
A histogram of a set with respect a measurement represents the frequency of 
quantified values of that measurement in the samples. Finding the distance or 
similarity between histograms is important in pattern classification or clustering and 
image retrieval. Several measures of similarity between histograms have therefore 
been used in computer vision and pattern recognition. 

Most of the distance measures in the literature (there is an interesting compilation in 
[1]) consider the overlap or intersection between two histograms as a function of the 
distance value but do not take into account the similarity in the non-overlapping parts 
of the two histograms. For this reason, Rubner presented in [2] a new definition of the 
distance measure between histograms that overcomes this problem of non-
overlapping parts. Called Earth Mover’s Distance, it is defined as the minimum 
amount of work that must be performed to transform one histogram into another by 
moving distribution mass. This author used the simplex algorithm. Later, Cha 
presented in [1] three algorithms for obtaining the distance between one-dimensional 
histograms that use the Earth Mover’s Distance. These algorithms compute the 
distance between histograms when the type of measurements are nominal, ordinal and 
modulo in O(z), O(z) and O(z2), respectively, and where z the number of levels or 
bins. 

Often, for specific set measurements, only a small fraction of the bins in a histogram 
contains significant information, i.e. most of the bins are empty. This is more frequent 
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Abstract. In this paper we present a new method for comparing histograms. Its 
main advantage is that it takes less time than previous methods.  

The present distances between histograms are defined on a structure called 
signature, which is a lossless representation of histograms. Moreover, the type 
of the elements of the sets that the histograms represent are ordinal, nominal 
and modulo.  

We show that the computational cost of these distances is O(z’) for the ordi-
nal and nominal types and O(z’2) for the modulo one, where z’ is the number of 
non-empty bins of the histograms. In the literature, the computational cost of 
the algorithms presented depends on the number of bins in the histograms. In 
most applications, the histograms are sparse, so considering only the non-empty 
bins dramatically reduces the time needed for comparison.  

The distances we present in this paper are experimentally validated on image 
retrieval and the positioning of mobile robots through image recognition.  

cetto
Rectangle



If the statistical properties of the data are known a priori, the similarity measures can 
be improved by smoothing projections, as we can see in [3]. In [4] an algorithm was 
presented that used the intersection function, L1 norm, L2 norm and X2 test to compute 
the distance between histograms. In [5], the authors performed image retrieval based 
on colour histograms. Because the distance measure between colours is 
computationally expensive, they presented a low dimensional and easy-to-compute 
distance measure and showed that this was a lower boundary for the colour-histogram 
distance measure. An exact histogram-matching algorithm was presented in [6]. The 
aim of this algorithm was to study how various image characteristics affect colour 
reproduction by perturbing them in a known way. 

Given two histograms, it is often useful to define a quantitative measure of their 
dissimilarity in order to approximate perceptual dissimilarity as well as possible. We 
therefore believe that a good definition of the distance between histograms needs to 
consider the distance between the basic features of the elements of the set i.e. similar 
pairs of histograms defined from different basic features may obtain different 
distances between histograms. We call the distance between set elements the ground 
distance. 

In this paper we present the distances between histograms whose computational cost 
depends only on the non-empty bins rather than, as in the algorithms in [1,2], on the 
total number of bins. The type of measurements are nominal, ordinal and modulo and 
the computational cost is O(z’), O(z’) and O(z’2), respectively, where z’ is the number 
of non-empty bins in the histograms. In [7], we show that these distances are the same 
as the distances between the histograms in [1] but that the computational time for 
each comparison is lower when the histograms are large or sparse. We also depict the 
algorithms to compute them not shown here due to lack of space. 

The next sections are organised as follows. In section 2 we define the histograms and 
signatures. In section 3 we present three possible types of measurements and their 
related distances. In section 4 we use these distances as ground distances when 
defining the distances between signatures. In section 6 we address image retrieval 
problem with the proposed distance measures. Finally, we conclude by stressing the 
advantage of using the distance between signatures. 

