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Abstract 

Solving the navigation issue for a mobile robot in a 
2D space requires using internal and external sensors, 
so researchers try to fuse data from different sensors 
using  methods as for example Kalman filtering. Those 
methods need an estimation of the uncertainty in the 
pose estimates obtained from the sensory system, usually 
expressed by a covariance matrix and obtained from 
experimental data. In a previous work, a general method 
to obtain the uncertainty in the odometry pose estimate 
was proposed. Here, with the aim of assessing the 
generality of the method, the general formulation is 
particularized for a given differential driven robot. Its 
kinematic model relates two internal measurements: the 
instantaneous displacement of both, right and left 
wheels. The obtained formulation is validated 
experimentally and compared against Kalman filtering. 
 

1. Introduction 

Providing whether a robot or an autonomous vehicle 
(AV), with the ability to satisfactory perform a general 
task while robustly navigating in the real world, is a very 
difficult problem that, nowadays, has not been solved yet 
by the scientific community [1]. To reliably perform a 
task it is necessary to locate those vehicles, to know their 
pose1 as well as its associated uncertainty, i.e., knowing 
both, where the vehicle is and how much the error on 
this pose estimate is. Usually, to accurately provide a 
pose estimate, a unique source of pose information is not 
enough, so researchers try to fuse data from different 
sources [2-5]. When fusing information, Kalman 
filtering is frequently used with the problem of 
determining the covariance matrices associated with the 
position uncertainty, since the errors of the sensory 
system affects the pose estimate. These matrices are 
determined experimentally from sensor data with 
different algorithms which trend to be very sensitive to 
                                                           
1 Pose is used to denote the state vector formed by the robot’s 2D 
position (x,y) plus its heading (!) 

this parameter determination and initialization. 
Furthermore, general and unconstrained motion is 
usually assumed for the computation of those matrices, 
hence ignoring the nature of phenomena as, for instance, 
when the movement is constrained by non-holonomic 
architecture. This fact leads to poor pose uncertainty 
estimation. 

Different methods have been previously proposed in 
the literature to estimate the pose uncertainty. For 
example, [6] employed a min/max error bound approach, 
[7] used a scalar as position uncertainty measurement, 
without reference to the orientation error. Uncertainty 
expressed by a covariance matrix is used in many works 
as [8-12]. In [13] a method for determining this 
covariance matrix is given for the special case of circular 
arc motion with constant radius of curvature. In [14] the 
odometry error is modelled for a synchronous drive 
system depending on parameters characterizing both 
systematic and non-systematic components. In a recent 
published research effort [15] a general method was 
proposed to compute the uncertainty in the pose estimate 
obtained from internal sensors, and applied to a 
particular non-holonomic, Ackerman driven, AV. The 
pose uncertainty is expressed using a covariance matrix 
and determined from the pose estimation equations given 
by the robot’s kinematic model. It remained to assess 
that the proposed method is valid for any platform and 
sensory system used. In this paper the particularization 
of the general formulation given in [15] for the special 
case of a differential driven robot is presented. 

Next sections are devoted to the general description of 
the method and its application to a particular robot. For 
this vehicle, a brief description of its kinematic model 
and the required mathematical development to derive the 
expression for the covariance matrix representing the 
pose estimate uncertainty are given. Finally, the herein 
proposed method has been compared against the 
standard Extended Kalman Filter (EKF) when 
computing the uncertainty associated with the odometry 
pose estimate. 
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2. Obtaining the pose estimate uncertainty 

Consider a mobile vehicle for which a kinematic 
model of the form M(x, y, !r, s, t) is given. Model M is 
generally non-linear on x, y, ", (pose of the vehicle on 
the plane), r (physical parameters of the vehicle), vector 
s (internal sensor measurements), and t (discrete time 
moments). We are concerned with the problem of 
accurately determining the uncertainty associated with 
the robot's pose computed from its internal sensors using 
the kinematic model. 

