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Abstract. We illustrate the problem of comparing images by means of
their color segmentations. A group of seven distances are proposed within
the frame of the Integrated Region Matching distance and the employ of
Multivariate Gaussian Distributions (MGD) for the color description of
image regions. The performance of these distances is examined in tasks
such as image retrieval and object recognition using the two segmenta-
tion algorithms in [1] and [2]. The best overall results are obtained for
both tasks using the graph–partition approach along with the Fréchet
distance, outperforming other distances in comparing MGDs.
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1 Introduction

The aim of this paper consists in comparing images on the base of their color
segmentation. The necessity for this arises from well–known tasks such as object
recognition, image indexing and retrieval, as well as others related to mobile
robotics. Content–based comparison of image segmentations can be viewed as
an object recognition problem. Nevertheless, our situation is slightly opener than
that of classical object recognition since segmentation of real images is most of
the time imperfect. We need a more flexible way to compare segmented images
on the basis of their content whether segmentation is perfect or not.

Consequently, our concern in this paper is to study different distances be-
tween images based on their color segmentation which can cope with imperfect
segmentations. Such a measure would be helpful both in finding images in a
database, identifying objects and comparing image by their content. Our aims
heed the set of techniques known as Content–Based Image Retrieval (CBIR)
since those methods develop measures among images based on their content to
effectively indexing and searching in large–scale image databases. More precisely,
CBIR is the set of techniques for retrieving semantically–relevant images from
an image database on automatically–derived image features.

The reasons for using this framework are mainly two. First, these techniques
are not focused on finding an exact identification, rather more flexible retrieval
schemes are usually undergone. Second, they tend to cope with imperfect or
inexact segmentations. Therefore, this paper proposes some distances between
regions in the context of a CBIR distance between segmentations to evaluate
their performance in tasks such as object identification and image retrieval.
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2 Related Work

Because of the lack of space, we only refer to some of the best–known CBIR
techniques. CBIR for general purpose databases is still a great challenging prob-
lem because of the size of such databases, the difficulties in both understanding
images and formulating a query, and the properly evaluation of results. A com-
mon problem for all CBIR systems is to extract a signature from images based
on their pixel values and to define an effective rule for comparing images.

The signature, whose components are called features, serves as the image rep-
resentation. The important reason for using signatures, besides the significant
compression of the image representation, is that of improving the correlation
between image pixels and image semantics, i.e., understanding the image con-
tent by means of its pixel values. Most existing general–purpose CBIR systems
roughly fall into the next three categories, depending on the image signatures

– Histograms: IBM QBIC [3], MIT Photobook [4].
– Color layouts: VIRAGE [5], Columbia VisualSEEK and WebSEEK [6], Stan-

ford WBIIS [7], and WALRUS [8].
– Region–based systems: NeTra [9], Blobworld [10], SIMPLIcity [11], SNL [12].

After extracting signatures, the next step is to determine a comparison rule,
which includes a querying scheme – global or partial search – and the definition of
a similarity measure between two images. Despite numerous types of signatures
can be employed, such as shape and texture, our concern here is just those based
on the color information of image pixels.

3 Distance Between Segmented Images

Intuitively, a region–based distance between two segmented images can be de-
fined as the total amount of differences between corresponding regions. It is clear
that only regions which are likely the same in both segmentations must be taken
into account. Otherwise, the measure would be biased. In addition, any distance
based on image segmentation should be tolerant to inaccuracies. To define this
kind of measures, an attempt to match regions must be carried out somehow,
despite it could be error prone and time consuming. Nevertheless, matching has
to be softened by allowing one region of an image to be matched to several
regions in another one since segmentations are not perfect.

