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Abstract. Robust and accurate people tracking is a key task in many
promising computer-vision applications. One must deal with non-rigid
targets in open-world scenarios, whose shape and appearance evolve over
time. Targets may interact, causing partial or complete occlusions. This
paper improves tracking by means of particle �ltering, where occlusions
are handled considering the target’s predicted trajectories. Model drift is
tackled by careful updating, based on the history o� ikelihood measures.
A colour-based likelihood, computed from histogram similarity, is used.
Experiments are carried out using se quences from the CAVIAR database.

1 Introduction

Robust and accurate people tracking is a key task in many promising computer-
vision applications, such as smart video surveillance or human-computer inter-
faces [6,4,1]. The interest in multiple-people tracking is also prompted by the
challenge of emulating the amazing capabilities of natural systems to detect
motion and keep lock on several moving objects simultaneously.

However, serious di�culties should b e expected. The system must deal with
non-rigid targets, often highly articulated and elastic, who may wear loose-�tting
clothes. In open-world applications, neither the number of targets, nor their ap-
pearance or shape can be speci�ed in advance. Considerable foreground diver-
sity should be taken into account. Further, both observed shape and appearance
evolve over time depending on the point of view, or on the local illumination and
background, specially if these are uncontrolled. Finally, as the targets interact,
they may group and split, causing occlusions, and changing the observed ap-
pearance and shape. This paper enhances tracking by means of particle �ltering
(PF). A preliminary work was published in [11]. The main contributions of the
presented approach are the following:

– it copes with clutter distracters by adopting a colour-based likelihood com-
puted from histogram similarity. Colour information relative to the target
surroundings is used to tune the colour histograms.

– It deals with multiple targets simultaneously, paying special attention to the
sampling impoverishment phenomenon. The systems scales well with the
number of targets, avoiding the curse of dimensionality common to PF.
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– Model drift is precluded by careful updating, based on likelihood measures,
thereby ensuring proper tracking despite noisy measures, estimate errors,
occlusions, and changes in illumination conditions and camera viewpoint.

– Occlusions are handled considering the predicted trajectories of all targets
within the scene and the history of likelihood measurements.

The remainder of this paper is organised as follows. Section 2 covers the prob-
abilistic framework and related approaches. A colour-based particle filter for
multiple-target tracking is proposed in Section 3. Section 4 shows some experi-
mental results, and section 5 summarises the conclusions.

2 Probabilistic Tracking Framework

The computation of the state st given all evidence to date e1:t is called filtering.
The posterior pdf p (st | e1:t) can be calculated through recursive estimation:

p (st | e1:t) ∝ p (et | st)
︸ ︷︷ ︸

∫

p (st | st−1)
︸ ︷︷ ︸

p (st−1 | e1:t−1)
︸ ︷︷ ︸

dst−1.

likelihood
︸ ︷︷ ︸

trans. model previous post.
︸ ︷︷ ︸

updating prediction

(1)

The pdf is projected forward according to the transition model, making a
prediction. It is then updated in agreement with the new evidence, et. When
non-Gaussian, non-linear distributions are involved, this problem is overcome
by simulating N i.i.d. random samples from the posterior pdf,

{

si
t; i = 1 : N

}

.
This leads to the particle filter approach. This works as follows: the posterior
pdf at time t − 1, p (st−1 | e1:t−1), is represented by a weighted set of samples,
{

ŝi
t−1, π

i
t−1; i = 1 : N

}

. The set is re-sampled using normalised weights πi
t−1 as

probabilities. The temporal prior
{

ŝi
t

}

is obtained by applying the transition
model p (st | st−1) to each sample. The likelihood p (et | st) is represented by
weights πi

t, which are then normalised. Expectations are approximated as:

Ep(st|e1:t) (st) �
∑N

i=1π
i
tŝ

i
t. (2)