In this section, we formally define histograms and signatures. We end this section 
with a simple example to show the representations of the histograms and signatures 
given a set of measurements. 

Let x be a measurement that can have one of T values contained in the set X={x1,...xT}. 

Consider a set of n elements whose measurements of the value of x are A={a1,...an}, 

where at∈X. 


when the dimensions of the element domain increase. In such cases, the methods that 
use histograms as fixed-sized structures are not very efficient. For this reason, Rubner 
[2] presented variable-size descriptions called signatures, which do not explicitly 
consider the empty bins. 

2   Histograms and Signatures 

2.1   Histogram Definition 
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denotes the number of elements of A that have value xi, then H(A)=[H1(A), …,HT(A)] 
where  

n and      (1)1 if 
0 otherwise 

AH ( )A ∑ C = 


 

a = x= iA tCi i , t i t, 
t =1 

The elements Hi(A) are usually called bins of the histogram. 

Let H(A)=[H1(A), …,HT(A)] and S(A)=[S1(A), …,Sz(A)] be the histogram and the 
signature of the set A, respectively. Each Sk(A), 1≤k≤z≤T comprises a pair of terms, 
Sk(A)={wk ,mk}. The first term, wk, shows the relation between the signature S(A) and 
the histogram H(A). Therefore, if the wk=i then the second term, mk, is the number of 
elements of A that have value xi, i.e. mk=Hi(A) where wk<wt ⇔ k<t and mk>0. 

The signature of a set is a lossless representation of its histogram in which the bins of 
the histogram whose value is 0 are not expressed implicitly. From the signature 
definition, we obtain the following expression, 

( ) = m where 1≤ k ≤ z (2)Hwk
A k 

The extended signature is one in which some empty bins have been added. That is, 
we allow mi=0 for some bins. This is a useful structure for ensuring that, given a pair 
of signatures to be compared, the number of bins is the same and that each bin in both 
signatures represents the same bin in the histograms. 

In this section we show a pair of sets with their histogram and signature 
representations. This example is used to explain the distance measures in the next 
sections. Figure 1 shows the sets A and B and their histogram representations. Both 
sets have 10 elements between 1 and 8. The horizontal axis in the histograms 
represents the values of the elements and the vertical axis represents the number of 
elements with this value. 

1 4 5 
5 1 

4 1 
5 6 
6 

A 

1 8 5 
5 5 
5 5 
5 8 
5 

B 

The histogram of the set A along measurement x is H(x,A), which is an ordered list 
consisting of the number of occurrences of the discrete values of x among the at. As
we are interested only in comparing the histograms and sets of the same measurement 
x, H(A) will be used instead of H(x,A) without loss of generality. If Hi(A), 1≤i≤T, 

2.2   Signature Definition 

2.3   Extended Signature  

2.4   Example 

Fig. 1. Sets A and B and their histograms  
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W1 
A = 1  

W2 
A = 4 

W3 
A = 5 

W4 
A = 6 

W1 
B = 1 

W2 
B = 5 

W3 
B = 8 

Figure 3 shows the extended signatures of the sets A and B with 5 bins. Note that the 
value that the extended signatures represents for each bin, wi, is the same for both 
signatures. 

W1 
A’ = W1 

B’ = 1  
W2 

A’= W2 
B’= 4 

W3 
A’= W3 

B’= 5 
W4 

A’= W4 
B’= 6 

W5 
A’= W5 

B’= 8 

We consider three types of measurements, called nominal, ordinal and modulo.  In a 
nominal measurement, each value of the measurement is a name and there is no 
relation, such as greater than or lower than, between them (e.g. the names of 
students). In an ordinal measurement, the values are ordered (e.g. the age of the 
students). Finally, in a modulo measurement, the values are ordered but they form a 
ring because of the arithmetic modulo operation (e.g. the angle in a circumference). 

