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ABSTRACT

Gabor schemes of multiscale image representation are useful in many computer
vision applications. However, the classic Gabor expansion is computationally
expensive due to the lack of orthogonality of Gabor functions. Some alternative
schemes, based on the application of a bank of Gabor filters, have important
advantages such as computational efficiency and robustness, at the cost of
redundancy and lack of completeness. In a previous work we proposed a
quasicomplete Gabor transform, suitable for fast implementations in either space or
frequency domains. Reconstruction was achieved by simply adding together the
even Gabor channels. In this work, we develop an optimized spatial-domain
implementation, using one-dimensional, 11-tap filter masks, that is faster and more
flexible than Fourier implementations. The reconstruction method is improved by
applying fixed and independent weights to the Gabor channels before adding them.
Finally, we analyze and implement, in the spatial domain, two ways to incorporate
a high-pass residual, which permits a visually complete representation of the image.
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1. INTRODUCTION

Image representations based on Gabor functions, or other similar wavelets, have
shown to be highly useful in many applications (for a review, see [1]) such as image
coding and compression [2], enhancement and restoration [3], or analysis (texture
analysis [4, 5] and synthesis [6], motion [7], etc.) Moreover, Gabor functions
(frequently in the frame of multiscale filtering schemes) are often used in current
models of image representation in the visual cortex [8-11] because they are a good
approximation to the receptive fields of simple cortical cells [12, 13]. However, Gabor
functions are not orthogonal and, as a consequence, the classic Gabor expansion is
computationally expensive, having unusual dual basis functions [14]. The
reconstruction requires the use, among others, of iterative algorithms [15], neural
networks [2], or the inversion of large matrices [16]. These problems can be partially
overcome by using a redundant, multiscale filtering implementation, as the one we
now propose.

Among the many wavelet, multiresolution pyramids and related schemes using
different basis functions (such as Gaussian derivatives [17], steerable filters  [18], etc.),
those based on Gabor functions (GF) have several advantages: (1) maximizing joint
localization in both spatial and frequency domains [13]; (2) flexibility; GF can be
freely tuned to a continuum of spatial positions, frequencies and orientations, using
arbitrary bandwidths; (3) GF are the only biologically plausible filters with
orientation selectivity that can be exactly expressed as a sum of only two separable
filters [7]. This unique property has made possible the efficient implementation
proposed in this paper; (4) GF perform well in a large variety of applications. For all
the above reasons, Gabor functions are especially suitable for performing early
processing tasks in multipurpose environments of image analysis and machine
vision.

In a previous work we proposed a vision-inspired scheme using Gabor functions [8].
This scheme was characterized by an overcomplete representation that permitted
fast direct and inverse transforms and by a log-polar sampling of the frequency
domain. This log-polar sampling provided both frequency and orientation
selectivity, but did not adequately cover the corners of the frequency domain, i.e.,
the very high frequencies along the diagonals. This area was disregarded due to
three reasons: first, the power spectra of natural images tend to show an exponential
decay with frequency [19], so that there is very little energy at these frequencies;
secondly, in most cases the image acquisition is made through a conventional
optical system, which filters out the very high frequencies. Finally, many image
analysis tasks do not require considering the high frequencies region (such as those
related with texture [4, 6], motion [7], etc.) We obtained a satisfactory reconstruction
(with small amplitude distortion) by simply adding all the even Gabor channels,
that provided a good coverage of the Fourier domain except for the very high
frequencies.

In this paper, we study different solutions to optimize the spatial implementation of
the Gabor scheme. We focus on the spatial domain implementation because it has
two important advantages with respect to the Fourier one: (1) it is more plausible
for modeling vision (the visual system does not seem to compute Fourier
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transforms); and (2) it permits local processing which is restricted to areas of interest
and non rectangular shapes. We propose a significantly improved spatial domain
implementation with respect to the original work [8], in which: (1) we incorporate a
High-Pass Residual (HPR) covering the high frequencies, in a way similar to that
proposed by Watson in his cortex transform [20]. We study different strategies for
implementing the HPR in the spatial-domain (contrarily to the Fourier
implementation of the cortex transform) that do not significantly increase the
computational cost; (2) the quality of the reconstruction is highly improved by
assigning different fixed gains to the Gabor channels before adding them together;
and (3) we use separable one-dimensional filter masks with small size (11-tap),
resulting in a spatial domain implementation faster than the one in the frequency
domain via FFT, while maintaining a high fidelity in the filter design. One of the
main consequences of these optimizations is the improvement in the objective
quality of the reconstructed images, that are visually indistinguishable from the
original ones.