Although SIR methods have been widely used in recent years, they have impor-
tant drawbacks [7]. Sampling impoverishment is one of the main ones: samples
are spread around several modes pointing out hypotheses in the state space, but
most of them may be spurious. Unfortunately, there is a non-negligible probabil-
ity of losing modes, a low probability of recovering them and the remaining modes
could be all spurious. Different approaches have been taken in order to overcome
these and other issues. Nummiaro et al. [9] use a PF based on colour-histogram
cues. However, no multiple-target tracking is considered, which implies that no
scene event such as target grouping or occlusion can be analysed. Perez et al.
[10] propose also a PF based on a colour-histogram likelihood. They introduce
interesting extensions in multiple-part modelling, incorporation of background
information, and multiple-target tracking. Nevertheless, it requires an extremely
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large number of samples, since one sample contains information about the state of
all targets, dramatically increasing the state dimensionality. Further, no appear-
ance model updating is performed, what usually leads to target loss in dynamic
scenes. Deutscher et al. [3] present an interesting approach called annealing parti-
cle filter which aims to reduce the required number of samples. However, pruning
hypotheses with lower likelihood could be undesirable in a cluttered environment.
Contour tracking have also been explored [8], although this may be inappropri-
ate if used as the only cue in crowded scenarios because of multiple occlusions.
BraMBLe [5] is an appealing approach to multiple-blob tracking which models
both background and foreground using Mixtures of Gaussians (MoG). However,
no model update is performed, there is a common foreground model for all tar-
gets, and suffers for the curse of dimensionality, since it tackles multiple-target
tracking combining information about all targets in every sample. Therefore,
even though a great number of improvements have been introduced in recent
years, there is still much ground to cover.

3 A Multi-target Colour-Based PF

The motion of the central point of an elliptical region is modelled using first-
order dynamics in image coordinates. The l-labelled target’s state is defined as
sl
t =

(

xl
t,u

l
t,w

l
t,q

l
t, ρ

l
t, λ

l
t

)T , where components are the ellipse position, velocity,
both axes, the appearance model, the occlusion status, and the expected target
likelihood. A label l associates a specific appearance model to the correspond-
ing samples, allowing multiple-target tracking. Given the high dimensionality of
images, a feature extraction process is mandatory. In this approach, evidences
et are given by colour histograms computed at each predicted location and size.

After the initialisation, no sample is generated using detection, since it would
mask tracking misbehaviours. Thus, just tracking performances are tested by
means of propagating hypotheses and weighting them according to evidence.
Clearly, by incorporing detection, the general performance will be enhanced,
providing the system with error-recovery capabilities.

3.1 Transition Model

The position, speed, and size of each sample are predicted according to:

x̂i,l
t = xi,l

t−1 + ui,l
t−1Δt + ξi

x,

ûi,l
t = ul

t−1 + ξi
u,

ŵi,l
t = wi,l

t−1 + ξi
w. (3)

The random vectors ξi
x, ξi

u, ξi
w, sampled from WAGN processes, provide the

system with a diversity of hypotheses. Sample likelihoods depend on sample
position and size, but not on their speeds. Thus, if speeds were propagated con-
sidering the previous speed, they would be in quasi open loop1. Thus, their values
1 There would still be a weak relation, since speeds are used to predict positions, and

position errors can be measured, but a considerable delay would be introduced.
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could become completely different from the true values within a few frames, and
an important proportion of samples would be wasted. In order to avoid this
phenomenon, the estimated target speed ul

t−1 at time t − 1 is fed back into the
prediction of x̂i,l

t .

