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Abstract. In this paper we present a summary of some of the research that we
are developing in the Institute of Robotics of the CSIC-UPC, in the field of
Learning and Robot Vision for autonomous mobile robots. We describe the
problems that we have found and some solutions that have been applied in two
issues: tracking objects and learning and recognition of 3D objects in robotic
environments. We will explain some of the results accomplished.

1   Introduction

Computer vision in autonomous mobile robotics is a very well known topic that is
being treated by many research groups [1]. However, the use of perception techniques
to automatically learn and recognize the environment and the objects located on it is
probably not so well known. One part of our research has concentrated in the
development of techniques to capture and process the information that surrounds a
robot, taking into account that this information can be captured by diverse perception
sensors (colour video cameras, stereo vision, laser telemeter, ultrasonic sensors, etc.)
and the sensors related to robot movement (odometers).

We have focused our research in the development of “robust” techniques that must be
as much as possible, “invariant” to illumination, colour, surface reflectance, sensor
uncertainty, dead reckoning and dynamic environments. However, this wish is not
always possible. We also orient our research to develop techniques to learn the
perceptive world, in order to create a data base that can be used later on, by robots.

In this paper we describe our research in two topics in the field: adaptive learning and
tracking of moving objects; and learning and recognition of 3D objects of the
environment. Although these topics lead to different techniques and methodologies,
they share the same perception information formats, colour images and depth maps.

However, we also use other kind of perception information formats which are
captured by means of stereo vision, laser telemeter, ultrasonic and odometer sensors.
The diverse information captured by these sensors is combined to obtain redundancy
in order to improve the robustness of the techniques.
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Before explaining the methods, we will start describing the typical “problems” that
we find in the perception of a dynamic environment where the robot or the objects are
moving.

2   Common Problems on the Acquisition of Perception
Information Based on Colour Images and Depth Maps

Colour represents a visual feature commonly used for object detection and tracking
systems, especially in the field of human-computer interaction. When the
environment is relatively simple, with controlled lighting conditions and an
uncluttered background, colour can be considered a robust cue. The problem appears
when we are dealing with scenes with varying illumination conditions and varying
camera position and confusing background.

The colour of an object surface can be modified by several circumstances, which
limits the applicability of the use of colour images in robot vision. The following
issues modify the colour perception of an object surface:

- the type of the illumination source, the illumination orientation, the number
and distribution of the sources of illumination,

- the surface reflectance and the surface orientation,
- the texture of the surface,
- and the shadows produced by other objects or by the own concavities of the

object.

Some of these problems can be diminished in static scenes, by controlling the
illumination (for example, for indoor robot environments, the type and position of the
illumination), the object surfaces (for example, by choosing objects with Labertian
surfaces) or the type of objects (for example, by using convex objects).

Fig. 1. Typical reflectance problems of a colour (red) planar surface: (a) a sequence of a red
planar surface; (b) RGB map of the colour distribution of the sequence of the planar surface.



However, although we can impose some of these constraints in indoor environments,
still many of the aforementioned drawbacks persist, due to the relative position and
orientation of the robot sensors, the illumination devices and the scene objects. This
relative position not only involves the passive sensor (colour camera), but also the
illumination sources, for example, the robot can interfere with the illumination of an
object surface by means of its shadow cast or a new “virtual” illumination source
appears due to the reflection of another surface. A typical example of the last case is
the reflectance of the “ground”.

Other typical problems are due to the camera sensor, for example, the optical
aberration and geometrical deformation, the separation of the channel colour bands,
the colour sensibility, the sensor sensibility to the illumination, the problems
associated with the shutter speed or the resolution of the camera.

Fig. 2. Some problems with the reflectance of the ground

With respect to the capture of depth information, we have also other drawbacks. In
the case of a laser telemeter, the sensor drawbacks are due to the features of laser
source, the resolution or the speed of depth acquisition and processing, or the
problems related to partial surface occlusion. If the depth sensors (for example, stereo
vision or laser telemeter) are in the mobile robot, then other problems come around.
For example, the relative position and orientation of the sensors with respect to the
scene, because of the “skew” of the elevation, pitch or roll of cameras and laser
telemeter with respect to ground.

