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Abstract

This paper is about closing the low level control loop during Multirobot Simultane-
ous Localization and Map Building from an estimation-control theoretic viewpoint.
We present a multi-vehicle control strategy that uses the state estimates generated
from the SLAM algorithm as input to a multi-vehicle controller. Given the separa-
bility between optimal state estimation and regulation, we show that the tracking
error does not influence the estimation performance of a fully observable EKF based
multirobot SLAM implementation, and viceversa, that estimation errors do not un-
dermine controller performance. Furthermore, both the controller and estimator are
shown to be asymptotically stable. The feasibility of using this technique to close
the perception-action loop during multirobot SLAM is validated with simulation
results.
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1 Introduction

This paper is about closing the control loop during Multirobot Simultaneous
Localization and Map Building from an estimation-control theoretic view-
point. Linear estimation theory has extensively being used for solving the
SLAM problem [13,17], with the widely accepted use of the Extended Kalman
Filter as the workhorse [8], as well as extensions to deal with nonlineari-
ties, such as the Unscented Kalman Filter [3,10], or with the aid of non-
deterministic particle filters [14]. Furthermore, the case of cooperative map-
ping and localization within the same estimation paradigm has also received
significant attention recently [9,15,18,21].

The issue of combining control and estimation together during SLAM has
in general been addressed with the idea of online trajectory generation. For
example, by studying which vehicle maneuvers would most effectively reduce
localization uncertainty [7,16], or what maneuvers would provide the greatest
reward in terms of exploration gain [8]; by incorporating visual servoing tech-
niques [6], or by implementing a PD controller over an A* searched trajectory
[19].

We are not aware however, of any substantial contribution that guarantees that
such planned trajectories will be followed accurately, in a systems theoretical
sense, spite the duality between regulation and linear estimation. That is pre-
cisely the focus of this article: a unified approach to Multirobot Simultaneous
Localization, Control and Mapping, from an estimation-control theoretic per-
spective, that would generate the necessary control commands to accurately
follow a higher level planned trajectory, and that would guarantee that both
the controller and the estimator are asymptotically stable. Given that observ-
ability is a requisite for stable SLAM [1,2,11], it is of uttermost importance to
guarantee stability of the closed loop system as well. That is, not only during
estimation, but also during vehicle control. The acronym C-SLAM has a two-
fold meaning: ‘C’ for closing the control loop, and ‘See’ for stressing that full
observability is a requisite to stability of both state estimation and control as
well.

More specifically, by using a nonlinear control technique called Feedback Lin-
earization over the EKF state estimates, we are capable of accurately follow-
ing any multirobot trajectory parameterized in time, while at the same time
building an optimally estimated map. Such trajectory could be generated on
line, for example, to reduce estimation error, or to maximize exploration gain.
Furthermore, extending the Separability principle for the LQG regulator and
the Kalman estimator to the feedback linearization scheme, we are able to
decouple control error from estimation error, thus guaranteeing stability both
for the controller as well as the estimator.
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The paper is divided as follows. In Section 2 we briefly review the multi-
robot Gaussian SLAM case, and extend the notation in Section 3 to present a
time-parameterized multirobot trajectory following scheme using a feedback
linearization law for the control of vehicle states. To show the feasibility of the
approach Section 4 presents simulations with a pair of nonlinear vehicles over
a realistic scenario. Conclusions are presented in Section 5.

2 The EKF for Multirobot SLAM

The motion of the robots and the map measurements are governed by the
discrete time stochastic state transition model

x(k + 1) = f (x(k),u(k),v(k)) (1)

z(k + 1) = h (x(k + 1)) + w(k) (2)

The state x(k) = [r1(k)>, . . . , rm(k)>,m>

1 , . . . ,m>

n]> contains the pose of the
robots r1, . . . , rm at time step k, and a vector of stationary map features
m1, . . . ,mn. The input vector u(k) = [u1(k)>, . . . ,um(k)>]> is a multi-vehicle
control command, v(k) = [v1(k)>, . . . ,vm(k)>]> is the plant noise, w(k) =
[w1(k)>, . . . ,wn(k)>]> is the sensor noise, and both are Gaussian random vec-
tors with zero mean and block diagonal covariance matrices Q and R, respec-
tively. An optimal estimate of (1), in a least squares sense, is given by the
expression

x̂(k + 1) = f(x̂(k),u(k),0) + K(z(k + 1) − h(f(x̂(k),u(k),0))) (3)

with covariance

P(k+1) = FP(k)F>+GQG>
−K[H[FP(k)F>+GQG>]H>+R]K> (4)

