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Abstract. In this paper a novel method for indexing views of 3D objects
is presented. The topological properties of the regions of the segmented
images of the objects are used to define an index based on oriented ma-
troid theory. Oriented matroids, which are projective invariants, encode
incidence relations and relative position of the elements of the image and
give local and global topological information about their spatial distri-
bution. This indexing technique is applied to 3D object hypothesis gen-
eration from single views to reduce the number of candidates in object
recognition processes.

1 Introduction

In this paper a new method for indexing views of 3D objects is presented. It
is applied to 3D object hypothesis generation to reduce the number of candi-
dates in object recognition processes. Given a set of views of different objects,
the problem of object recognition using a single image can be regarded as the
problem of finding a subset of the set of regions in the image with a relational
structure identical to that of a member of the set of views. The standard way
to reduce the complexity of model matching is subdividing the problem into
a hypothesis generation followed by a verification. To be of interest in object
recognition the hypothesis generation should be relatively fast although impre-
cise in which several possible candidates for matching are generated. In this way
the verification can be carried out using a more complex and, therefore, slower
procedure [1] over a reduced number of candidates. The hypothesis generation
can be made very efficient if it is formulated as an indexing problem where views
of a set of 3D objects are stored into a table that is indexed by some function
of the views themselves.

In this paper an indexing technique based on oriented matroid theory is pre-
sented. More precisely, the topological properties of the regions of the segmented
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views of 3D objects are encoded into a data structure called set of cocircuits.
The sets of cocircuits of the different views of a database merged together are
used as an index of the database itself. The set of cocircuits, that are one of the
several combinatorial data structures called oriented matroids, encode incidence
relations and relative position of the elements of the image and give local and
global topological information about their spatial distribution. Since index tables
are by definition discrete, the discrete nature of the combinatorial structure of
the set of cocircuits nicely fits with this technique. This method is employed to
the hypothesis generation for 3D object recognition from single views. The prin-
cipal aspects of oriented matroid theory together with some applications were
compiled in 1993 in the comprehensive monograph [2]. For shorter introductions
see [3] or [4]. For another approach to shape representation and indexing based
on combinatorial geometry see [5].

The paper is organized as follows: in Section 2 oriented matroids are intro-
duced and their invariance properties are illustrated. In Sections 3 the proposed
indexing method is described together with the strategy used for hypothesis gen-
eration. In Section 4 some experimental results obtained applying the proposed
method to 3D object recognition are reported. Finally, Section 5 contains the
conclusions.

2 Oriented Matroids

Oriented matroid theory is a broad setting in which the combinatorial properties
of geometrical configurations can be described and analyzed. It provides a com-
mon generalization of a large number of different mathematical objects usually
treated at the level of usual coordinates. In this section oriented matroids will be
introduced over arrangements of points using two combinatorial data structures
called chirotope and set of cocircuits.

2.1 Oriented Matroids of Arrangements of Points

Given a point configuration in R
d−1 whose elements are the columns of the ma-

trix P = (p1, p2, . . . , pn), the associated vector configuration is a finite spanning
sequence of vectors {x1, x2, . . . , xn} in R

d represented as columns of the ma-
trix X = (x1, x2, . . . , xn) where each point pi is represented in homogeneous
coordinates as xi =

(
pi

1

)
. To encode the combinatorial properties of the point

configuration we can use a data structure called chirotope [4] which can be com-
puted using the associated vector configuration X . The chirotope of X is the
map

χX : {1, 2, . . . , n}d → {+, 0, −}
(λ1, λ2, . . . , λd) �→ sign ([xλ1 , xλ2 , . . . , xλd

])

that assigns to each d-tuple of the vectors of the finite configuration X a sign
+ or − depending on whether it forms a basis of R

d having positive or negative
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p1
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p5

p6

Fig. 1. A planar point configuration

Table 1. Vector configuration that corresponds to the planar point configura-
tion represented in Fig. 1

x1 = (0, 3, 1) x2 = (−3, 1, 1) x3 = (−2,−2, 1)

x4 = (2,−2, 1) x5 = (3, 1, 1) x6 = (0, 0, 1)

orientation, respectively. This function assigns the value 0 to those d-tuples that
do not constitute a basis of R

d. The chirotope describes the incidence struc-
ture and relative position of the points of the arrangement with respect to the
hyperplanes passing through them.

