
Automatic Generation of Computer Animated

Sequences Based on Human Behavior Modeling

Pau Baiget∗, Joan Soto∗, Xavier Roca∗, Jordi Gonzàlez+

∗ Computer Vision Center & Dept. de Ciències de la Computació,
Edifici O, Campus UAB, 08193 Bellaterra, Spain

+ Institut de Robòtica i Informàtica Industrial (UPC – CSIC),
Llorens i Artigas 4-6, 08028, Barcelona, Spain

Abstract

This paper presents a complete framework to automatically generate synthetic
image sequences by designing and simulating complex human behaviors in virtual
environments. Given an initial state of a virtual agent, a simulation process gener-
ates posterior synthetic states by means of precomputed human motion and behavior
models, taking into account the relationships of such an agent w.r.t its environment
at each frame step. The resulting status sequence is further visualized into a vir-
tual scene using a 3D graphic engine. Conceptual knowledge about human behavior
patterns is represented using the Situation Graph Tree formalism and a rule-based
inference system called F-Limette. Results obtained are very helpful for testing hu-
man interaction with real environments, such as a pedestrian crossing scenario, and
for virtual storytelling, to automatically generate animated sequences.

Keywords: Behavioral Animation, Virtual Environments, Computer Graphics, Human
Sequence Evaluation, Artificial Intelligence.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digital.CSIC

https://core.ac.uk/display/36040782?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 Introduction

Virtual Storytelling refers to the genera-
tion of synthetic video sequences involving
virtual agents who exhibit complex behav-
iors and interact with each other. This
discipline has been widely used in cine-
matographics helping with the creation of
extra actors in animation films [5]; in vir-
tual environments like road traffic simu-
lation [13]; and in the game industry for
developing autonomous agents that inter-
act with the user[14].

This paper describes a framework for
the automatic generation of synthetic im-
age sequences using virtual human agents.
Fig. 1 shows the overall scheme, divided
into modules. The Agent state generator
computes future agent states from the pre-
vious ones by simulating human behavior
under the constraints of a precomputed
motion model. Thus, the i-th agent state
is fedback to the system in order to gen-
erate the (i + 1)-th state. Finally, the se-
quence of states is sent to a 3D rendering
engine based on OpenGL [12] which gen-
erates a synthetic image sequence.

To achieve this, some a–priori infor-
mation is initially provided by the user:
On the one hand, information about both
the behavior of involved virtual agents and
the characteristics of the virtual environ-
ment allows to contextualize the simula-
tion. On the other hand, the initial states
of these virtual agents allows the simula-
tion to proceed. All this knowledge is rep-
resented using a set of conceptual predi-
cates in Fuzzy Metric Temporal Horn Logic
(FMTHL), being agent behavior modeled
using the deterministic formalism Situa-
tion Graph Tree (SGT)[1].

User

A-priori Knowledge

Agent_1

Behavior Model

Agent_n

Behavior Model

Environment

Conceptual

Scene Model

Initial States

State Agent_1 ... State Agent_n

Agent state generation

3D Rendering Engine

State i

Feedback for State i+1

Frame i

F-Limette

SGT Traversal

Human Motion Model

Image Sequence

...

Figure 1: Overall scheme of the proposed
framework. More details in the text.

Previous works have modeled human
behavior by considering two different ap-
proaches: on the one hand, bottom–up
approaches make use of machine learning
techniques to represent human behaviors
from a set of motion patterns. Thus, be-
havioral learning has begun to be exploited
using machine learning techniques such as
k–Nearest Neighbours [4] or reinforcement
learning (RL) [11] , to cite few. On the
other hand, top–down techniques prede-
fine a set of behaviour patterns which rep-
resent the set of agent behaviors to be syn-
thesized. Top–down approaches cannot
learn, but they represent human behaviors
in a consistent manner, and they do not
depend on the specific data from the train-
ing set [2], [8], [9]. However, these mod-
els generate predefined trajectories for the
whole sequence, without considering the
relationships of the agent w.r.t. its en-
vironment at each frame step. We con-

sider here instead a procedure for the au-
tomatic animation of virtual agents which
can change adaptively their behavior, de-
pending on their environment at each par-
ticular frame step.