Additionally to the abovementioned problems, we always find that in robot
perception, the uncertainty is an important issue that must be taken into account when
discerning from sensory data the objects and the limits of the robot environment. This
perception uncertainty must be incorporated in the models for robot navigation, object
tracking, object recognition and landmark identification.



3   Developing “Robust Techniques” for Object and Face Tracking

Object and face tracking are two typical problems in robot vision which have been
studied using different types of sensors and techniques [2, 3]. One of the most used
sensors is the colour video camera, since it provides enough information to follow an
object and avoid uncertainties. However, in a real unconstrained environment, the
varying illumination conditions, camera position and background create important
problems to the robot tracker. Different approaches have been presented to solve these
problems in robot tracking, but still this is an open problem from the point of view of
robustness.

The important challenge in colour tracking is the ability to accommodate to the
variations of the illumination and the environment, that is, the tracker must modify its
parameters depending on the circumstances. However, the use of independent
adaptive techniques, many times, is not enough to cope with the problem, since the
adaptation only takes into account one of the potential variations, for example the
colour reflectance, however the variations are usually multivariate. For this reason,
we have studied solutions that combine different techniques to take into account the
multivariable effect.

One of our first approaches combines information of colour changes and depth for
face tracking in real time [4]. The purpose is to follow a face or an object that has
colour and depth continuity avoiding the loss of them due to the presence of similar
colour in the background. The technique fuses colour adaptation and stereo vision, in
such a way, that the tracked objects only is analysed in a surface with similar depth
information. The technique uses an ellipse to model the face of a person similar to the
work of Birchfield [5] and adaptive colour models, for example [21]. The face is
adapted by means of intensity gradients and colour histograms, and the stereo vision
information dynamically adapts the size of the tracked elliptical face. The system uses
the Kalman filter to predict the new position of the cameras and robot, and it runs at
30 Hz, that is, in real time.

A second approach, [6] tries to solve two important problems in object tracking: the
change of the colour and the confusing background. As it was mentioned before, the
colour of an object surface changes with the orientation of the surface (in principle
only the intensity, but due to the illumination conditions and surface reflectance, the
colour can also change). Moreover, if the background is confusing, then the tracking
of an object surface becomes very difficult. In order to solve these two problems, we
propose a solution based on fusing colour adaptation with shape adaptation. We have
developed a method that, by using the CONDENSATION technique [7], combines
the use of colour histograms adaptation with snake shape adaptation [8]. The
algorithm formulates multiple hypotheses about the estimate of the colour distribution
in the RGB space, and validates them taking into account the contour shape of the
object. This combination produces a very robust technique whose results can be seen
in Fig. 4. The technique is described in detail in [6].



Fig. 3. The tracking vision system

Fig. 4. Four experiments: (1) tracking of circles that change the colour; (2) tracking an object
surface with different orientations and illumination; (3) tracking an insect in real environment;
(4) tracking a snail in real environment

4   Learning and Identifying of Objects in Mobile Robotic
Environments

The process of learning and identifying new 3D objects in robot environments has
been treated using different methodologies, for example [9][20], however these
techniques only work for very constrained environments. Unfortunately, many of the



proposed methods fail in real unstructured environments, due to problems of
illumination, shadows, object and camera position, or confusing background.

In order to overcome some of these problems we are designing our methods taken
into account the following criteria:

– the perception features must be, as much as possible, robust and relative
invariant to changes of the environment,

– the representation models must be flexible and must include the statistical
variations of the structure and of the perception features that are intrinsic in
the learning process,

– the recognition, or matching, process must be robust against local variations
and have to take into account the problems derived of partial occlusion.

– in the recognition process, the matching must be guided to reduce the number
of potential model candidates.

The first criteria is one of the most difficult to solve, since the perception features
depend too much of uncontrolled environment conditions. For these reason we have
selected as basic perception features, the surface colour and surface shape. The first
one can be obtained from colour images and the second one from depth sensors (for
example, stereo vision and laser telemeter). The invariance of surface colour is a
difficult task, but we are diminishing its influence by using colour constancy methods
and statistical information of the feature variations. However, colour constancy
algorithms are not yet given us the results that we expect, although our new
developments are promising [22]. In the other hand, the surface shape obtained from
the depth sensors is a robust feature.