Suppose that for time t-1 (notation t-1, for t - !t, t-2 
for t - 2!t, and so on it is being used all throughout the 
paper) the pose, P(t-1)=[x(t-1), y(t-1), "(t-1)], of the 
vehicle and its associated uncertainty, Cov [Pt-1], are 
known. For time t, after the vehicle has performed a 
certain movement, and sensors on the robot have noisily 
measured it, the new pose can be obtained using the 
equation P(t) = P(t-1) + !P(t). The pose increment will 
be computed from the kinematic model and actual sensor 
measurements. At this point, temporal variations on the 
physical parameters of the robot, and different sensor 
measurements for !x, # !y and ! "  are allowed so as to 
maintain generality in the model. f,g,h represent general 
functions that model these increments for components x, 
y, ", respectively. 
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The uncertainty in the robot’s pose will depend on 

model inaccuracies, noise in the sensor measurements 
and additive errors from the previous pose estimate. It 
can be computed from the covariance matrix of the 
robot’s pose: 
 
Cov [Pt]= Cov [Pt-1 +!Pt] = Cov [Pt-1 ]+ Cov [!Pt]+ 

+  Cov [Pt-1 , !Pt]+ Cov [!Pt ,Pt-1 ] (2) 
 

The term Cov [Pt-1 ] is recursive which can be 
initialized to 03x3 if the initial pose of the robot is well 
known. The term for the pose increment is Cov [!Pt] and 
computed from the covariance definition as: 
 

Cov [!Pt] = - . - . - .T
tt

T
tt PEPEPPE ++)++   (3) 
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The cross terms Cov [Pt-1 , !Pt]+ Cov [!Pt ,Pt-1 ] express the 
influence of the previous position Pt-1, on the increment 
of run path !Pt, mainly due to the dependence of !Pt  in 

1)t, . Computation of these terms requires complex 
mathematical expressions that will not add a deeper 
insight on the current study; for further information on 
how to compute them, please refer to [17]. 

So, equations (3) to (5) express the uncertainty of the 
pose determined from internal sensors while taking into 
account the physical architecture of the vehicle2. In order 
to solve (4) and (5), a distribution for the sensors noise 
must be assumed, which will be determined from 
experimental characterization. 

3. Used platform in the study 

A standard Pioneer P3 AT robot named Helena (see 
Fig. 1) has been used in this study. The vehicle is 
electrically powered and it can perform tasks 
autonomously. Used internal sensors are, for the case at 
hand, two odometers attached to the shafts of the right 
and left drive wheel motors respectively. 
 

 

Figure 1. Pioneer P3 AT robot Helena used 
in this study. 

The used driving architecture is differential. The 
kinematic model being used can be derived from Fig. 2 
or found in any basic robotics book as [18]. It is not the 
scope of this paper to study kinematic models and/or 
how they are derived. Equation (6) expresses the 
kinematic model used for this study, where parameter b 
is the robot width and (Vr, Vl ) denotes the right and left 
linear wheel control velocities respectively. The simple 
proposed model has the essential elements for the 
analysis and should be enough for control purposes. 

 

                                                           
2  Although (x, y,,), are scalars, the Transpose is used in the 
formulation in order to be mathematically rigorous and to maintain 
generality. 
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Figure 2. Schematic draw for obtaining the 
kinematic model of a common differential 
robot. 

4. Robot’s pose estimate uncertainty. 

In order to assess the generality of the method given 
in [15], it is proposed to obtain the covariance matrix 
expressing the uncertainty for the odometry estimated 
pose from the equations of Helena’s kinematic model. 
This uncertainty estimation takes directly into account 
the physical structure of the vehicle, which is translated 
into the control variables being manipulated and sensed. 
For the case at hand, the only inputs to the model are the 
two measurements being obtained from internal sensors: 
the instantaneous displacement for each of the robot 
wheels right