Example 1. Consider the point configuration represented in Fig. 1 whose asso-
ciated vector configuration X is given in Table 1.

The chirotope χX of this vector configuration is given by the orientations
listed in Table 2.
The element χ(1, 2, 3) = +, for instance, indicates that, in the triangle formed
by p1, p2, and p3, these points are counterclockwise ordered. These orientations
can be rearranged in an equivalent data structure called set of cocircuits of X
shown in Table 3. In this case, the set of cocircuits of X is the set of all partitions
generated by lines passing through two points of the configuration. For example,
(0, 0, +, +, +, +) means that the points p3, p4, p5, and p6 lie on the same half
plane determined by the line through the points p1 and p2. Changing the signs
of the set of cocircuits we obtain an equivalent description of the arrangement
of points.

Besides chirotopes and sets of cocircuits there are several data structures
capable of encoding the combinatorial properties of a point configuration [4]. It

Table 2. Chirotope of the planar point configuration represented in Fig. 1

χ(1, 2, 3) = + χ(1, 2, 4) = + χ(1, 2, 5) = + χ(1, 2, 6) = + χ(1, 3, 4) = +

χ(1, 3, 5) = + χ(1, 3, 6) = + χ(1, 4, 5) = + χ(1, 4, 6) = − χ(1, 5, 6) = −
χ(2, 3, 4) = + χ(2, 3, 5) = + χ(2, 3, 6) = + χ(2, 4, 5) = + χ(2, 4, 6) = +

χ(2, 5, 6) = − χ(3, 4, 5) = + χ(3, 4, 6) = + χ(3, 5, 6) = + χ(4, 5, 6) = +
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Table 3. Set of cocircuits of the planar point configuration represented in Fig. 1

(0, 0,+,+,+,+) (0,−, 0,+,+,+) (0,−,−, 0,+,−)

(0,−,−,−, 0,−) (0,−,−,+,+, 0) (+, 0, 0,+,+,+)

(+, 0,−, 0,+,+) (+, 0,−,−, 0,−) (+, 0,−,−,+, 0)

(+,+, 0, 0,+,+) (+,+, 0,−, 0,+) (+,+, 0,−,−, 0)

(+,+,+, 0, 0,+) (−,+,+, 0,−, 0) (−,−,+,+, 0, 0)

can be proven that all of them are equivalent and are referred to as oriented
matroids.

In the next section a method to represent with an oriented matroid the
combinatorial structure of views of three dimensional objects will be presented.
It will be used for indexing the image database in which they are stored.

2.2 Oriented Matroid of Arrangements of Regions

Extracting the oriented matroid of a view is not straightforward since the re-
gions that form an image cannot be reduced to points, taking for example their
centroids, without losing essential topological information for object recognition.
Therefore, in the method presented in this paper the convex hull [6] of each re-
gion is used to represent the region itself. Then, pairs of non-overlapped convex
regions resulting from this process are considered and their convex hulls are
merged. The oriented matroid is extracted based on the spatial location of the
other convex regions of the image with respect to the two lines arising when
merging the convex hulls of two of them. Consider, for instance, the ordered
pair of convex regions (S, T ) of the view v1,1 of Fig. 3. It is easy to see that the
convex hull of these two convex planar non-overlapped polygons is a polygon
whose set of vertices is included in the union of the set of vertices of S and T .
On the contrary, the set of edges of the convex hull of S and T is not included
in the union of their set of edges. Indeed, two new “bridging edges,” e1 and e2,
appear as illustrated in Fig. 2.a. Actually, efficient algorithms for merging convex
hulls are based on finding these two edges [7]. Consider the two lines l1 and l2
that support e1 and e2. They divide the image into three regions, namely the
region RS,T on the right with respect to the pair (S, T ), the region LS,T on the
left with respect to the same pair and the region IS,T comprised between the
lines (Fig. 2.b). The shape of the latter varies according to the location of their
crossing point with respect to the image. The location of a region U with respect
to the ordered couple of regions (S, T ) of the image is encoded in the chirotope
using a rule derived from the case of planar arrangements of points

