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Abstract—Many different robotic in-parallel structures have
been conceived as six-component force sensors. In general, they
perform well for most applications but, when accuracy is a
must, two main limitations arise. First, in most designs, the
legs are connected to the base and the platform through ball-
and-socket joints. Although the dry friction in each of these
joints can be individually neglected, the integrated effect of
twelve such elements becomes noticeable. Second, dynamical
measurements might not be very accurate because the natural
resonance frequency of the used structures is quite low even
for relatively small dimensions. This dynamical response can be
obviously modified with a proper mechanical design, but this
increases the complexity of the sensor. This paper discusses
the design and implementation of a touch pad based on a
6-axis force sensor and shows how the above limitations degrade
its behavior. Moreover, it is shown how using a tensegrity
structure both problems could be alleviated because ball-and-
socket joints can be substituted by point contacts and the
resonance frequency of the structure can be controlled by
adjusting the static tensions of the tendons.
Index Terms—touch pad, force sensor, wrench sensor.

I. INTRODUCTION

THe Stewart platform is a six degree-of-freedom parallel

mechanism proposed by D. Stewart in 1965. Since

it is an in-parallel linkage that sustains the payload in a

distributive manner, it has high load capacity, and joint errors

are not cumulative, as in serial manipulators. Its compact

design and interesting properties have prompted different

authors to consider it when designing force-torque sensors.

When using a Stewart platform as a force sensor, the

platform plays the role of the proof element and the sensing

task consists in estimating the forces and torques acting

on the platform from those measured at its legs. Legs are

attached through ball-and-socket joints to guarantee that

forces are only transmitted from the platform to the base

along the leg lines.

The development of the first sensor of Stewart platform

type based on the octahedral configuration is due to Gaillet

and Reboulet [1]. Kerr [2] analyzed a similar structure and

enumerated some design criteria for the sensor structure.

Other theoretical and experimental investigations were car-

ried out by Romini and Sorli [3], and Sorli and Zhmud

[4]. Dasgupta et al. [5] present a design methodology for
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the optimal conditioning of the force transformation matrix.

Svinin and Uchiyama [6] have considered the optimality of

the condition number of the force transformation matrix.

Dwarakanath et al. [7], [8] report an implementation and

some experimental results.

This paper presents the design, implementation and per-

formance analysis of a touch pad using a Stewart platform-

based force sensor. The paper is organized as follows.

Section II introduces the notation and the basic mathematical

background. Section III describes the design criteria and

the implemented prototype. The experimental results, with

particular emphasis on the effects of the different sources of

error, are described in Section IV. Section V explains how

the obtained accuracy could be improved by transforming

the structure into a tensegrity one. The paper is concluded

in Section VI summarizing the work.

II. MATHEMATICAL BACKGROUND

Assume we have a platform in static equilibrium, con-

nected to its environment through n legs, articulated with

ball-and-socket joints (Fig. 1). Then, every leg applies a force

fi on the platform, which must be aligned with the leg and,

by Poinsot’s Central Axis Theorem, any other forces applied

on the platform can be reduced to a single force F and torque

Γ acting along the same line l. We will next see how, having

sensor readings of the leg forces, we can fully recover F, Γ

and the point P where l intersects the platform. In other

words, this device can be used as a touch pad with force

and torque feedback.

Let fi and ei be the force and the unit vector along leg

i, respectively. The resulting wrench of leg forces, wl ∈ R
6,

computed with respect to a reference point O on the platform,
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Fig. 1. A platform connected to its environment through n legs.
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can be expressed as

wl =









n
∑

i=1

fiei

n
∑

i=1

fiei × ri









,

where ri is the vector going from O to the ith leg attachment

point. We can write this in matrix form as wl = J · f , where

J =





e1 . . . en

e1 × r1 . . . en × rn



 , f =







f1

...

fn






.

Thus, if we install load cells on the legs to measure the fi’s,

wl can be easily determined.

Moreover, if we denote by wp = (F,M)⊤ the resulting

wrench produced by F and Γ with respect to O, it must be

wp =

(

F

F × (P − O) + Γ

)

.