This paper is organized as follows. In Section 2 we review the previously proposed
Gaussian wavelet transform, and introduce the theoretical formulation of an exact
HPR. Section 3 describes the implementation details, including the design of the
filters and the different formulations for the HPR. Section 4 deals with the image
reconstruction methods, evaluating the objective quality achieved by the different
options. In Section 5 we compare the computational efficiency of our spatial domain
implementation to the Fourier domain one. Finally, a summary is presented i n
Section 6.

 2.- GAUSSIAN WAVELET TRANSFORM

The Gaussian wavelets, or Gabor functions, are complex exponential functions
modulated by Gaussian functions. In the particular case of the Gaussian envelope
having circular symmetry, and assigning a zero phase to the complex exponential,
the expression for a Gabor function tuned to the frequency     f0  and orientation   θ0 ,
and centered at the origin (    x0 = 0, y0 = 0) is:

g x y a x y i f x y
f0 0

2 2 2
0 0 0

0 0

2
, , , ( , ) exp( ( )) exp( ( cos sin ))

θ
π π θ θ= − + ⋅ ⋅ + ⋅ , (1)

where   a determines the spatial frequency bandwidth. In our case, we have set

    
a = 3 ln 2 / π( )−1

f0 , which yields a constant (in a logarithmic scale) 1 octave

bandwidth in the frequency domain. The four subscripts account for localization i n
both the spatial and the frequency domains, (0, 0) and     ( f0 ,θ0 ), respectively. From the
basic Gabor function (Eq. 1) the complete set of functions used for sampling the joint
space-frequency domain is obtained by rotations, with a 450 step, to get four
orientation channels in the frequency domain; by stretching, by a factor of two, to
halve the frequency of the sinusoid (hence sampling the frequency domain i n
octaves); and by translations in x  and y  (with an interval     (1/ 4) f0 ) to sample the
spatial domain. We have limited the number of spatial frequencies to four, starting
with     f 4 = f N / 2 (  f N  being the Nyquist frequency), and following with     f 3 = f 4 / 2; and
so on. Although more channels could be easily included, we have found that 4x4
channels provide good results for most applications (moreover, there is
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psychophysical evidence that the visual system uses a similar number of channels
[11]).

The coefficients of the Gabor transform are simply obtained through convolution of
the image with each one of the filters. Figure 1a shows the even real part of the 4x4
Gabor filters of the scheme. Only the real part is necessary to represent and
reconstruct the image [8], although for many applications both real and imaginary
parts are useful.

############# Insert Figure 1 about here #############

Figure 1b represents the coverage of the Fourier domain obtained with our set of
Gabor functions. If this coverage were perfectly flat, the reconstruction would
consist of simply adding the channels. However, there are regions that do not have
a perfect flat response, as well as regions that are not covered at all (the very low
frequencies, and the very high frequencies). We have included both low-pass (LPR)
and high-pass (HPR) residual channels [20] to obtain a perfect covering of the
Fourier domain. For homogeneity, we have used a Gabor function for the LPR, with
frequency     f0 = 0:

g x y a x y0 0 0 0
2 2 2

, , , ( , ) exp( ( ))= − +π , (2)

where the parameter a has been set to provide a good covering of the low
frequencies region (equal to that of the Gabor channel with frequency     f 2). Finally,
we can obtain the expression of the HPR that makes the sum of itself with all the
Gabor channels (including the LPR) to give a flat response. Its impulse response i n
the spatial domain is:

h x y x y g x y g x yf
f

( , ) ( , ) ( , ) Re ( , ), , , , , ,
,

= − − [ ]∑δ θ
θ

0 0 0 0 0 0 . (3)

Figure 2 represents the impulse response of this HPR. This filter would permit an
exact reconstruction of the original image because, apart from containing the very
high frequencies not included in the Gabor channels, it also compensates for the
small amplitude distortions at lower frequencies. The main drawbacks of this filter
are that it does not belong to the family of filters of the scheme (Gabor functions i n
our case) and that its implementation in the spatial domain is computationally
expensive. In the next Section we propose and discuss different approaches to
overcome the last problem.