3.2 Likelihood Function

The likelihood function computes the pdf of image features given the state. The
target appearance can be represented by means of colour histograms. Histograms
are broadly used to represented human appearance, since they are claimed to be
less sensitive than colour templates to rotations in depth, the camera point of
view, non-rigid targets, and partial occlusions. Thus, the l−model is given by:

ql =
�

ql
k; k = 1 : K

�
, (4)

where K is the number of bins, and the probability of each feature is:

ql
k = Cl�M

a=1δ (b (xa) − k), (5)

where Cl is a normalisation constant required to ensure that
∑K

k=1 ql
k = 1, δ

the Kronecker delta, {xa; a = 1 : M} the pixel locations, and b (xa) a function
that associates the given pixel to its corresponding histogram bin. The target
distribution at the predicted position x̂i,l

t and ellipse size ŵi,l
t , is given by pl

i,
which is calculated in the same way as the model. The similarity between two
histograms can be computed using the following metric [2,9]:

dB =
�

1 − ρ (p,q), (6)

where ρ (p,q) =
∑K

k=1
√

pkqk. is the Bhattacharyya coefficient. Therefore, similar
histograms have a high Bhattacharyya coefficient, which should correspond to
high sample weights. The computed metric can be mapped using a Gaussian
distribution [9], and samples are thus weighted according to:

πi,l
t = p

�
et | ŝi,l

t

�
= N

�
dB ; μ, σ2� . (7)

So far no background information has been used. However, tracking success
depends on how distinguishable the target is from a local environment. Thus,
foreground features present also in its surroundings should be less important
for target localisation. Here, an approach similar to [2] is adopted by using a
centre-surround model to compute the background histogram rl according to
the outer region which encloses the target. Hence, the background histogram is
used to compute a weight for each bin:

ωk =
{

min
(

r∗k
rk

)

; k = 1 : K

}

, (8)

where r∗k is the minimum non-zero value. Thus, these weights are then applied
to both model and target histograms to diminish the importance of those bins
which represent the local background.
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3.3 Weight Normalisation

In a multiple-target tracking scenario, those targets whose samples exhibit lower
likelihood are more likely to be lost, since the probability of propagating one
mode is proportional to the cumulative weights of its samples. In order to avoid
one target absorbing other target samples, genetic drift must be prevented. Thus,
a memory term, which takes into account the number of targets being tracked,
is included. Weights are normalised according to:

πi,l
t =

πi,l
t

N	
i=1,j=l

πi,j
t

1
L

, (9)

where L is the number of tracked targets. Each weight is normalised according
to the total weight of the target’s samples. Thus, all targets have the same
probability of being propagated, since the addition of the weights of each target
samples sums 1

L . This allows multiple-target tracking using a single PF, despite
the differences between their likelihoods and the genetic drift phenomenon.

3.4 State Estimation

The l-target estimates are computed according to:

xl
t = (1 − αx)

�
xl

t−1 + ul
t−1Δt

�
+ αx

�
L
�N

i=1π
i,l
t x̂i,l

t

�
,

ul
t = (1 − αu)ul

t−1 + αu



xl

t − xl
t−1

Δt

�
,

wl
t = (1 − αw)wl

t−1 + αw

�
L
�N

i=1π
i,l
t �wi,l

t

�
, (10)

where αx, αu, αw ∈ [0, 1] denote the adaptation rates. Target speeds are not
estimated according to sample speeds and their weights, since significant errors
would be introduced: samples are chosen only because of sample weights, which
do not directly depend on the current speed. This fact could imply a signif-
icant amount of jitter and many samples would be wasted. Therefore, target
speeds are computed from successive position estimates. Further, both posi-
tion and speed estimates are enhanced by regularising them according to their
histories.

The target appearance must also be updated. However, this is a sensitive task
which may lead to the well-known model drift phenomenon. Thus, models are
then only updated when two conditions hold: (i) the target is not occluded and
(ii) the likelihood of the estimated target’s state suggests that the estimate is
sufficiently reliable. In this case, they are updated using an adaptive filter:

ql
t = (1 − αq)ql

t−1 + αqpl
t, (11)

where αq ∈ [0, 1] is the learning rate. In order to determine when the esti-
mate is reliable, the likelihood of the current estimate is computed, p

(

et | sl
t

)

.
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The appearance is then updated when this value is higher than an indicator of
the expected likelihood value, calculated following an adaptive rule:

λl
t = (1 − αl) λl

t−1 + αlp
�
et | sl

t

�
. (12)

3.5 Occlusion Handling

Although the appearance model is not updated during occlusions, these still
constitute a main cause of catastrophic failures. Partial occlusions may cause
inaccurate size updating, according to the area that can be seen. In case of
complete occlusions, sample likelihoods are meaningless, and the re-sampling
phase randomly propagate them, quickly losing the target.