Furthermore, a similarity measure among regions is equivalent to a distance
between sets of points in a feature space. Every point in the space corresponds to
a descriptor of a region. Although the distance between two points in a feature
space can be chosen from a variety, it is not obvious how to define a distance
between two groups or distributions of points. In this paper, we first describe
the region descriptor applied throughout the work to account for color distri-
butions. Afterwards, a number of different approaches to measure the similarity
between these descriptors are proposed. Finally, we describe how to group all
these measures into only one distance between two segmented images.
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3.1 Multivariate Gaussian Distributions

We describe region colors as a Multivariate Gaussian Distribution (MGD) of
probability for its simplicity and compactness, along with its good mathematical
properties. Besides, it is a natural way of introducing Gaussian Mixture Models
(GMM) as a method of representing segmented images [2]. Hence, let the color
of a region be a random variable X ∼ Nd (µ,Σ) distributed as

P (x|Θ) =
1

(2π)d/2|Σ|1/2
exp

(
−1

2
(x − µ)Σ−1 (x− µ)t

)
(1)

where x ∈ Rd is a sample point, Θ = {µ,Σ} are the mean and covariance matrix
of P , respectively, and d is the space dimension1. We note as X the distribution
of the random variable X . So, for each region Ri in image I there will be a
distribution Xi whose parameters are {xi,Σi,ωi}, being ωi the region weight,
and xi and Σi are the sample mean and covariance matrix, respectively.

3.2 Distances Between Image Regions

Now, we discuss seven diverse distances between two regions Rx and Ry, ex-
pressed in terms of their distributions X and Y. Nevertheless, this is not the
discriminant case where a distance D(x,Y) between a point x and a distribution
Y is computed to know whether x belongs to Y. Rather, we need to estimate
the distance between two whole MGDs, i.e., D(X ,Y), corresponding to random
variables X ∼ Nd (µx,Σx) and Y ∼ Nd (µy,Σy).

Euclidean Distance. It consists only in computing the Euclidean distance
between the two means, x and y, each of them representing a distribution center

D2 (X ,Y) = ‖x− y‖2 (2)

Its simplicity is both a pro and a con, since it neither appraises the shape of
the distributions nor its relative size, conveyed in the covariance matrices.

Mahalanobis Distance. Shape and orientation could be interesting when try-
ing to compare distributions, for example, whenever two distributions are cen-
tered at the same point. Mahalanobis distance introduces these subtleties into
account by using as a metric the inverse of the covariance matrix of the partic-
ular distribution. This way, the squared distance between a sample point y and
a distribution X is computed as D2(y,X ) = (y − x)Σ−1

x (y − x)t.
Since these distances are bilinear, it is true that the mean distance to a distri-

bution of a set of points {yi}i=1,...,ny equals to the distance between the sample
mean y and that distribution, that is, 1

ny

∑ny

i=1 D2(yi,X ) = D2(y,X ). Parame-
ters {x,Σx} belonging to X were estimated using the sample {xj}j=1,...,nx .
1 Usually 3 in a color coordinates such as RGB, HSI or Lab.
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Therefore, the reverse distance D2 (x,Y) between {xi} points and the distri-
bution Y, whose parameters are computed using the sample {yi}, can also be
taken into account. Hence, it seems natural to define the total distance between
the two distributions X and Y as the mean of the two previous distances, that
is, D2(X ,Y) = 1

2 (D2(x,Y) + D2(y,X )), which is equivalent to the expression

D2 (X ,Y) = (x− y)
[
1
2

(
Σ−1

x +Σ−1
y

)]
(x − y)t (3)

Fréchet Distance. Another way to compute a distance between two MGDs is
the Fréchet distance [13]. Fréchet distance between two random variables X and
Y is defined by minX,Y E{‖ X − Y ‖2}. This is a special case of the Monge–
Kantorovich mass transference problem. Dowson and Landau [13] solved this
problem for the case of X and Y being elliptically symmetric, which is the con-
dition of the MGD. Hence, the distance between X and Y can be written as

D2 (X ,Y) = ‖x− y‖2 + tr
[
Σx +Σy − 2 (ΣxΣy)1/2

]
(4)

Fréchet distance is composed of two terms, namely, an Euclidean distance
among means and a distance on the space of covariance matrices. Additionally,
it is a closed–form solution to the Earth’s Mover Distance (EMD) in the situation
of two equally weighted Gaussian2 and a natural distance for the Gaussian region
representation.