The Jacobians F and G represent first order linearizations of the multi-vehicle
model with respect to the state and the plant noise. Similarly, the Jacobian
H contains first order linearizations of the measurement model with respect
to the entire state. The details on how to compute the Kalman gain K can
be found, for example, in [4]. The use of the Extended Kalman Filter for solv-
ing SLAM has a long history within the robotics community. Unfortunately,
the strong assumption of unimodal Gaussian noise produces an estimation
that ends up accumulating consistent errors and the effects of nonlinearities;
preventing the approach from being able to map very large areas without
the need for additional heuristics, such as nonlinear state estimation, or by

3



merging multiple local submaps. The technique nevertheless is still widely ac-
cepted, given its simplicity, and the ability to prove stability of the filter [20],
and convergence of the state covariance in the Riccati equation (4) [8,12].

3 Feedback Linearization

In this Section, we design a controller using feedback linearization for multi-
robot trajectory tracking. The feedback linearization approach is commonly
used to control nonlinear systems by algebraically transforming the system
dynamics into a linear one, so that linear control techniques can be applied.
It differs from conventional (Jacobian) linearization in that linearization is
achieved by exact state transformations and feedback, rather than by linear
approximations of the dynamics.

To apply feedback linearization to the multirobot position part of the state,
the system dynamics (1) must be described in controllability canonical form.
That is, linear with respect to the input u(k).

y(k + 1) = y(k) + B(u(k) + v(k)) (5)

with y(k) = [x1(k), y1(k), . . . , xm(k), ym(k)]> only the multi-vehicle location
part of the state vector.

The nonlinear matrix B is a function of the multirobot part of the state (see
Appendix A). Feedback linearization of the entire multirobot subset of the
state vector, that is, including the orientation states, is not possible because
in that case, B would be not invertible, and the resulting pseudo-inverse turns
out to be rank-deficient (see [5]).

By choosing a control input of the form

u(k) = B−1(u′(k) − y(k)) (6)

we can cancel the nonlinearities in that subset of the state, y(k), obtaining a
single input-state linear relation

y(k + 1) = u′(k) + Bv(k) (7)

The term u′(k) in (7) is a new input to be determined, that can be chosen
using traditional linear control techniques. In this case, we have opted for a
control law to track a higher level planned multi-robot trajectory parameter-

4



ized in time y∗(k), guaranteeing at the same time exponential vehicle location
dynamics. That is, by defining the trajectory tracking error as

e(k) = y(k) − y∗(k) (8)

the desired error control dynamics is designed such that

e(k + 1) + Q1e(k) = 0 (9)

where Q1 is constant and positive definite, and as will be seen later, with λ’s
in det(λI + Q1) = 0 within the unitary circle.

Solving for y(k + 1) in (9), substituting in (7), and assuming that the expec-
tations for the estimation error E[ỹ(k)] = 0, and the plant noise E[v(k)] = 0

hold, we get the control law

u(k) = B−1(y∗(k + 1) − Q1y
∗(k) − (Q1 + I)ŷ(k)) (10)

The control law u(k) is written as a function of available data. That is, it is
a function of the time parameterized multi-vehicle trajectories y∗(k), and of
the current multi-vehicle state estimates ŷ(k).

Notice that in order to have zero mean estimation error of the vehicle states,
SLAM must be fully observable [1]. Filter stability turns out to be a prerequi-
site for this or any other low level control strategy to be asymptotically stable
as well. The intuition is straightforward, to accurately control a troupe of
vehicles through a predefined trajectory, one must have means to accurately
measure their location at all times.

So the control law (10), will stabilize the system about the time parameterized
trajectory y∗(k).

In order to validate our feedback control scheme, we write the closed loop
equations for the multi-vehicle state and multi-vehicle state estimate error,
using the fact that y(k) = ŷ(k) + ỹ(k).

y(k + 1) = −Q1y(k) + (I + Q1)ỹ(k) + Bv(k) + y∗(k + 1) + Q1y
∗(k)(11)

x̃(k + 1) = (F − KHF)x̃(k) + (G − KHG)v(k) − Kw(k) (12)

The separation of the problem in two parts, the optimal state estimation,
and the controller, gives a Kalman filter independent of the matrix Q1, which
specifies the control strategy. In the same way that the controller does not
depend on the statistics P, Q, and R of the random noises.
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The eigenvalues of the closed-loop system are given by those of the linearized-
feedback dynamics −Q1, together with those of the state estimator dynamics
F − KHF. Only when both matrices are stable, so is the closed-loop. We
have designed Q1 for a stable controller, and for a fully observable estimation
problem, it is straightforward to verify F − KHF always stable [4,20].

