipulator.

5 Future work and other applications

We are currently exploring the possibility of carrying out a similar analysis
for the families of manipulators derived from other 3-3 parallel architectures.

In particular, the study of the 3-3 parallel architecture named partially-
flagged manipulator (Fig. 5(c)) has led us to consider configurations of more
than two flags and to study their topology, falling in the same stream as the
recent works of [15] and [18]. Concretely, our work in progress uses the action
of the linear group on the triple product of two flags and a point studied by
Magyar in [15] and analyzes its restriction to a suitable submanifold, which
parameterizes the relative positions (under linear transformations) between
a flag (attached to the manipulator platform) and a pair (v, l), v a point
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and l a line such that v * l (attached to the manipulator base). The line
l together with the plane spanned by l and v is interpreted as a partial flag
(which is a sequence of subspaces, non necessarily of each dimension as is the
case for a flag) and hence the name of partially-flagged manipulator.

We are now trying to follow steps of reasoning analogous to these de-
veloped in this paper in order to obtain an alternative stratification of the
Euclidean motion group R3 × SO3(R) coherent with the singularity set of
the partially-flagged manipulator and its whole family derived from it. It is
worth noticing that this new stratification of R3 × SO3(R) is formed from
completely different regions (for instance, no zero dimensional stratum ap-
pears), which are not even cells at the level of the flag manifold. However, this
new stratification and the one obtained in the present paper have the same
adjacency diagram of the 5 and 6 dimensional strata (see our Fig. 3), and we
suspect that this higher dimensional adjacency diagram will be shared by the
wide class of all trilaterable manipulators (i.e., manipulators whose forward
kinematics can be solved by three consecutive trilateration operations).

Finally, let us mention that we envisage other applications of the devel-
oped stratifications outside of the robot kinematics field. They are related to
collision detection and proximity queries between polyhedra in the domain
of Computational Geometry [14, 12]. There are three types of basic contacts
between two polyhedra [19], namely face-vertex, edge-edge, and vertex-face
contacts. Now, by adequately attaching flags to the two polyhedra, each con-
tact type corresponds to the degeneration of one the three tetrahedra in (7).
Therefore, the three hypersurfaces in R3 × SO3(R) defining the singularity
loci for flagged manipulators are the same as those defining basic contacts
between polyhedra. Moreover, strata of lower dimensions in the stratifica-
tion correspond to multiple contacts. As an example, the flag configuration
depicted in Fig. 4 entails a double vertex-plane (v − p∗) and line-line (l− l∗)
contact, which boils down to a vertex v of one polyhedron impinging on an
edge l∗ of the other polyhedron.

Note, however, that this application is considerably more involved than
the robot kinematics one, where two flags sufficed. Here one would have
to consider flags for all vertices in the two polyhedra, and deal with the
intersection of the induced stratifications in order to obtain an operative
decomposition of the contact space between the polyhedra.
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