Fröbenius Distance. Alike Fréchet distance, this one computes the distance
between two MGD by addition of two partial distances, one among means (Eu-
clidean) and another among covariances, which is defined between matrices based
on the norm of the difference matrix computed from the covariances Σx and Σy,
calculated as if they were vectors (componentwise), i.e.,

D2(X ,Y) = ‖x − y‖2 + ‖Σx −Σy‖2 (5)

Bhattacharyya Distance. Bhattacharyya’s affinity kernel [14] was extensively
used as a similarity measure in tasks such as object tracking [15]. It is defined
as K(X ,Y) =

∫
Ω

√
Px(v)Py(v) dv, where Px and Py are PDFs of the random

variables X and Y , respectively, and v ∈ Ω ⊂ Rd. This is a divergence–type
measure interpretable as a (normalized) correlation between PDFs [15].

A closed form in the case of MGDs for the above kernel is suggested in [16]
as K(X ,Y) = k · exp (− 1

2D
2(X ,Y)), where k = |Σz|1/2/(|Σx|1/4|Σy|1/4) and,

by analogy, D2 (X ,Y) is

D2(X ,Y) =
1
2

(
xΣ−1

x xt + yΣ−1
y yt − 2 zΣ−1

z zt
)

(6)

with the additional definitions of matrix Σz = [ 12 (Σ−1
x + Σ−1

y )] and vector z =
1
2 (Σ−1

x x +Σ−1
y y).

2 This assumption can be totally assumed whenever segmented images are employed.
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Kullback–Leibler Distance. The Kullback–Leibler (KL) divergence is a mea-
sure of the alikeness between two PDFs based on information theoretic motiva-
tions [17], defined as KL(X ,Y) =

∫
Ω Px(v) log(Px(v)/Py(v)) dv. If both Px and

Py are MGDs, it turns into KL(X ,Y) = tr
(
Σ−1

y Σx

)
+ log|Σy|− log|Σx|− d.

Since KL divergence is not symmetric in general, it must be symmetrized be-
fore defining a proper distance as follows KLS(X ,Y)= 1

2 (KL(X ,Y)+KL(Y,X )).
Consequently, the KLS distance thus obtained is given as

KLS(X ,Y) =
1
2

(
tr

(
Σ−1

y Σx

)
+ tr

(
Σ−1

x Σy

)
− 2d

)
(7)

As for the cases of Fröbenius and Fréchet, Eq. (7) only represents a metric
in the covariance space, so the distance is D2(X ,Y) = ‖x− y‖2 + KLS(X ,Y).

Jensen–Shannon Distance. KL divergence has a number of numerical dif-
ficulties when covariances are close to singularity. A variant to overcome such
a problem is the Jensen–Shannon divergence (JSD), defined as JSD(X ,Y) =
1
2 (KL(X , X+Y

2 ) + KL(Y, X+Y
2 )), which in the MGD case changes into

JSD(X ,Y) =
1
2

(
tr

(
2 (Σx +Σy)−1 Σx

)
+ tr

(
2 (Σx +Σy)−1 Σy

))
(8)

Again, Eq. (8) is just a distance between covariances and must be completed
to get a distance between distributions as D2(X ,Y) = ‖x− y‖2 + JSD(X ,Y).

3.3 IRM Similarity Measure

Integrated Region Matching (IRM) measures the overall similarity between im-
ages by integrating distances among regions of two images. An advantage of the
overall similarity measure is its robustness against poor segmentations. Precisely,
a region–to–region match is obtained when regions are significantly similar to
each other in terms of the extracted signature Xi, i.e., the most similar regions
are matched first. Then, the whole distance is computed as a weighted sum of
distances between region pairs as follows

IRM(X ,Y) =
n∑

i=1

m∑

j=1

sijdij (9)

where dij = D(Xi,Xj) and sij ≥ 0 is the level of significance between two
regions, which indicates the relevance of the matching for determining the whole
distance between the two images. It is required that the most similar regions get
the highest priority, so the IRM algorithm in [11] attempts to assign as much
significance as possible to region pairs with the least distance dij .