As mentioned before, given the kinematics constraint of the vehicle model
used, the entire vehicle pose including orientation cannot be stabilized, and
we have decided to let y(k) = [x(k), y(k)]> be the Cartesian coordinates of
the vehicle location only, at the expense of optimally controlling the vehicle
orientation. Our experiments show however, that by controlling the vehicle
position only, and letting the vehicle orientation be a free variable, after an
initial transient interval, the predefined time parameterized trajectories can
still be accurately followed with a troupe of vehicles.

4 Simulations

In order to show the feasibility of using Feedback Linearization during multi-
robot SLAM, we simulated an environment with 16 landmarks over a 600m2

area. The vehicle model used in the simulations corresponds to the all-terrain
planar vehicle from Figure 1, and is given in Appendix A. Note that the pose
of the robot, and hence, the control point is located apart from the vehicle axis
of rotation in order to avoid singularities in the computation of the Jacobians.
The vehicle state and control point is chosen at the origin of a laser range
scanner placed on the front of the vehicle, thus simplifying the measurement
model.

Figure 2 presents an simulation for a pair of robots simultaneously tracking two
time parameterized circular paths, while performing SLAM. The objective is to
track the desired path as accurately as possible. The desired trajectory should
come from a higher-level planning strategy. But since that is not the scope
of this paper, but to guarantee concurrent tracking and estimation stabilities,
simple circular paths are chosen instead.

Figure 3 shows plots for the vehicle state estimates, the state estimation error,
and the history of control commands. Note in the last plot, that when the
motion is initiated, the control law chooses a saturated translational velocity
to reach the circular path, stabilizing then around 0.6 m/sec. Disregarding the
uncontrollability of the angular orientation produces a drastic fluctuation of
the angular velocity signal during this initial transient interval, then stabilizing
to the desired angular velocity, set at 5 deg/sec.

Finally, Figure 4 shows the asymptotic landmark state estimate trace covari-
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Fig. 1. The model for this nonlinear vehicle is used in the simulations, and is given
in Appendix A. The Cartesian coordinates of the control point (x, y) are located on
the projection center of the laser range scanner, and were porpousedly chosen not
coincident with the vehicel axle center.
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Fig. 2. Simultaneous Multirobot Localization, Control, and Mapping

ances. The plot will look familiar to any experienced SLAM researcher, and
specifically shows the decrease in all landmark localization uncertainties as the
algorithm proceeds, showing asymptotic convergence of the estimation part of
the problem.
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Fig. 3. State Estimation and Control using Feedback Linearization.

5 Conclusions

Given the separability between optimal state estimation and regulation, we
have been able to present a multi-vehicle low-level control strategy that does
not affect the estimation performance of a fully observable EKF based mul-
tirobot SLAM: a feedback linearization control strategy that is guaranteed
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Fig. 4. Landmark trace covariances.

asymptotically stable for close tracking of any time-parameterized high-level
computed trajectory. The feasibility of using the approach was validated with
simulation results. In order to avoid the initial transient performance of the
forward linearization control strategy, the effects of the kinematics constraints
on the chosen vehicle model will be further investigated.

The beauty of this paper is precisely in that it points out the dependence
on fully observable SLAM in order to be able to use the SLAM estimates
as input to any type of controller. Then, both estimation and control can
be decoupled and standard techniques such as the ones used here, Kalman
filtering for estimation, and feedback linearization for control, are plausible
for closing the perception-action-loop in multirobot SLAM.

A Nonlinear Vehicle and Measurement Models

The vehicle used in our simulations is a Pioneer robotics platform, controlled
by a velocity v and a steering velocity ω. The process model used to predict
the trajectory of the center of projection of the laser range scanner is given by
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(A.1)
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where l is the distance from the center of the wheel axle to the center of
projection of the laser range scanner, τ is the time constant, and vv, vω are
zero mean Gaussian model noises.

The first two terms in (A.1) indicate the position of the vehicle, and are
expressed in controllable canonical form, whereas the third term, the vehicle
orientation is given as an incremental function of the input angular velocity.
Thus, the nonlinear matrix B is in this case

B(θ(k)) =







cos θ(k) −l sin θ(k)

sin θ(k) l cos θ(k)






(A.2)

The observation model is







di(k)

βi(k)






=







√

(xi − x(k))2 + (yi − y(k))2 + wd(k)

tan−1
(

(yi−y(k))
(xi−x(k))

)

− θ(k) + π
2

+ wβ(k)






(A.3)

with di and βi the distance and bearing of an observed point landmark with
respect to the laser center of projection. xi and yi are the absolute coordinates
of such landmark, and i is used for the labeling of landmarks. i = 0 indicates
an anchor feature not under estimation in order to guarantee full observability.
wd and wβ are zero mean Gaussian measurement noises.
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