χ(S, T, U) =




+ if U ∈ LS,T ,

0 if U ∈ IS,T ,

− if U ∈ RS,T .
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Z

Fig. 2. Steps of encoding of the combinatorial properties of a view of an object
into an oriented matroid

It has been implicitly assumed that U is completely contained into ei-
ther RS,T LS,T or IS,T but in general it can belong to more that one of them.
In this case, since the ratio of areas is an affine invariant, introducing an ap-
proximation, we can choose the sign based on which region contains the largest
portion of the area of U . For instance, if regions U , V and Z are located as in
Fig. 2.c we have that χ(S, T, U) = +, χ(S, T, V ) = 0 and χ(S, T, Z) = −.

2.3 Invariance of Oriented Matroids

Consider a 3D point configuration and one of its views. The combinatorial struc-
ture of the 3D point configuration and that of its 2D perspective projection are
related in the following way: if x0 represents in homogeneous coordinates the
center of the camera, p0, we have that

sign[x̄i, x̄j , x̄k] = sign[xi, xj , xk, x0] (1)

where xi, xj and xk are the homogeneous coordinates of the 3D points pi, pj

and pk, and x̄i, x̄j and x̄k are those of the corresponding points in the view,
p̄i, p̄j and p̄k. Equation (1) can be regarded as a projection equation for chiro-
tope. It is easy to see that, whereas the matrix that represents in homogeneous
coordinates the vertices of a projected set of points is coordinate-dependent, an
oriented matroid is a coordinate-free representation. Moreover, the representa-
tion of object views based on oriented matroid is a topological invariant, that
is, an invariant under homeomorphisms. Roughly speaking, this means that the
oriented matroid that represents the arrangement of points of a view of an object
does not change when the points undergo a continuous transformation that does
not change any orientation of the chirotope. This property makes this represen-
tation robust to discretization errors of the image as well as to small changes of
the point of view that does not change any orientation of the chirotope. Since
projective transformations can be regarded as special homeomorphisms, and
we can assert that the representation of the projected set of points based on
oriented matroids is projective invariant. However, since affine and Euclidean
transformations are special projective transformations, the oriented matroid of
the projected set of points of a view of an object does not change under ro-
tations, translations, and affine transformations of the planar arrangement of
points themselves. These considerations can be extended to the case in which
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Fig. 3. Two views, of two objects whose combinatorial properties are indexed
in Table 4

v1,1 v1,2

oriented matroids represent arrangements of planar regions. Therefore, the hy-
pothesis generation method presented in this paper is inherently insensitive to
projective, affine and Euclidean transformations of the views.

3 Indexing Views of 3D Objects

This process of indexing a database of views of a set of objects starts with some
preliminary choices, namely the number of colors in which the hue is quantized
and the number of regions having the same color that will be taken into account.
These choices, of course, depend on the properties of the images of the database.
Then, the views are segmented according tho these choices the set of cocircuits
for each view is computed. Then, the sign combinations of the set of cocircuits
of the views of the database are merged together and used for indexing a unique
table whose entries are spatial combination of features of regions and the records
contains the views that contains that combination.