td+ and left
td+ . The pose estimate from 

odometry at time t is computed as, od
tP  = Pt-1 + ! od

tP , 
corresponding to the sum of the robot pose in a previous 
time t-1, plus the increments in pose measured from the 
odometry system and computed using the equations from 
the kinematic model. 
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Measurements obtained from both odometer sensors 

are not error free. In order to compute the uncertainty in 
the pose given by the odometry system, Cov[ od

tP ], 
sensor errors are considered to follow a normal 
distribution: 

 
rightright

t
right
t dd 0/+*+ ˆ  where  ),0( 2

right
right N 10 2  

leftleft
t

left
t dd 0/+*+ ˆ  where  ),0( 2

left
left N 10 2  

So the uncertainty in the pose od
tP is given by: 

 
Cov[ od

tP ] = Cov[Pt-1 + ! od
tP ] = Cov[Pt-1 ] +  

Cov[! od
tP ] + Cov[Pt-1 , ! od

tP ]+ Cov[! od
tP $#Pt-1] 

 
The term Cov [Pt-1 ] is recursive and initialized to 03x3 

because the initial pose of the robot is supposed to be 
well known. For this particular study, and without lack 
of generality, it will be considered Cov [Pt-1 , !Pt] = Cov 
[!Pt, Pt-1] = 0. In order to solve (3) for the used vehicle, 
it is necessary to calculate each of the elements of the 
involved matrices. The first element in equation (4) is 
calculated as follows: 
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Two main assumptions have been made here. First 

the orientation of the robot for time t-1 is considered as 
deterministic and without error. A deeper development 
could be made considering an error for this angle [17], 
expressed in the form ,0, 11 )) / tt , but it does not add new 
information to the process of showing the advocated 
method. Second, measurements from both odometers 
have been considered independent. 

After computing all the expectations an expression 
for Cov[! od

tP ] is obtained, as the rest of two symmetric 
3x3 matrices, - . - . - .od

t
Tod

t
od
t

Tod
t PEPEPPE ++)++ . Defining the 

terms k1 to k5 as follows: 
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Elements for the first matrix, given in (3), are: 
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A complete development of all the elements for 

matrix (4) is given in the Appendix. The second matrix, 
(5), is computed considering the product of two vectors 
- . - .od

t
Tod

t PEPE ++ , where,  
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The full expression for this second matrix is not 

included, It can be easily and directly derived from 
multiplying - . - .od

t
Tod

t PEPE ++ . Finally, the expression for 
the uncertainty in the odometry pose estimate will be 
given by subtracting the two computed matrices: 
- . - . - .od

t
Tod

t
od
t

Tod
t PEPEPPE ++)++ .  

5. Assessment of results 

To assess the effectiveness of the proposed method to 
compute the uncertainty associated with the odometry 
pose estimate of a mobile vehicle, an experiment was 
designed and run using the robot previously described in 
section III. A 10x4.5 m. rectangular path, marked on the 
floor of the Institute corridor, was followed while 
manually driving the described robot. Data from internal 
sensors (right and left encoders) were gathered during 
the run3. Figure 3 shows the obtained odometry data for 
coordinates (x,y), being the horizontal axis x and the 
vertical y. Then, the uncertainty of the odometry position 
estimates obtained with, both, an EKF and the proposed 
method was compared. Figures 4 and 5 show the 
obtained covariance for od

tP , denoting the uncertainty of 
the position estimates, for the x and y axis using the 
proposed formulation; Figures 6 and 7 shows the 
obtained covariance in the position estimate od

tP using an 
EKF. 

                                                           
3 Maximum velocity was 20 cm/s. Sampling rate was 20 Hz. 

 

Figure 3. The path the robot computes 
from odometry data is shown in 
continuous line. The proposed path 
(depicted in dot-dashed line) starts at the 
origin (0,0) advancing from left to right and 
from down to up, as shown by the arrows,  
in the graph to complete a round trip. 

 

Figure 4. Estimated position uncertainty 
for coordinate x (in the vertical axis) using 
the presented formulation.  