Since the body is in equilibrium, wp = −wl, and, hence, F

and M are given by the first and last three components of

−wl, respectively. To isolate Γ from M = F×(O−P )+Γ,

we use the fact that F and Γ are aligned, i.e., Γ = kF,

for some k ∈ R. If we choose O in the origin, and let

P = (x, y, z), M becomes:

M = F × (x, y, z)⊤ + kF. (1)

But if the platform (and hence P ) lies on the xy plane, it is

z = 0, and Eq. (1) together with z = 0 define the following

system of linear equations
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where the Fi and Mi are the components of F and M,

respectively. If l and z = 0 intersect, the system has the

unique solution

x =
F1F2M1 − F 2

1
M2 − F 2

3
M2 + F2F3M3

F3(F 2

1
+ F 2

2
+ F 2

3
)

(2)

y =
F 2

2
M1 + F 2

3
M1 − F1F2M2 − F1F3M3

F3(F 2

1
+ F 2

2
+ F 2

3
)

(3)

k =
F1M1 + F2M2 + F3M3

F 2

1
+ F 2

2
+ F 2

3

(4)

which finally gives the coordinates of P explicitly, and allows

recovering Γ as kF.

III. THE IMPLEMENTED PROTOTYPE

If F and Γ can be arbitrarily oriented, then the minimum

number of legs needed to compensate them is six. We could

use more legs but, to get the simplest possible sensor, we

adopted this number in our case. The resulting structure is

thus equivalent to a Stewart platform.

Operation constraints required the platform to be circular,

with a radius of 0.2 m, and able to support a maximum force

of 10 N in any direction. Under these assumptions, the basic

problem is how to arrange the legs so that the load they

support is well-distributed among all of them.

To come up with a proper design, we next see how the

leg forces vary, as the external wrench wp varies within a

given ellipsoid of R
6, defined by

(wp − w0)
⊤
Ep(wp − w0) ≤ 1. (5)

where w0 is the ellipsoid’s center and Ep is its defining

matrix. Assuming the platform’s weight is negligible, the

ellipsoid will be centered in the origin, and Ep may easily

be derived from the operation constraints above. Substituting

w0 = 0, and wp = −Jf in (5), yields

f
⊤ · J⊤

EpJ · f ≤ 1, (6)

and, since El = J
⊤
EpJ is positive semidefinite, this means

the leg forces also take values inside an ellipsoid embedded

in R
6. This ellipsoid is centered in the origin, and its

semiaxes are defined by the eigenvectors of El. Note that,

for all leg forces to lie on a same range, it should be

J
⊤
EpJ = I. (7)

In other words, the ellipsoid should ideally be a hypersphere,

and the design problem reduces to finding proper vectors ei

and ri satisfying the previous equation.

If, as required, the platform has to support 10 N in

any direction, choosing O in its center yields a maximum

moment of 2 Nm, meaning that Ep = diag(a, a, a, b, b, b),
with a = 1/

√
10 and b = 1/

√
2. One can see that, with

this Ep, and arranging the legs as depicted in Fig. 2, we

obtain a sensor where El nearly defines a hypersphere and

is hence close to optimal. Actually, this makes all leg forces

lie in the interval ±7.5 N and, thus, the installed load cells

must be able to work within this range. A non-negligible

platform weight just changes this interval slightly. It only

shifts the ellipsoids for wp and f away from the origin,

Fig. 2. Conceptual design of the sensor. Legs of length 0.1 m are aligned
with the edges of a cube of side 0.3 m.
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Fig. 3. Top row: Prototype of the sensor (center), details of the used load cells (right), and the ball-and-socket joints (left). Bottom row: a snapshot of
the implemented interface (left) when tracking the user’s writing during a “hello world” demonstration (right).

keeping their axes’ lengths. In our case, the platform has

a mass of 2 Kg, which yields an actual interval of leg forces

of [−2.4, 13.6] N. A low-cost load cell compatible with this

range is Utilcell’s 105 model, whose maximum supported

force and measurement error are ±20 N and ±0.0039 N,

respectively.

Fig. 3, top row, shows the constructed prototype, the

mounted load cells, and ball-and-socket joints. Bottom row

shows a snapshot of the implemented interface (left) when

tracking the user’s writing during a “hello world” demon-

stration (right).