############# Insert Figure 2 about here #############

3.- EFFICIENT IMPLEMENTATION OF THE GWT IN THE SPATIAL DOMAIN

Multiresolution pyramidal implementation

The distribution by octaves of the filters' tuning frequencies allows one to use an
efficient multiresolution pyramidal [21] implementation of the Gabor wavelet
transform. The same set of filters is applied to reduced (through low-pass filtering
and down sampling in a factor of two) versions of the image. The computational
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advantages of the multiresolution implementation of multiscale schemes are well
known.

 We have applied to the images a separable cubic B-spline filter [22] before
subsampling to avoid aliasing. This filter has very good properties, while having
only five elements. The LPR is obtained by low-pass filtering again the 4th layer
low-pass version of the original image obtained in the multiresolution pyramid.
This LPR has a spectral response very similar (signal-to-noise ratio -SNR- of 25 dB)
to the desired Gaussian one (Eq. 2).

Design of Gabor Filters

In designing the filters we have considered two criteria to maximize: (1) fidelity of
the frequency response and (2) computational efficiency. The use of separable filter
masks is a very efficient strategy to reduce computational cost, still keeping high
fidelity. A Gabor function having its principal axes (in the frequency domain)
parallel to the frequency axes can be exactly expressed as the sum of two separable
Gabor functions [7]. The following equations show this property for both the real
and imaginary parts:

R x y g f x g f y

g f x g f y

R x y g f x

f p x y

x y

f p x

0 0 0 0 0 0 0

0 0 0 0

0 0 1 0 0

0 0

0 0

2 2

2 2

2

, , , ,

, , , ,

( , ) cos( cos ) cos( sin )

sin( cos ) sin( sin )

( , ) sin( cos )

θ

θ

π θ π θ

π θ π θ

π θ

=

=
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− ⋅[ ] ⋅ ⋅[ ]
= ⋅[[ ] ⋅ ⋅[ ]
+ ⋅[ ] ⋅ ⋅[ ]
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y
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cos( sin )
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2

2 2

0 0

0 0 0 0

π θ

π θ π θ

. (4)

Here   gx  and   gy  represent 1D Gaussians (    gx = exp(−πax2 )), and the fifth subscript p

stands for parity (0 for real part, and 1 for imaginary). Each bracketed term
corresponds to a 1D filter (acting either on the x or y directions). For the horizontal
and vertical orientations (  θ0  = 00 and 900) we need two 1D Gabor filters (for p = 0 and
p =1), tuned to the frequency     f0 = (1/ 2) f N , plus a 1-D Gaussian filter. For the two
main diagonals (  θ0  = 450 and 1350), we again need 2 filters for the two parities, but

now tuned to the frequency 2 / 2( ) f 0 .

The theoretical DC (zero frequency) response of the real part of our 2-D Gabor filters
is close to, but not exactly zero. Thus, we have imposed a zero DC response on them.
We have performed a constrained least squares minimization of the error of the
frequency response, using the Moore-Penrose generalized inverse [23] to design the
four one-dimensional Gabor masks. We have chosen a size of 11 elements for the
masks, that provides high fidelity approximating the original filters while
maintaining low computational cost. Table 1 contains the resulting values of the
integer arithmetic filters used, showing also their SNR. The errors are larger for the
even filters due to the additional zero DC constraint. The SNR of the equivalent 2-D
frequency responses respect to the original 2-D Gabor filters is 25.1 dB for the
diagonal filters, 27.3 dB for the even horizontal and vertical and 31.8 dB for the odd
horizontal and vertical

############# Insert Table 1 about here #############



6

High Pass Residual

As we said in the Introduction, there are many applications where the outputs of
the set of Gabor filters, plus the LPR, suffices to obtain a good representation of the
input image. However, if we want to achieve a complete representation of the
image, we need to include an HPR. The ideal residual filter, showed in Eq. 3,
compensates for both the loss of the very high frequency components and the
amplitude distortion. Strictly speaking, such a filter is a residual but it is not purely
high-pass. In this Section we analyze two possibilities for approximating the ideal
residual: 1) as a single filter in the spatial domain, using a reduced mask, and 2)
applying an approximated, highly efficient method, which provides a purely high-
pass HPR.     

Following the first approach, we have implemented the impulse response in Eq. 3
as a 11x11 convolution mask. We have used the same least-square error method for
the filter design, extended for two dimensions, and including the zero DC response
constraint. The resulting mask is shown in Table 2. Unfortunately, this filter is not
separable. Nevertheless, we can save much computing time if we take advantage of
its four-quadrant symmetry. In order to be more consistent with our 1D filtering
implementation, we have also approximated this filter as the sum of four separable
masks (see the Appendix). This can be useful when using special computer
architectures based on one-dimensional convolvers.