Example 2. In Fig. 3 two views, v1,1 and v1,2, of two objects are represented, in
which a color quantization with 6 colors white (W ), red (R), yellow (Y ), green
(G), blue (B) and black (N) has been applied and up to two regions with the
same color are taken into account. Let (W, R, Y, G, B, N) be the ordered tuple of
colors considered. The index of the combinatorial properties of these two views
is reported in Table 4, in which an asterisk in the first column indicates that
the regions are not completely overlapped. On the contrary, a sign + in the
same column, in correspondence with a certain ordered couple of regions (S, T ),
indicates that S completely contains T , whereas a − denotes that S is contained
in T . If they are completely overlapped the corresponding element of the set
of cocircuits cannot be computed. An asterisk in the column of the feature U
denotes the absence of a region with this feature in the corresponding view of
the database. The description of the case of partial overlapping between regions
is herein omitted due to space limitations.

3.1 Hypothesis Generation for Object Recognition

Given a database of views of a set of 3D objects and a view vi of one of them,
not necessarily contained in the database, its set of cocircuits is computed. Each
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Table 4. Index of the combinatorial properties of the two views v1,1 and v1,2

of the two objects represented in Fig. 3

Overlapping W R Y G1 G2 B1 B2 N Views

WR * 0 0 * 0 0 0 − + v1,1

WY * 0 * 0 0 * 0 0 − v1,2

WG1 − 0 * * 0 * * * * v1,1

WG1 * 0 * 0 0 * 0 0 0 v1,2

WG2 * 0 0 * 0 0 + 0 0 v1,1

WB1 * 0 0 * 0 0 0 0 0 v1,1

WB1 − 0 * * * * 0 * * v1,2

WB2 * 0 0 * + + + 0 + v1,1

WB2 + 0 * * * * * 0 * v1,2

WN * 0 0 * − − − − 0 v1,1

WN * 0 * + + * 0 0 0 v1,2

RY *

RG1 − * 0 * 0 * * * * v1,1

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

element of the set of cocircuits is used to access the table that constitutes the
index of the database. For each view j of the object k, vj,k, found at that address
of the table, the elements (i, k) of an image-object views association matrix are
increased of 1. The final result of the indexing is therefore an association matrix
in which the value of the element (i, k) indicates the strength of the hypothesis
of associating the image vi with the object k of the database. In other words,
the view vi will be associated with the object that has the maximum number
of correspondences with vi in terms of cocircuits. It is easy to see that this
method for hypothesis generation, that can be regarded as a qualitative version
of the geometric hashing technique [8], is also robust to partial occlusions of the
objects. Indeed, if a region of a view is occluded, the set of cocircuits can still be
computed and the number of correspondences with the views of the database can
still be calculated. In this case, obviously, the selectivity of the method decreases.

4 Experimental Results

To validate our method, four 3D objects composed by colored woody pieces
(Fig. 4) have been created. Then, sixteen views of each of them with angular
separation of 22.5 degrees have been taken. These images have been segmented
using the segmentation method described in [9]. Then, the index of the learning
set of eight views per object taken at the angles 0, 45, 90, 135, 180, 225, 270
and 315 have been created. In the recognition process, the set of cocircuits of
each image of the test set composed by the eight views not used in the learning
process, that is, the views taken at angles: 22.5, 67.5, 115.5, 157.5, 202.5, 247.5,
292.5 and 337.5 degrees, have been calculated. In this experiment, that should
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Object 1 Object 2 Object 3 Object 4

Fig. 4. Objects used for the experiments

be regarded as a proof of concept, since the 3D objects employed were not very
complex and the images easy to be segmented, all the 32 test views were properly
classified.

5 Conclusions

In this paper a new method for indexing views of a set of 3D objects has been
presented. It is based on oriented matroids, a combinatorial data structure that
captures the local and global topology of the regions of the views. This repre-
sentation is invariant to projective, affine and Euclidean transformation of the
views as well as, intrinsically robust to discretization errors of the image and
insensitive to small displacements of the point of view. The experimental re-
sults obtained applying this indexing technique to the hypothesis generation in
3D object recognition processes from single views encourage to apply this new
method to more complex objects.
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