Hence, proper handling of occlusions is crucial. The state binary variable ρl
t

tracks the occlusion status. Occlusions are predicted according to the learned
dynamics. When the predicted occlusion is significant, and the target likelihood
is lower than the expected one given by λl

t, the target state changes into occluded.
Then, the following changes are introduced: (i) the adaptation rates are set to
zero: neither the size, nor the velocity or the indicator itself is updated, and
the position is just propagated; (ii) those samples belonging to the occluded
target are not re-sampled. As a result, samples are spread around the target
because of the uncertainty predictions terms. The other targets’ samples are
re-sampled, but are not assigned to the occluded target since otherwise this
one would monopolise the whole sample set. When the occlusion is no longer
predicted or a sample likelihood exceeds the value previous to the occlusion,
ρl

t turns into 0, which immediately implies pruning those samples with lower
weights. Furthermore, all estimates are again updated.

4 Experimental Results

The performance of the algorithm has been tested using the CAVIAR database2.
In the sequence OneLeaveShopReenter1cor (Caviar database, 389 frames at 25
fps, 384 x 288 pixels), two targets are tracked simultaneously, despite their being
articulated and elastic objects whose dynamics are highly non-linear, and that
move through an environment which locally mimics the target colour appearance.
The first target performs a rotation and heads towards the second one, eventually
occluding it. The background colour distribution is so similar to the target ones
that it constitutes a source of clutter. Furthermore, several oriented lighting
sources are present, dramatically affecting the target appearance. Significant
speed and size changes can also be observed.

The tracker performance is shown in Fig. 1. Both targets’ appearance models
are updated when reliable measures are obtained, see Fig. 1.(a). Poor locali-
sations and occlusions are correctly detected, thereby avoiding re-sampling of
samples of the occluded target and erroneous dynamic and appearance models
updating, see Fig. 1.(b), (c). The tracker successfully recovers from occlusion, see
2 http://homepages.inf.ed.ac.uk/rbf/CAVIAR
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(a) Frame 4: updating (b) Frame 62: tracking

(c) Frame 74: occluded (d) Frame 90: recovery

Fig. 1. Each target’s estimated position is denoted by an ellipse and tagged accordingly;
milestones are placed on the target trajectory every 25 frames; each predicted sample
is drawn using a dark dot, whereas re-sampled particles are drawn in a light ones

Fig. 2. Likelihood evolution

Fig. 1.(d). The maximum sample and target likelihoods, and the likelihood indi-
cator is shown in Fig. 2. The tracker deals with multiple-target tracking whose
dynamics are highly non-linear, despite using a simple constant speed approach.
They move through an environment which mimics the target appearances. Fur-
thermore, their trajectories intersect causing a severe partial occlusion. It copes
with sizeable appearance and shape changes.
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5 Conclusions

With this work we attempt to take a step towards solving the numerous diffi-
culties which appear in unconstrained tracking applications. A robust likelihood
function is used to properly evaluate samples associated to targets which present
a high appearance variability. We rely on the Bhattacharyya coefficient between
colour histograms to perform this task. Model updating is carried out with spe-
cial care, thereby overcoming the model drift phenomenon. A multiple-target
tracking scenario causes several problems, including sampling impoverishment
and mutual occlusions. These issues are tackled by redefining the weight nor-
malisation and predicting and handling occlusions.

The tracker has been successfully tested despite the fact that no detection is
ever used after initialisation. Future research will be focused on careful feature se-
lection in order to maximise the distance between the histograms corresponding
to the different targets and the background, thereby enhancing the disambigua-
tion of targets from clutter.
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