Additionally, the selection of the region weights wi must be faced. These
values are related to the levels of significance as

∑
j sij = wi and

∑
i sij = w′

j .
Despite that choice can be done uniformly for all regions, we prefer the area
percentage scheme, where wi is the ratio between region area and image area,
since more salient objects in an image tend to occupy larger areas, besides of
being less sensitive to inaccurate segmentations.
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4 Experiments and Results

The database used in these experiments belongs to the Columbia Object Image
Library (COIL)3, which consists in the color images of 100 objects viewed under
72 poses against a black background. Nevertheless, we used a smaller set of
Nset = 18 views per object to get greater variations, along with only Nobj = 51
objects – Fig. 1(a) –, which definitively makes a sufficient database of Ntotal =
918 color images to test the above distances between segmentations. For each
image, two segmentations were obtained by using Figueiredo’s EM in [2] and
our graph–partition approach in [1]. In Fig. 1(b) and Fig. 1(c) we show some
segmentation results of the objects’ frontal views in Fig. 1(a).

(a) (b) (c)

Fig. 1. COIL database: (a) original frontal views, (b) graph–partition segmentation,
and (c) Figueiredo’s segmentation.

We want to establish the performance of each of the aforementioned distances
to benchmark them for any posterior application. To that purpose, we carry out
two kinds of tests, an image retrieval and an object matching experiments.

Image retrieval emulates the response of a system to a global query. That re-
sponse is a set of images sorted by their increasing distance to the queried image.
After sorting them, only the first Nret images are selected. Nret = 1, . . . , Nset

is the num. of images retrieved. The num. of relevant images retrieved is Nrel.
Two measures are used to evaluate the retrieval performance, namely, recall and
precision [12]. Recall is the percentage of the total relevant images retrieved,
Nrel/Nset, whereas precision refers to the capability of the system to retrieve only
relevant images, Nrel/Nret. The total num. of relevant images are the num. of
images per object set Nset. The Precision vs. Recall plots in Fig. 2 for each
segmentation approach comprehensively exhibit those results. Those graphics
show how precision decays when the fraction of relevant images is pushed up.
The slower the fall, the better. Hence, Fréchet distance seems the best distance,
while Fröbenius is the worst, for both segmentation algorithms. Besides, graph–
partition results are slightly better than those of Figueiredo’s.
3 http://www1.cs.columbia.edu/CAVE/research/softlib/coil-100.html
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(a) (b)

Fig. 2. Precision vs. Recall plots corresponding to each segmentation algorithm: (a)
graph–partition and (b) Figueiredo’s EM.

Matching experiment consists in evaluating every distance as a way to per-
form object identification. The former database was divided into two disjoint
subsets containing 9 images per object, that is, 459 images per set in total. One
set is the testing set while the other is the sample set. Then, the experiment
computes the total amount of correct identifications carried out by taking im-
ages from the testing set and finding the closest image in the sample set. A
correct matching occurs whenever the closest image recovered from the sample
set belongs to the same object as the image from the testing set.

Table 1. Object recognition results per segmentation method.

Distance Figueiredo [%] Partition [%]

Euclidean 89.11 (4) 91.29 (3)
Fréchet 94.34 (1) 95.21 (1)
Mahalanobis 89.54 (2) 91.50 (2)
Bhattacharyya 86.71 (5) 88.02 (6)
Fröbenius 84.53 (6) 89.32 (5)
Jensen–Shannon 89.11 (4) 91.29 (3)
KL Symmetric 89.32 (3) 91.07 (4)

Results corresponding to object identification are exhibited in Table 1 per-
formed using Lab color coordinates after the two previously mentioned color
image segmentation algorithms, namely, graph–partition and Figueiredo’s EM.
In regard to the recognition rates, the best overall results were obtained using
our segmentation and the Fréchet distance, and was as high as 95.21% of correct
object identifications, outperforming Mahalanobis distance. Euclidean distance
obtains medium positions, similarly to JSD and KLS, whereas the worst ones
are both Fröbenius and Bhattacharyya.

cetto
Rectangle
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5 Conclusions

This paper illustrated the problem of comparing images by means of their color
segmentations. A group of seven distances were proposed within the frame of the
IRM distance and the employ of Multivariate Gaussian Distributions (MGD) for
the color description of image regions. The performance of these distances was
examined in tasks such as image retrieval and object recognition using the two
segmentation algorithms in [1] and [2]. The best overall results were obtained for
both tasks using the graph–partition approach along with the Fréchet distance,
outperforming other distances in comparing MGDs.
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