This paper is structured as follows: next
section introduces the knowledge about hu-
man behavior and environment, which is
provided beforehand to the system. Sec-
tion 3 describes the process of automatic
generation of behaviors for virtual agents.
Section 4 shows the synthetic results ob-
tained modeling pedestrian behaviors in a
pedestrian crossing scenario. Finally, Sec-
tion 5 concludes the paper and discusses
future lines of research.

2 Use of A-priori Knowl-

edge

Simulation of a virtual world requires to
specify some requirements and restrictions
about the agent capabilities and the prop-
erties of the virtual environment. Firstly,
we describe the state which represents a
virtual agent at each time step. Next, we
introduce a human motion model which
determines the postures to be adopted by
the human agents in the environment. Fi-
nally, we discuss the representation of the
virtual environment within which the agent
interacts.

2.1 The State Vector of the

Agent

The state vector of the virtual agent is
determined by dynamical, positional and
postural properties of the human body. In

our case, this numerical knowledge com-
prises the following logic predicate, valid
at time step t:

t ! has status(Agent, x, y, or, vel, aLabel, p).

This state vector embeds the 2-D spa-
tial position pos of the agent Agent in the
floor plane, in addition to the velocity vel
and the orientation or. The parameter
aLabel refers to the action, i.e. walking,
standing and running. Finally, the para-
meter p refers to the temporal evolution
of the human body posture of a particular
action, as explained next.

2.2 Human Motion Model

The first approach to movement genera-
tion has been realized using an abstract
human motion model based on the stick
figure, whose structure is shown in Fig. 2.
The state vector already contains informa-
tion about the action the agent is perform-
ing at each time step. Every has status
has a posture label which corresponds to
a particular pose p ∈ [0, 1]. The posture
sequence is represented with the so–called
p–action representation as a model of hu-
man action, see [6] for details. Fig. 3
shows the stick figures corresponding to
the running p–action.

2.3 Conceptual Scene Model

The state vector of the agent contains in-
formation about its position for each frame
step. Therefore, some a-priori knowledge
about the scene has been provided to rea-
son about the interaction of the agents
with components of the scene. In our case,

Head

Left

Shoulder

Neck
Right

Shoulder

Right

Elbow

Right

Wrist

Left

Elbow

Left

Wrist
Hips

Right

Hip

Right

Knee

Left

Knee

Right

Ankle

Left

Hip

Left

Ankle

Figure 2: Generic human body model rep-
resented using a stick figure similar to [3],
here composed of twelve limbs and fifteen
joints.

Figure 3: p–actions computed in the aRun
aSpace, see [6] for details: by varying the
parameter pose p, we actually move along
the manifold, thus obtaining the temporal
evolution of the human body posture dur-
ing the prototypical performance of any
learnt action.

a ground-plane representation is used as a
virtual scene, see Fig. 4: it is divided into
squares which represent the minimum por-
tion of space an agent can occupy, called
a segment. Thus, an active agent in the

p1 p2 p3 p4

p5 p6

p10p9p8p7

p11 p12 p13

p14 p15 p16 p17

l4

l8

l1 l2 l3

l6l5

l7

l11l10l9

(a) (b)

Seg1

Seg2

Seg4

Seg5

Seg3
Seg6

Seg7

Seg8

TypeA TypeC

TypeA

TypeB

TypeB

TypeC

TypeC

TypeC

(c) (d)

Figure 4: Design steps for the scene
model. (a) Points (b) Lines (c) Segments
(d) Segment Labels

scene is supposed to be in one of these seg-
ments. However, several agents can share
a segment in a given time step. Each seg-
ment is labeled with a name that repre-
sents the part of the scene this segment
belongs to. For instance, in a pedestrian
crossing scenario segments can be labeled
as sidewalk, crosswalk, waiting line, or road.
This information allows the reasoning en-
gine to infer whether an agent is cross-
ing the street across the road or along the
crosswalk, for example.

3 Human Behavior Mod-

eling

In this section, we describe the automatic
generation of synthetic status sequences
based on a human behavior model. Let
consider the automatic generation of a spi-
ral motion for a particular agent within a

virtual scene. This first example implies,
at the very least, to describe the human
behavior model and the automatic path
planning generation.