IV. PERFORMANCE ANALYSIS

The main problem in the error analysis of the implemented

sensor is the study of the sensitivity of P ’s location to

errors in the leg force measurements. This analysis has

been carried out using ellipsoidal uncertainty sets [9]. The

leg measurement error can be modelled as an ellipsoidal

uncertainty set in R
6. That is,

(f − f0)
⊤
E(f − f0) ≤ 1, (8)

where the center of the ellipsoid, f0, is the actual measure-

ment. Assuming that the error bounds for the six legs are

the same, and equal to ±λ, the above ellipsoid becomes a

sphere of radius λ, with E = 1/
√

λI.
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Fig. 4. Semiaxes of the uncertainty ellipsoids in the location of the point
contact applying a vertical force of 0.5 N.
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Fig. 5. Contact points obtained assuming that the measurement vector
is f0 = (0.03,−0.3, 0.03, 0.03, 0.03, 0.3)⊤ N with an uncertainty of
±0.0039 N

Once we have the uncertainty ellipsoid for the measured

forces, we have to propagate it to obtain the uncertainty in

the location of the contact point using Eqs. (2) and (3). Since

these two equations cannot be expressed in the standard form

A(x, y)⊤+C(F1, F2, F3,M1,M2,M3)
⊤+d = 0, the prop-

agation theorem presented in [9] cannot be applied directly.

We have to linearize the relationship between the leg forces

and the contact point. After computing the corresponding

partial derivatives, we conclude that

A =

(

−F3(F
2

1
+ F 2

2
+ F 2

3
) 0

0 −F3(F
2

1
+ F 2

2
+ F 2

3
)

)

C
⊤ =

















F2M1 − 2F1(M2 + F3x)
F1M1 + F3(M3 − 2F2x)

−2F3M2 + F2M3 − (F 2

1
+ F 2

2
+ 3F 2

3
)x

F1F2

−F 2

1
− F 2

3

F2F3

−F2M2 − F3M3 − 2F1F3y
−F1M2 + 2F2(M1 − F3y)

2F3M1 − F1M3 − (F 2

1
+ F 2

2
+ 3F 2

3
)y

F 2

2
+ F 2

3

−F1F2

−F1F3

















.

Fig. 4 shows the semiaxes of the resulting uncertainty

ellipsoids in the location of P , when applying a vertical force

of 0.5 N with bound errors in the measured leg forces of

0.0039 N. Notice how the semiaxes radially oriented increase

as the contact point departs from the center of the platform,

while the other semiaxes remain constant.

To evaluate how accurate these results are under the

above linearization, we have generated random measure-

ments inside the uncertainty ellipsoid for f and computed

the resulting point on the platform. We have observed that

the result is a set of points that can always be perfectly

Fig. 6. A drawing generated using the presented prototype as a touch pad.
Dry friction in the ball-and-socket joints induce some artifacts at the end
of the strokes (indicated with shadowed circles).

fitted by the ellipsoid obtained using linearization. Actu-

ally the linearization errors are small because the errors

themselves are small. Fig. 5 shows the set of points re-

sulting from assuming that the measurement vector is f0 =
(0.03,−0.3, 0.03, 0.03, 0.03, 0.3)⊤ N with an uncertainty of

±0.0039 N. Using ellipsoidal propagation and the above

linearization, the resulting ellipsoid has semiaxes lengths

of 0.0337 m and 0.0062 m, with associated eigenvectors

(−0.836, 0.549)⊤ and (−0.549,−0.836)⊤, respectively.

Measurement errors are not the only source of static errors.

When we apply a force on the platform and we release it, we

observe that the measurements do not return to their original

values. The measurements in the legs are shifted up to 0.25
N in the sense induced by the applied force (see Fig. 6).

Applying a short vibration to the platform, the measurements

return to their original value. This phenomenon is due to dry

friction in the ball-and-socket joints, despite the high quality

of the joints employed (INA model GAR 6 UK).

Concerning dynamic errors, Fig. 7-top shows the result

of measuring the forces on the six legs during a period

of 300 ms, without applying any force on the platform.