Corresponding to these three types of measurements, we define three measures of 
difference between two measurement levels a∈ X and b∈ X, as follows: 

a) Nominal distance: 



 

0 
1 

The distance value between two nominal measurement values is either match or 
mismatch, which are mathematically represented by 0 or 1. 

if a b (3)= 
d (a,b) = nom otherwise 

Figure 2 shows the signature representation of sets A and B. The length of the 
signatures is 4 and 3, respectively. The vertical axis represents the number of 
elements of each bin and the horizontal axis represents the bins of the signature. Set A 
has 2 elements with a value of 6 since this value is represented by the bin 4 (W4

A=6 ) 
and the value of the vertical axis is 2 at bin 4. 

Fig. 2. Signature representation of the sets A and B 

 

Fig. 3. Extended Signatures A’ and B’. The number of elements mi is represented graphically 
and the value of its elements is represented by wi 

3   Type of Measurements and Distance Between Them 
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A' A' B ' B 'respectively, where S ( )A' = {w , m } and S ( )B' = {w , m }. The number of bins of i i i i i i 

S(A) and S(B) is zA and zB and the number of bins of both extended signatures is z’. 

The nominal distance between the histograms in [5] is the number of elements that do 
not overlap or intersect. We redefine this distance using signatures as follows, 

z ' 

mi
A' − mi

B ' (6)D (S( ) ( )A , S B ) =∑nom 
i=1 

The ordinal distance between two histograms was presented in [6] as the minimum 
work needed to transform one histogram into another. Histogram H(A) can be 
transformed into histogram H(B) by moving elements to the left or to the right and the 
total number of all the necessary minimum movements is the distance between them. 
There are two operations. Suppose an element a that belongs to bin i. One operation is 
move left (a). This result of this operation is that element a belongs to bin i-1 and its 
cost is 1. This operation is impossible for the elements that belong to bin 1. Another 
operation is move right (a). Similarly, after this operation, a belongs to bin i+1 and 
the cost is 1. The same restriction applies to the right-most bin. These operations are 
graphically represented by right-to-left arrows and left-to-right arrows. The total 
number of arrows is the distance value. This is the shortest movement and there is no 
other way to move elements in shorter steps and transform one histogram to the other. 
The distance between signatures is defined as follows, 

  
 


(7)
z '−1 i 

∑
(w )+ i (m )Dord (S( ) ( )A , S B ) = A' A' A' B '− −∑
  


w mi 1 j j 
i=1 j =1 

c) Modulo distance: 

2 (5)a − b if a − b ≤ T

T 

The distance value between two modulo measurement values is the interior difference 
of each element. 

In this section, we present the nominal, ordinal and modulo distances between 
signatures. For the following definitions of the distances and for the algorithms 
section, we assume that the extended signatures of S(A) and S(B) are S(A’) and S(B’), 

d (a,b) =mod − a − b otherwise 

b) Ordinal distance: 

(4)dord (a,b) = a − b 

The distance value between two ordinal measurement values is computed by the 
absolute difference of each element. 

4   Distance Between Signatures 

4.1   Nominal Distance  

4.2   Ordinal Distance 
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can move from the last bin to the first one with the operations move right (T) in the 
histogram case or move right (wz’) in the signature case. 

The cost of these operations is calculated as for the cost of the operations in the 
ordinal distance except for the movements of blocks from the first bin to the last or 
vice versa. For the distance between histograms, the cost, as in all the movements, is 
one. For the distance between signatures,  the real distance between bins or the length 
of the arrows has to be considered. The cost of these movements is therefore the sum 
of three terms (see figure 4.a): (a) the cost from the last bin of the signature, wz’, to the 
last bin of the histogram, T; (b) the cost from the last bin of the histogram, T, to the 
first bin of the histogram, 1; (c) the cost from the first bin of the histogram, 1, to the 
first bin of the signature, w1. The costs are then calculated as the length of these terms. 
The cost of (a) is T-wz’, the cost of (b) is 1 (similar to the cost between histograms) 
and the cost of (c) is w1-1. Therefore, the final cost from the last bin to the first or vice 
versa between signatures is w1-wz’+T. 