3.1 Fuzzy Metric Temporal

Horn Logic

The knowledge involved in our behavior
models is defined not by using quantita-
tive data but with semantic concepts, which
are represented using FMTHL and its in-
ference engine F-Limette, both developed
by Schaffer et al. [10]. FMTHL encapsu-
lates the information in the form of logic
predicates which have a temporal valid-
ity, specified with a frame interval and
weighted with a value in the interval [0, 1],
thus specifying the degree of confidence
for this predicate to be valid. Fig. 5
shows the discretization of the predicate
has speed (Agent, Concept) which estab-
lishes the correspondence between numer-
ical speed values and fuzzy concepts like
slow, normal, or high.

3.2 Situation Graph Trees

The conceptual knowledge about human
behavior patterns is encoded in a set of
rules in FMTHL and organized within a
behavior modeling formalism called Situ-
ation Graph Tree (SGT). The basic com-
ponent of SGTs is the situation scheme,
which embeds the qualitative knowledge
for a given agent at each frame step, see
Fig. 6. These situation schemes are sepa-
rated into two parts: the state scheme and
the reaction scheme. On the one hand,
the state scheme refers to logic predicates
about the state of the agent, which should

0

0.5

1.0

0.1 0.15 0.6 0.83 1.7 2.2 2.8 4.4 6.0

Speed

µzero µsmall µnormal µhigh µvery_high

[m / s]

Figure 5: Discretization of continuous
speed values into a set of intervals. the
graph shows the fuzzy membership func-
tions µspeedvalue for the subset (zero, small,
normal, high, very high) of discrete con-
ceptual speed values.

SITUATION_NAME

State Scheme

Action Scheme

Figure 6: The situation scheme is the ba-
sic component of the SGTs. More details
in the text.

be satisfied for instantiating the situation.
On the other hand, the action scheme de-
scribes the changes (in terms of logic pred-
icates, too) to be applied to the state vec-
tor of the agent when the state scheme is
instantiated. See [1] for further details.

SGTs are used to recognize those sit-
uations which can be instantiated for a
synthetic agent by applying the so-called
graph traversal [7]. The goal is to deter-
mine the most specialized situation which
can be instantiated by considering the state
vector of the virtual agent at each frame

SGT

23 ! has_status (agent1, x, y, vel, or, alab, anum)

SITUATION_SCHEME

has_speed(Agent, moving)

turn(Agent, right)
note(walking(Agent))

1

23 ! has_speed(agent1, moving) ?
F-Limette

Yes

Agent State Vector

Figure 7: Instantiation of a situation
scheme: the FMTHL-based engine called
F-Limette evaluates the predicates of the
SGT given the state vector.

step. This traversal is applied by consid-
ering the knowledge encoded in the form
of prediction and specialization edges: on
the one hand, given a situation, only its
successors in temporal order will be evalu-
ated at next time step. On the other hand,
each situation can be described in a con-
ceptually more detailed way, thus allowing
abstraction and specificity. As a result, re-
action predicates modify the state vector
over time, see Fig. 7.

3.3 Automatic Path Planning

The reaction predicates determine partic-
ular movements for a synthetic agent. This
is achieved by modifying its position, ve-
locity and orientation, for example:

A

B

Figure 8: Automatic Path Planning:
Once the list of segments is crossed by an
straight line from A to B, the graph tra-
versal generates the synthetic trajectory
(dashed curve).

• turn(Agent, Value): it causes a mod-
ification in the orientation of the agent
for the next frame.

• accelerate(Agent, Value): it modi-
fies the velocity of the agent for the
next time step.

• wait(Agent, Duration): it causes the
agent to remain stopped at the same
position for a given quantity of time.

• go on performing(Agent, Action): it
makes the agent to continue perform-
ing the same action.

More complex reaction predicates take
into account the semantics of the agent’s
position and the goal the agent is going
to achieve , planned by the behavior. For
example, the predicates go to location and
go to next location compute the minimum
paths to go to a particular location seg-
ment. Since the scene model is divided
into segments, a path is defined as the se-
quence of segments the agent should visit
to reach the goal, see Fig. 8. In order to

Figure 9: SGT for the spiral example.

generate smooth trajectories, transitions
between two adjacent segments are com-
puted by considering the middle point of
their shared line. The curves of Fig. 8
represent the obtained trajectories.