The platform exhibits a mechanical resonance at about 25

Hz with an amplitude of about 0.05 N. Note how sensors

1, 2, and 4 have opposite phase to that of sensors 3, 5,

and 6. Besides this periodic interference, there is background

noise with a variance of about 0.006 N. These observations

have been confirmed by performing a modal analysis on a

finite element model of the sensor. The first four natural

frequencies computed on such model are 9.97, 23.57, 27.01,

and 32.85 Hz. From a spectral analysis of the signals (see

Fig. 7-bottom), it can be seen that only the 23.57 Hz
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Fig. 7. Top: Signals from the six load-cells with unloaded platform.
Bottom: Spectrum of the signals, showing a natural frequency resonance.

frequency is relevant in practice. Using the model, one sees

it corresponds to two identical mode shapes in the X and Y

directions of the platform.

V. ELIMINATING THE BALL-AND-SOCKET JOINTS

In our prototype, legs are connected to the platform

and the base through ball-and-socket joints because they

can undergo both tensions and compressions during normal

operation (Fig. 9a). If a leg is always in compression, its

connections to the rest of the structure can be substituted

by point contacts (Fig. 9b). On the contrary, if the leg is

always in tension, it can be simply substituted by a tendon

(Fig. 9c). So, the problem of eliminating the ball-and-socket

joints entails finding alternative structures where all elements

during normal operation are always either in tension or

compression.

At this point, the architectures proposed in the context of

tendon-driven robots are an important source of inspiration.

A parallel structure actuated by tendons requires at least

seven wires to allow six degrees of freedom without involv-

ing gravity because tendons can only exert traction forces.

Then, a clear evolution of our structure in which all legs are

substituted by tendons in tension requires an extra tendon

pulling the table upwards, as shown in Fig. 8b. Unfortunately,

this structure is noticeably unbalanced (six tendons pulling

on one side contrasted by only one in the other). In the

structure in Fig. 8c, the tendon arrangement guarantees a

better distribution of the tensions when an external wrench is

applied to the structure. Now, the problem is that the access

to the platform is cluttered by tendons. The solution is to

substitute the tendons in tension on one side of the table by

aligned bars in compression on the other, as shown in Fig.

8d so that the force equilibrium is unaltered. The resulting

structure is technically known as a tensegrity structure.

A structure composed of bars and tendons is a tensegrity

structure if it has the ability of maintaining an equilibrium

shape with all tendons in tension in the absence of external

forces. In other words, the integrity of a tensegrity structure is

guaranteed by its tendons in tension, hence the denomination,

tensegrity, an acronym of tension-integrity coined by R.B.

Fuller. The applications of tensegrity structures range from

antennas, space telescopes, flight simulators, and deployable

structures [10].

Using a tensegrity structure, all ball-and-socket joints can

be substituted by point contacts and, as a consequence,

dry frictions can be eliminated. Another advantage of this

substitution is that dynamic characteristics can be tuned by

adjusting the pretension of the structure. The higher the

pretension, the higher the natural frequencies. This permits

adjusting the fundamental resonance frequency at will.

VI. CONCLUSIONS

We have presented the design and implementation of a

force and torque sensor based on a Stewart platform. We have

shown how two main sources of error degrade its behavior:

the integrated effect of the dry friction in the twelve ball-

and-socket joints (which degrade the static measurements),

and the mechanical resonance (which degrades the dynamic

ones). We have concluded that a structure with a self-stress

could provide a good solution to alleviate both problems.

The idea of adopting a self-stressed structure for a force

and torque sensor is not new [11]. Nevertheless, the motiva-

tion in [11] was not linked to the need of either reducing the

dry friction or tuning the structure’s natural frequency. The

aim was simply to show that structures such as the one in

Fig. 8e can effectively be used for force and torque sensing.

Our current work includes implementing a new touch

pad based on the above-mentioned tensegrity structures, and

extending the finite element model herein developed to tune

the tendons’ pretensions of the new design.
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Fig. 8. Legs in thick lines correspond to rigid bars, while those in thin lines correspond to elastic tendons.

(a) (b) (c)

Fig. 9. A ball-and-socket joint (a) can be substituted by a point contact if
it always undergoes either compression forces (b), or expansion forces (c).
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