Dmod(H(A),H(B)) 

1  2  3  4 5  6  7  8 

Dmod(S(A’),S(B’)) 

1  2  3  4  5 

X1  X1  X1 

(a)    (b) 

The arrows do not have a constant size (or constant cost) but depend on the distance 
between bins. If element a belongs to bin i, the result of operation move left (a) is that 
the element a belongs to bin i-1 and its cost is wi − wi−1 . Similarly, after the 

operation move right(a), the element a belongs to bin i+1 and the cost is wi+1 − wi . 
In equation (7), the number of arrows that go from bin i to bin i+1 is described by the 
inner addition and the cost of these arrows is wi+1 − wi . 

One major difference in modulo type histograms or signatures is that the first bin and 
the last bin are considered to be adjacent to each other. It therefore forms a closed 
circle due to the nature of the data type. Transforming a modulo type histogram or 
signature into another while computing their distance should allow cells to move from 
the first bin to the last bin, or vice versa, at the cost of a single movement. Now, cells 
or blocks of earth can move from the first bin to the last bin with the operation move 
left (1) in the histogram case or move left (w1) in the signature case. Similarly, blocks 

4.3   Modulo Distance 

Fig. 4. (a) The three terms that need to be considered in order to compute the cost of moving 
blocks from the last bin to the first or vice versa in the modulo distance between signatures. (b) 
Arrow representation of the modulo distance in case of the histograms and signatures. 

Example. Figure 4.b shows graphically the minimum arrows needed to get the 
modulo distance in (a) the histogram case and (b) the signature case. The distance is 
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between signatures). The cost of the movement of blocks from the first bin to the last 
or vice versa is w1-wz’+T and the cost of the other movements is wA’

i+1-w A’
i. The term 

c represents the chains of left arrows or right arrows added to the current arrow 
representation. The absolute value of c at the end of the expression is the number of 
chains added to the current representation. It comes from the cost of the arrows from 
the last bin to the first or vice versa. 

Example. Figure 5 shows five different transformations of signature S(A) to signature 
S(B) and their related costs. In the first transformation, one chain of right arrows is 
added (c=1). In the second transformation, no chains are added (c=0), so the cost is 
the same as the ordinal distance. In the third to the last transformations, 1, 2 and 3 
chains of left arrows are added, respectively. We can see that the minimum cost is 6 
and c=-2, the distance value is 6 for the modulo distance and 14 for the ordinal 
distance. 

X1 X3 X1 X1 X2 
X1 X3 X1 X1 X2

X3  X1  X1  X2 X1 X3 X1 X1 X2 
X1 X3 X1 X1 X2 

1  2 3 4 5 1 2 3  4 5 1 2  3 4 5 1  2  3  4 5 1 2 3 4 5 

c=1 c=0        c=-1            c=-2          c=-3
        cost=22                  cost=14           cost=10                 cost=6                      cost=12 

obtained as in the ordinal example except that the arrows from the first bin to the last 
are allowed or vice versa. The value of the distance between signatures is 
2x1+2x1+2x1=6. In this signature representation, the cost of the two arrows that go 
from the first bin to the last bin is one. This is because w1=1 (the first bin in the 
histogram representation) and w5=8 (the last bin in the histogram representation, 
T=8). This cost is then 1-8-8=1. 

Due to the previously explained modulo properties, we can transform one signature or 
histogram into another in several ways. In one of these ways, there is a minimum 
distance whose number of movements (or the cost of the arrows and the number of 
arrows) is the lowest. If there is a borderline between bins that has both directional 
arrows, they are cancelled out. These movements are redundant, so the distance 
cannot be obtained through this configuration of arrows. To find the minimum 
configuration of arrows, we can add a complete chain in the histogram or signature of 
the same directional arrows and the opposite arrows on the same border between bins 
are then cancelled out.  The modulo distance between signatures is defined as 


mod ∑

The cost of moving a block of earth from one bin to another is not 1 but the length of 
the arrows or the distance between the bins (as explained in the ordinal distance 




 i'−1 (8)z (w )+ i (m )( ( ) ( ), )S A S B A A A B A A' ' ' ' ' 'D Tmin − − −+




) + ( +∑


w c m w1 w c= i j j1 'z
 

c i j=1 =1 

Fig. 5. Five different transformations of signature S(A) to signature S(B) with their related c 
and cost obtained 
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 Length Increase 
Speed 

Correct. Decrease in 
Correct. 