So let consider the SGT depicted in
Fig. 9. The traversal of the SGT will
instantiate the LOOPING situation for a
given frame step t. The reaction predi-
cate turn(Agent, right) indicates that the
agent will turn to the right for the next
frame step t+1. This will change the sta-
tus vector, see Fig. 10. Note that the
qualitative data (right) of the predicate
turn is converted to a numerical value in
degrees (10). As a result, Fig. 11 shows
the evolution of the agent trajectory per-
forming a spiral motion. Fig. 12 shows
the generated animation involving several
agents.

SGT

23 ! has_status (agent1, x, y, vel, or, alab, anum)

SITUATION_SCHEME

has_speed(Agent, moving)

turn(Agent, right)
note(walking(Agent))

1

turn(agent1, right)

F-Limette

Agent State Vector frame 23

turn(agent1, 10)

Human Motion Model

24 ! has_status (agent1, x’, y’, vel’, or’, alab’, anum’)

Agent State Vector frame 24

Figure 10: Scheme of the process since the
reaction predicate is raised from the tra-
versal until the new agent status is gener-
ated.

Frame Number Agent State

has_status(agent_1, 6.0, 6.09, 91.9, 2.73, aWalk, 0.1)

has_status(agent_1, 6.0, 6.09, 91.9, 2.73, aWalk, 0.1)

has_status(agent_1, 5.99, 6.2, 93.81, 3.45, aWalk, 0.2)

has_status(agent_1, 5.99, 6.27, 94.76, 3.81, aWalk, 0.25)

5

6

7

8

...

...

Figure 11: Evolution of the state vector of
the agent for the spiral trajectory..

4 Experimental Results

In this section we show the results ob-
tained modeling the pedestrian behavior
in a pedestrian crossing scenario, see Fig.
13. For this scenario, three different pedes-
trian behaviors have been considered:

1. Behavior 1 : the pedestrian crosses
the crosswalk without stopping in the
waiting line.

Figure 12: Animation of the trajectory
generated with the spiral example.

Figure 13: The pedestrian crossing sce-
nario.

2. Behavior 2 : the pedestrian crosses
the crosswalk, stopping few seconds
in the waiting line.

3. Behavior 3 : the pedestrian crosses
the road without approaching to the
crosswalk.

Fig. 14 depicts the SGT designed to
model Behavior 1 behavior. Given an ini-
tial status, the most general situation is
instantiated (ED SIT 13) and it is gener-
alized depending on the agent’s location.
If it is in the road (ED SIT 14), the pred-
icate go to waiting line causes the agent
to move to the nearest sideway segment.
When located in a sideway segment, the
agent walks to the nearest waiting line
(ED SIT 20). Then, the situation ED
SIT 14 cannot be instantiated again and
the posterior situations in sequence are
inspected. Thus, the agent reaches the
crosswalk (ED SIT 16) and crosses the
road (ED SIT 15).

Fig. 15 shows an example of auto-
matically generated video sequence, which
involved four virtual agents. The agents
were located at different positions and were
given different behaviors, from the list men-
tioned above. Fig. 16 shows the results
of a multitudinary simulation involving a
hundred of virtual agents1.

5 Conclusions and Future

Work

This paper presented a complete frame-
work to automatically generate synthetic
image sequences by designing and simu-
lating complex human behaviors in virtual
environments. Given an initial state of a
virtual agent, a simulation process gener-
ates posterior synthetic states by means of
precomputed human motion and behav-
ior models, taking into account the rela-

1More results can be found at the ISE Lab
website: http://www.cvc.uab.es/ise

Figure 14: SGT for the Behavior 1 model.
Further explanation in the text.

tionships of such an agent w.r.t its envi-
ronment and w.r.t. other agents at each
frame step. The resulting status sequence
is further visualized into a virtual scene
using a 3D graphic engine. Conceptual
knowledge about human behavior patterns
has been represented using the Situation
Graph Tree formalism and a rule-based in-
ference system called F-Limette.