############# Insert Table 2 about here #############

There is an exact (and rather trivial) solution for the HPR design problem,
consisting of subtracting all the Gabor channels and the LPR, conveniently stretched
to the original size, from the original image. However, this procedure requires the
reconstruction of the input image from the channels and for this reason it has not
been considered here. A more practical approach has been followed in this work,
that consist of subtracting from the original only the highest frequency channels,
plus the low-pass filtered version of the image obtained in the second level of the
pyramidal implementation. This method is highly efficient, since it is only required
to make a subtraction and produces a pure HPR (in the sense that it just
compensates for the loss of the high frequencies). We have scaled the four first-level
Gabor channel responses before subtracting them to avoid the possibility of a phase
inversion in the resulting HPR (a scale factor of 0.75 is suitable for this purpose).

Figure 3 shows the Gabor decomposition of a 256x256 test image, including the HPR
(computed by the subtraction method), the LPR and the original image. The mid
gray level represents the zero response (except for the original image and the LPR,
which keep the original gray scale), lighter gray levels mean positive response and
darker ones negative. It is clear the different nature of the residuals (selective to
frequency but not to orientation) with respect to the Gabor channels (selective to
orientation and frequency).

############# Insert Figure 3 about here #############

4.- IMAGE RECONSTRUCTION
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One of the main features of this scheme (different from most approaches) is that the
reconstruction is very simple and direct. The pyramidal implementation produces a
redundant but robust representation. We obtain a good reconstruction by simply
adding together all the even Gabor channels (previously interpolated to their
original sizes, as explained in [8]) plus the residuals, in the same fashion as in other
similar multiresolution codes [20, 21].

Equalization

A fixed scale factor is independently applied to each Gabor channel before their
addition, trying to compensate both for the non flat response of the sum of the
Gabor filters and for the effect of the low pass filter used in the pyramidal
implementation.

We have again applied a constrained least squares optimization to obtain the
weights of each channel, including both LPR and HPR that have been forced to
maintain their theoretical gains of 1. Since we have argued that in many situations
the HPR will not be necessary [8], we have computed the set of equalization weights
for the cases of including or not the HPR. In the second case we have only
considered the region of the Fourier domain well covered by the 4x4 Gabor channels
and the LPR (a circle with a radius 0.656 f N , that corresponds to the 3 dB bandwidth
of the response of the whole system). In this way we avoid trying to compensate for
the loss of the very high frequencies, which are not properly covered by the set of
Gabor channels. Table 3 contains the resulting optimal weights.

############# Insert Table 3 about here #############

Objective and subjective quality of the reconstruction

Figure 4 shows the reconstruction results obtained with and without the HPR
(computed using the subtraction method), as well as the reconstruction errors. If we
do not include the HPR (panel a), the quality of the reconstruction is very good,
although there is a slight low-pass filtering effect. If we do include the HPR (panel
b), the reconstruction is visually indistinguishable from the original.

############# Insert Figure 4 about here #############

For an overall objective evaluation of the fidelity of the reconstruction, we have
used a set of seven test images (namely, Einstein and Lena portraits, a moon picture,
an x-ray view of human bones, a straw texture sample, a spatially variant sinusoid
and a white noise sample). Table 4 summarizes the signal-to-noise ratios (in dB) of
the reconstruction. The three rows correspond, respectively, to a natural test image
(Einstein), white noise, and the average result for the seven test images. The three
columns correspond to the three considered options (without HPR, with HPR
computed using the subtraction method and with HPR computed using the 11x11
mask).

############# Insert Table 4 about here #############

A remarkable fact is the large improvement in the SNR for the white noise (from
2.3 dB to 24 or 29 dB, depending on the HPR implementation). The low SNR
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obtained in the case when we do not consider the HPR can be expected because we
are discarding a relevant portion of the spectrum. However, the improvement is
more modest (4 dB) for the Einstein portrait. The reason is that white noise is not a
typical example of a natural image, since natural scenes tend to show an exponential
decay in their power spectrum [19]. The Einstein portrait is a much more
representative sample of natural images. The reconstruction improves about 6 dB
in average when the HPR channel is included.

If we compare the results obtained with the two implementations of the HPR, it
turns out that they are completely equivalent when applied to natural images,
whereas the 11x11 filter mask performs better (by 5 dB) when applied to white noise.
However, this solution represents a minor improvement, having a very high
relative cost (almost doubling the original cost).