 

Figure 5. Estimated position uncertainty 
for coordinate y (in the vertical axis) using 
the presented formulation. 
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Figure 6. Estimated position uncertainty 
for coordinate x (in the vertical axis) using 
an EKF. 

 

Figure 7. Estimated position uncertainty 
for coordinate y (in the vertical axis) using 
an EKF. 

It can be seen from figures 4 and 5 that the obtained 
uncertainty for coordinates x, y using the proposed 
method (about 2.3 and 2.9 meters in the x and y axes 
respectively) is lower than the obtained with an EKF 
(about 6.8 and 8.4 meters in the x and y axes 
respectively). It turns out that the real measured position 
error for the used platform in the run experiment is about 
2.2 and 2.75 meters for the x and y axes respectively 
(which means a covariance uncertainty of about 5 and 8 
for x and y axes respectively , as the presented method 
accurately states). 

Surprisingly, when using the EKF to estimate the 
pose uncertainty, a slight decrease for the position 
uncertainty in both axes is reported in figures 6 and 7. 
This fluctuation is produced when the robot navigates in 
the opposite direction of the initial movement, that is, 
,=180º. Author thinks it is produced by the effects of 
linearization of the system state transition equation. The 
elements of the obtained jacobians are trigonometric 
functions, sin(,) and cos(,), which causes the observed 
effect with the variation of theta, the robot’s orientation. 
This is not fully consistent with the experiment run, 

because only one source of position information has 
been used to compute the position of the robot, so there 
is no extra information so as to decrease the uncertainty 
of the estimated position. In this sense, and at least for 
this experiment, the EKF correctly computed the pose of 
the robot, but failed to obtain its associated uncertainty. 

On the other hand, the computed uncertainty with the 
presented method it does not depend on any parameter 
initialization as it is needed with the EKF, in this sense; 
we do not find variation of results depending on how the 
algorithm is initialized. It neither depends on the axis to 
which the robot is oriented. Obtained results are robust 
and consistent with the experiment run. 

6. Conclusions and future work 

The pose of a mobile robot in a two-dimensional 
space can be represented by the three components vector 
(x, y,, ) where x, y, represent the position coordinates of 
the robot on the space, and ,  its heading orientation. 
Thus the robot pose at time t is denoted as Pt = (xt, yt, 
,t)T. There is always an error associated with the 
movement of the autonomous platform. The imprecision 
in the pose estimates is due to errors in the sensory 
system used to determinate such estimations as well as 
unmodeled factors in the vehicle model. These errors are 
normally estimated from data derived from 
experimentation and then integrated in algorithms, as for 
example Kalman filtering, which are highly sensitive to 
the obtained parameters. 

A method has been proposed to obtain an accurate 
expression for the pose uncertainty, by means of a 
covariance matrix, when position estimates are being 
obtained using internal sensors. The proposed method is 
valid for any platform or set of sensors. A 
particularization for the general formulation has been 
done here to obtain the covariance matrix representing 
the measurement of pose uncertainty for a given kind of 
differential driving robot.  

Even if lot of research and experiments are left for a 
near future, the initial experimental evaluation 
demonstrates that the proposed method can compute the 
pose uncertainty with highest accuracy than the standard 
EKF method. It is desired in a near future the integration 
of such matrix computation into a probabilistic frame 
(errors in the positioning sensors can be assumed to be 
random and can be modeled by a parametric probability 
distribution) that allows performing data fusion from 
different positioning systems; concretely, work is being 
done on the integration of odometry, gyroscope, 
compass and GPS measurements. In a recent published 
work [17], we managed to fuse correlated GPS and 
odometry information. It is hoped that the formulation 
presented in this paper will help to reduce errors when 
estimating the pose of the vehicle using different sources 
of data. 
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Appendix 

A complete derivation of the terms of the first matrix 
expressed in (4) is given here. The first element in (4) 
was calculated in section IV. Taking into account that 
the final matrix is symmetric, the rest of elements are 
calculated as follows: 
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