The framework has been successfully
tested in a pedestrian crossing scenario,
and complex pedestrian behaviors have been
simulated. Moreover, the SGT formalism

(a)

(b)

(c)

Figure 15: Frames from an automatically
generated image sequence. (a) A pedes-
trian crosses the crosswalk without stop-
ping. (b) Two pedestrians cross the cross-
walk at the same time. (c) A pedestrian
crosses the road without approaching the
crosswalk.

is a highly suitable formalism which can
be applied to different discourse domains.
However, conceptual knowledge about the
environment has to be provided to each

Figure 16: Example frames of a multi-
tudinary crosswalk simulation, involving
more than one hundred virtual agents at
the same time.

new scenario. Although it is possible to
model most of the possible human behav-
iors for a given scenario, there is a lack of
flexibility to add more uncertainty to the
simulation process, which is in the proper
nature of human behavior. Future work
will be focused to incorporate learning ca-
pabilities to the SGT formalism, in order
to design more flexible and evolvable be-
havior models. In addition, more kinds
of agents will be considered, e.g. vehicles
and static objects, and their interaction
with the environment will be also mod-
eled. Finally, the 3D render engine will be
provided with realistic body models.

Acknowledgments.

This work has been supported by EC grants
IST-027110 for the HERMES project and
IST-045547 for the VIDI-Video project,
and by the Spanish MEC under projects
TIN2006-14606 and DPI-2004-5414. Jordi
Gonzàlez also acknowledges the support of
a Juan de la Cierva Postdoctoral fellow-
ship from the Spanish MEC.

References

[1] M. Arens and H.-H. Nagel. Be-
havioral knowledge representation
for the understanding and creation
of video sequences. In Proceed-
ings of the 26th German Conference
on Artificial Intelligence (KI-2003),
pages 149–163. LNAI, Springler-
Verlag: Berlin, Heidelberg, New
York/NY, September 2003.

[2] T. A. Galyean B. M. Blumberg.
Multi-level direction of autonomous
creatures for real-time virtual en-
vironments. Computer Graphics,
29(Annual Conference Series):47–54,
1995.

[3] J. Cheng and M.F. Moura. Capture
and represention of human walking
in live video sequences. IEEE Trans-
actions on Multimedia, 1(2):144–156,
1999.

[4] T. Conde and D. Thalmann. Au-
tonomous virtual agents learning a
cognitive model and evolving. In In-
telligent Virtual Agents, pages 88–98,
2005.

[5] N. Courty, F. Lamarche, S. Donikian,
and E. Marchand. A cinematogra-
phy system for virtual storytelling.
In Proceedings of the 2nd Interna-
tional Conference on Virtual Story-
telling (ICVS 2003), volume 2897,
pages 30–34, Toulouse, France, 2003.

[6] J. Gonzàlez, X. Varona, X. Roca, and
J. J. Villanueva. Automatic keyfram-
ing of human actions for computer
animation. In Proceedings of the 1st
Iberian Conference on Pattern Recog-
nition and Image Analysis (IbPRIA
2003), pages 287–296, 2003.

[7] M. Haag and H.-H. Nagel. Incremen-
tal recognition of traffic situations
from video image sequences. Image
and Vision Computing, 18(2):137–
153, 2000.

[8] K. Perlin and A. Goldberg. Im-
prov: A system for scripting interac-
tive actors in virtual worlds. Com-
puter Graphics, 30(Annual Confer-
ence Series):205–216, 1996.

[9] C. W. Reynolds. Flocks, herds,
and schools: A distributed behav-
ioral model. Computer Graphics,
21(4):25–34, 1987.

[10] K. Schäfer. Fuzzy spatio-temporal
logic programming. In C. Brzoska,
editor, Proceedings of 7th Workshop
in Temporal and Non-Classical Log-
ics – IJCAI’97, pages 23–28, Nagoya,
Japan, 1997.

[11] W. Tambellini T. Conde and D. Thal-
mann. Behavioral animation of au-
tonomous virtual agents helped by

reinforcement. In Lecture Notes
in Computer Science, volume 2792,
pages 175–180, 2003.

[12] D. Shreiner M. Woo T. Davis,
J. Neider. OpenGL Programming
Guide: The Official Guide to Learn-
ing OpenGL. Addison-Wesley, 2005.

[13] W. Tang and T. Ruan Wan. Syn-
thetic vision for road traffic simula-
tion in a virtual environment. In In-
telligent Agents for Mobile and Vir-
tual Media, pages 176–185, London,
UK, 2002. Springer-Verlag.

[14] N. Zagalo and V. Branco. Sto-
rytelling and interactivity in
videogames, from myst to ico. Deliv-
erable 3.1.1 of INSCAPE Integrated
Project (EU RTD IST-2004-004150),
2005.