5.- COMPUTATIONAL ADVANTAGES OF THE SPATIAL DOMAIN
IMPLEMENTATION

For the spatial domain implementation, we must know the number of filtering
operations needed to obtain the 4 orientations and 2 parities of a level. Figure 5
shows a block diagram (derived from Eq. 4) of these filtering operations. We need to
perform twelve 1D convolutions to obtain a complete level, whereas we only need
eight to obtain one parity (because some convolutions are common to both parities).
Therefore, the total number of real operations (additions and multiplications)
required to obtain the 4x4 even channels is:

4 3 1 3 1 6
4

3
4 3 1 3 1 6

2

0

3
2 2 2( ) ( ) ( ) ( )n n

N

k
N n n N N

k

− + ′ −[ ] 



 + ≅ − + ′ −[ ] +

=
∑ , (5)

where NxN  are the image dimensions, n is the dimension of the Gabor filter masks
and n' is the dimension of the low-pass filter mask. The last term accounts for the
HPR computation (using the subtraction method).

############# Insert Figure 5 about here #############

For the Fourier domain implementation, and following the complexity analysis
made by Watson [20], the total number of real operations required to obtain the 4x4
even channels is:  

5 4 1 5 52
2

2

2
0

3
2

2
2N N

N

k
N k N N N

k

log (log ) log+ 



 + −[ ] + +

=
∑ , (6)

where the two last terms account for the HPR computation.

The plot in Figure 6 shows a comparison between the number of operations per
pixel required for the frequency and space domain implementations (taking n=11
and n’=5), and for several image sizes. The number of operations grows
logarithmically with the image size for the Fourier implementation, and it is always
higher than the number of operations for the spatial implementation (which
remains constant).
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############# Insert Figure 6 about here #############

Another important issue is the amount of memory needed to  store the filter
responses. The FFT implementation needs to keep in memory the frequency
responses of the highest frequency filters and the HPR, for the largest image size
required. This imposes a serious limitation on this option. On the other hand, our
implementation only has to keep in memory a few coefficients corresponding to the
1D convolution masks, without limiting the size or shape of the input image.

6.- SUMMARY

We have proposed a pyramidal multiscale Gabor wavelet transform that permits a
very efficient implementation in the spatial domain, which is faster than
conventional FFT implementations. Contrary to most wavelet schemes, our
moderately redundant approach permits a very fast reconstruction of the image, by
simply adding the set of weighted channels. The weights are fixed and have been
designed to minimize the reconstruction error.

In the original scheme [8] there was a low-pass filtering effect in the reconstruction,
due to the problem of the loss of information produced when sampling a squared
domain using a log-polar grid. This has been solved by incorporating a high-pass
residual. We have implemented and analyzed two possible solutions in the spatial
domain. The fastest one consists of subtracting from the original image its low-pass
filtered version (obtained in the first level of the pyramid, before down sampling),
together with the highest frequency Gabor channels. The other option (much more
computationally expensive) consists of applying a 11x11 filter mask. Although this
second option is more consistent with our spatial domain scheme, the small
improvement in fidelity with respect to the former one hardly justifies the large
increment in computational cost, at least when dealing with natural images.
However, this option could be interesting when working with special architectures
that perform high speed 1D convolutions (see Appendix).

In conclusion,  we have developed an optimized spatial domain implementation of
a multipurpose, multiscale Gabor scheme, taking advantage of the special properties
(some of them unique) of the Gabor functions. We have achieved a very low
computational cost and a high fidelity both in the filter design and in the
reconstruction.

APPENDIX

One of the proposed options for implementing the HPR is as a non separable 11x11
convolution mask. We have decomposed this mask as the sum of separable ones, to
be consistent with our implementation based on 1D filters. We have applied the
Singular Value Decomposition (SVD) [24] to the two dimensional mask in Table 2,
obtaining the following six non-zero singular values: 182.3, 69.4, 22.7, 15.3, 2.5 and
0.8. The two last SV are negligible compared to the others. Therefore, we can
accurately approximate the original 11x11 mask as the following sum of only 4
separable products,

hpr T T T T≈ − + −1

2562
( )AA BB CC DD ,   (7)
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where the resulting 1D filters, A, B, C and D include the scaling factor of their
corresponding singular value, and are showed in Table 5. We have verified, using
the white noise image, that there is no noticeable difference between using the 11x11
mask vs. this sum of 4 separable filters.