Histo. 265 1 78% 1 
Signa. 235 1.12 78% 1 
Sig100 157 1.68 78% 1 
Sig200 106 2.50 69% 0.88 
Sig300 57 4.64 57% 0.73 

 Length Increase 
Speed 

Correct. Decrease in 
Correct. 

Histo. 265 1 86% 1 
Signa. 215 1.23 86% 1 
Sig100 131 2.02 85% 0.98 
Sig200 95 2.78 73% 0.84 
Sig300 45 5.88 65% 0.75 

 Length Increase 
Speed 

Correct. Decrease in 
Correct. 

Histo. 65,536 1 81% 1 
Signa. 245 267.49 81% 1 
Sig. 1 115 569.87 81% 1 
Sig. 2 87 753.28 67% 0.82 
Sig. 3 32 2048.00 55% 0.67 

 Length Increase 
Speed 

Correct. Decrease in 
Correct. 

Histo. 65,536 1 89% 1 
Signa. 205 319.68 89% 1 
Sig. 1 127 516.03 89% 1 
Sig. 2 99 661.97 78% 0.87 
Sig. 3 51 1285.01 69% 0.77 

To show the validity of our new method, we first tested the ordinal and modulo 
distances between histograms and between signatures. We used 1000 images (640 x 
480 pixels) obtained from public databases. To validate the ordinal distance, we 
calculated the histograms from the illumination coordinate with 28 levels (table 1) and 
with 216 levels (table 3). Also, to test the modulo distance, the histograms represented 
the hue coordinate with 28 levels (table 2) and with 216 levels (table 4). Each table 
below shows the results of 5 different tests. In the first and second rows, the distance 
between histograms and signatures, respectively, are computed. In the other three 
rows, the distance between signatures is computed but, in order to reduce the length 
of the signature (and therefore increase the speed), the bins with fewer elements than 
100, 200 or 300 in tables 1 and 2 and fewer elements than 1, 2 or 3 in tables 3 and 4 
were removed. The first column shows the number of bins of the histogram (first cell) 
or signatures (the other four cells). The second column shows the increase in speed if 
we use signatures instead of histograms. It is calculated as the ratio between the run 
time of the histogram method and that of the signature method. The third column 
shows the average correctness. The last column shows the decrease in correctness as a 
result of using the signatures with filtered histograms, which is obtained as the ratio of 
the correctness of the histogram to the correctness of each filter. 

Tables 1 to 4 show that our method is more useful when the number of levels 
increases, since the number of empty bins tends to increase. Moreover, the increase is 
greater when comparing the histograms of the hues, because the algorithm has a 
quadratic computational cost. Note that in the case of the first filter (third experiment 
in the tables), there is no decrease in correctness although the increase in speed is 
greater than with the signature method. 

5   Experiment with Colour Images 

Table 1. Illumination 28 bins. Ordinal histogram. Table 3.  Illumination  216 
 

bins.  Ordinal 
histogram. 

Table 2. Hue 28 
 
bins. Modulo histogram. Table 4. Hue 216

 
bins. Modulo histogram. 
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We have presented the nominal, ordinal and modulo distance between signatures. We 
have shown that signatures are a lossless representation of histograms and that 
computing the distances between signatures is the same as computing the distances 
between histograms but with a lower computational time. We have validated these 
new distances with a huge amount of real images and observed an important saving of 
time since most of the histograms are sparse. Moreover, when we applied filtering 
techniques to the histograms, the number of bins of the signatures decreased, so the 
run time of their comparison also decreased. 

6   Conclusions 
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