One of the preliminary works to obtain robust results was the fusion of colour
segmentation and depth, to improve the segmentation results. The method [23]
processes independently colour segmentation and depth map, and then combines both
outcomes. The idea of the method is to balance the over-segmentation and under-
segmentation, by joining or splitting the singular areas. Fig. 5 shows the results of this
method in a colour scene.

Fig. 5. Fusion of colour segmentation and depth map to segment a colour scene



In the rest of this section, we will describe the solutions adopted for representation
models, the recognition and the learning processes. The basic representation models
that we are using are structural representations, chain of symbols and graphs. In the
first case we use cocircuits (of the matroid theory) and in the last case, we use random
graphs which combine structural information with statistical information of the
attributes of the nodes and arcs. In this way, we have a representation model that can
be learned directly from the colour images taken into account the potential variations
of the perception features.

Our research group has developed several methods to learn and recognise 3D objects
described by multiple views in a scene. These methods have been oriented in two
directions: a first one, whose goal is to reduce the number of candidates in object
recognition by an indexing technique in 3D object hypothesis generation from single
views; and a second one, whose goal is to identify the input object with respect to the
model candidates by looking for the minimum measure distance between the object
and the model candidates. The first direction allows the reduction of the number of
potential model candidates to a few ones, which can be done very fast. The second
direction allows to identify the best candidate.

4.1   Indexing Views of 3D Objects

In the first group of techniques, the idea is to represent a 3D object view by means of
topological properties of the regions of the segmented image and then to create a table
with each of the topological representations of the object. Then the identification
process is based on indexing the input representation of one scene view to the table of
the topological representations of the 3D object views.

A topological representation is created using the oriented matroid theory by means of
encoding incidence relations and relative position of the elements of the segmented
image, and by giving local and global topological information about their spatial
distribution. The result is a set of cocircuits [10] of sign combinations that relate
segmented regions with respect to the convex hull of two selected regions of the
scene. The details of this process are explained in [11, 12]. The set of cocircuits
obtained is projective invariant, which is an important feature for the representation of
the model objects.  Fig. 6 shows the segmentation and process indexing of one object
and Table 1 shows the resulting indexes of the object.

Fig. 6. Segmentation and process indexing of two objects



The result of the process indexing looks as follows:

Table 1. Index result of the process indexing of the images of Fig. 6. The first column is the
baseline area from where the segmented regions are related. 0 means the region is inside the
baseline area; - the region is one the left side; + the region is on the right side; and * means the
region does not exist in the segmented image.

W R Y G1 G2 B1 B2 N Object
WR 0 0 * 0 0 0 - + m1

WY 0 * 0 0 * 0 0 - m2

WG1 0 * * 0 * * * * m1

WG1 0 * 0 0 * 0 0 0 m2

WG2 0 0 * 0 0 + 0 0 m1

WB1 0 0 * 0 0 0 0 0 m1

WB1 0 0 * + + + 0 + m2

WB2 0 0 * + + + 0 + m1

WN 0 0 * - - - - 0 m1

WN 0 * + + * 0 0 0 m2

RG1 * 0 * 0 * * * * m1

… … … … … … … … …
B2N + 0 * - - - 0 0 m1

B2N - * + + * + 0 0 m2

4.2   Learning and Recognising 3D Objects Represented by Multiple Views

In the second group, the idea is to represent 3D object views by means of graphs and
then to obtain the model as the synthesis from the graphs that represent the views of a
3D object. Once the model has been learned, the recognition process is based on
applying a distance measure among the input graph (the graph that encodes the 3D
view of a scene object) and the object models. The input graph is assigned to the
model graph with the minimum distance measure value. Fig. 7 shows the process of
learning (synthesis of the object graph views) and recognition.