############# Insert Table 5 about here #############
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TABLES

Table 1. Filter masks used in the implementation of the Gabor wavelet transform.
Values are given for integer arithmetic; the filter responses must be normalized by
256 (except for the last mask, for which the normalization factor is 16). Fidelity of the
design is given as signal-to-noise ratio in the last column.

Filter Mask SNR

H-V (main directions) Even    0   17   0  -62    0   90   0  -62   0   17   0 28.9 dB
H-V (main directions) Odd   -8   0   37   0   -82    0   82   0  -37   0   8 40.2 dB
Diagonal Even    3  -5 -27  -27   25   62  25 -27 -27  -5   3 25.7 dB
Diagonal Odd    4  13   5  -34  -52    0   52  34  -5 -13  -4 35.6 dB
Pure Gaussian    4   9   19   31   41   45  41  31  19   9   4   32.4 dB
Low-Pass (cubic B-spline)    1   4     6     4     1
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Table 2.- Coefficients for the 11x11 HPR mask (for integer arithmetic and scaled by
256).

0 1 2 3 0 -3 0 3 2 1 0
1 0 -1 0 -3 -6 -3 0 -1 0 1
2 -1 -7 -3 3 4 3 -3 -7 -1 2
3 0 -3 7 11 7 11 7 -3 0 3
0 -3 3 11 -19 -49 -19 11 3 -3 0
-3 -6 4 7 -49 160 -49 7 4 -6 -3
0 -3 3 11 -19 -49 -19 11 3 -3 0
3 0 -3 7 11 7 11 7 -3 0 3
2 -1 -7 -3 3 4 3 -3 -7 -1 2
1 0 -1 0 -3 -6 -3 0 -1 0 1
0 1 2 3 0 -3 0 3 2 1 0



14

Table 3.- Optimal gains of the Gabor channels for equalization of the frequency
response, including/not including the HPR.

00 450 900 1350

f1 1.52 / 1.53 1.27 / 1.24 1.52 / 1.53 1.27 / 1.24

f2 1.77 / 1.88 1.48 / 1.64 1.77 / 1.88 1.48 / 1.64

f3 1.56 / 1.68 1.45 / 1.43 1.56 / 1.68 1.45 / 1.43

f4 1.06 / 1.30 1.10 / 1.25 1.06 / 1.30 1.10 / 1.25

Table 4.- Signal-to-noise ratios obtained in the reconstruction of 7 test images,
including Einstein's portrait and white noise. We compare the reconstruction
results without considering the HPR (first column) with the two alternative
implementations of the HPR.

NO
HPR

HPR
(subtraction)

HPR
(11x11 filter)

Einstein 24.7 dB 28.4 dB 27.4 dB
White Noise 2.3 dB 24.0 dB 29.2 dB

Mean (7 images) 21.0 dB 26.7 dB 26.8 dB
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Table 5.- Resulting masks for the separable implementation of the HPR (for integer
arithmetic and scaled by 256).

A 3 5 -3 -2 45 -206 45 -2 -3 5 3
B -5 -10 15 27 -84 -39 -84 27 15 -10 -5
C 12 -4 -4 50 14 5 14 50 -4 -4 12
D -13 11 40 5 7 2 7 5 40 11 -13
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FIGURE CAPTIONS

Fig. 1.- Real part of the 4x4 Gabor functions: (a) Functions in the spatial domain; (b)
Coverage of the Fourier domain by their corresponding frequency channels.

Fig. 2.- Spatial impulse response of the ideal HPR, after Eq. 3.

Fig. 3.- Gabor decomposition of a test image. The upper pyramid represents the even
(real) channels, including both the HPR (upper left), and the LPR (small square i n
the center left). The lower pyramid displays the odd (imaginary) part.

Fig. 4.- Image reconstruction results (upper) and their corresponding absolute errors
(lower). The errors have been scaled (by a factor of 3) to facilitate visualization:  (a)
Reconstruction without including HPR; (b) Reconstruction with HPR.

Fig. 5.- Block diagram for the filtering operations used to obtain the 4 orientations
and the 2 parities of a level. Each block represents a 1-D filtering operation in the
direction specified (X or Y):  (a) Vertical and horizontal directions; (b) Diagonal
directions

Fig. 6.- Number of real operations per pixel required for frequency (via FFT) and

spatial domain (taking n=11 and n’=5) implementations, for an image size of
NxN .