Object views are often represented by graphs, and one of the most robust
representations is based on attributed graphs. When a synthesis of these attributed
graphs is required to learn a complete object through its views, then a good model
representation are the Random Graphs. The generalization of these graphs is
denominated General Random Graphs (GRG) which has theoretically, great
representation power, but they need a lot of space to keep up with the associated data.
We have defined several simplifications to the GRG to reduce the space and also to
diminish the time matching complexity to compare among graphs. Wong and You
[13] proposed the First-Order Random Graphs (FORGS) with strong simplifications
of the GRG, specifically they introduce three assumptions about the probabilistic
independence between vertices and arcs which restrict too much the applicability of
these graphs to object recognition. Later, our group introduced a new class of graphs
called Function-Described Graphs (FDG) [14][15] to overcome some of the problems
of the FORG. The FDG also considers some independence assumptions, but some
useful 2º order functions are included to constrain the generalisation of the structure.



Specifically an FDG includes the antagonism, occurrence and existence relations
which apply to pairs of vertices and arcs. Finally, we have expanded this
representation, [17][18] by means of Second-Order Random Graphs (SORG), which
keep more structural and semantic information than FORGs and FDGs. These last
types of representation have led to the development of synthesis techniques for model
object generation (by means of 3D object views) and graph matching techniques for
graph identification.

Fig. 7. Learning and classification processes in the classifiers that use only one structural
representation per model

We show in this article, one example of unsupervised learning and recognition of 3D
objects represented by multiple views. The set of objects was extracted from the
database COIL-100 from Columbia University. We did the study with 100 isolated
objects, where each one is represented by 72 views (one view each 5 degrees). The
test set was composed by 36 views per object (taken at the angles 0, 10, 20 and so on),
whereas the reference set was composed by the 36 remaining views (taken at the
angles 5, 15, 25 and so on).

The learning process was as follows: (1) perform colour segmentation in each
individual object view image; (2) create an adjacency graph for each one of the
segmented regions of each object view; (3) transform the adjacency graph in an
attributed graph (AG) using the hue feature as the attribute for each node graph; (4)
synthesize a group of 35 object views in a FORG, FDG and SORG using the
algorithms described in [16][19] (we use groupings of varying number of graphs to
represent an object in order to evaluate the results, concretely we used 3, 4, 6 and 9
random graphs for each 3D object). The recognition process follows a similar
procedure, but instead of synthesizing the graphs a measure distance between them
was applied to evaluate to which 3D object the input graph belonged.

Fig. 8 shows 20 objects at angle 100 and their segmented images with the adjacency
graphs. FORGs, FDGs and SORGs were synthesised automatically using the AGs in

3D-object

Function-Described Graph
(FDG)

Graph

Model: 3D-object Unlabelled data: 2D-scene

Graph GraphGraph

L
ea

rn
in

g 
pr

oc
es

s

C
la

ss
ifi

ca
tio

n
pr

oc
es

s



the reference set that represent the same object. The method of incremental synthesis,
in which the FDGs are updated while new AGs are sequentially presented, was
applied. We made 6 different experiments in which the number of random graphs,
FORGs, FDGs and SORGs, that represents each 3D-object varied. If the 3D-object
was represented by only one random graph, the 36 AGs from the reference set that
represent the 3D-object were used to synthesise the random graph. If it was
represented by 2 random graphs, the 18 first and consecutive AGs from the reference
set were used to synthesise one of the random graphs and the other 18 AGs were used
to synthesise the other random graph. A similar method was used for the other
experiments with 3, 4, 6 and 9 random graph per 3D-object. Note that if 4 random
graphs are used, then each random graph represents 90 degrees of the 3D object.

The best result appears when the SORG and FDG representations were used, although
the best is the SORG representation. Fig. 9 shows the ratio of recognition success of
the 100 objects using different object representation and distance measures. This
figure also shows the result of describing individually each object view by means of
an AG and then comparing each input AG against the rest of the prototype AG.

Fig. 8. Some objects at angle 100 and the segmented images with the AGs

Fig. 9. Ratio of recognition correctness of the 100 objects using SORG, FDG, FORG and AG-

AG SORG: ; FDG: ; FORG: ; AG-AG:



5   Conclusions

Robot vision methods require close attention to two important issues. First the real
time issue: the methods must have adaptable mechanisms to overcome the variance in
the sensing of the basic perception features and they must be robust. Another
desirable feature in robot vision is that the objects, map, motion and control models
must be learned on line. Not in only in one path, but in successive robot motions. In
this article we have presented some of the methods, in tracking and object learning
that we are developing following these ideas. We have also applied the same ideas for
map building.
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