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Abstract

This paper presents an ellipsoidal set-membership uncertainty model
for wire-based tracking systems with wire length uncertainties and joint
clearances. Although the proposed model is valid for any number of
wires and configurations, including singularities, it has been particu-
larized to a 3-2-1 parallel wire mechanism. The Euler’s tetrahedron
formula has been used to obtain a numerically stable solution to the di-
rect kinematics of this particular tracking system as well as a compact
characterization of its singularities directly expressed in terms of the
wire lengths. It is also shown that these singularities, when expressed
in the configuration space of the moving element, can be identified as
C-surfaces associated with the three basic contacts between polyhedra,
which have been widely studied in the context of path planning.

Keywords: Tracking systems, uncertainty manipulation, kinematic singularities.
Euler’s tetrahedron formula.

1. Introduction

Many systems for measuring position and orientation of moving ob-
jects, also known as tracking systems, have been developed. They can
be classified according to the measuring principle and used technology
(Hightower and Borriello, 2001). Most of the instruments such as cam-
eras, theodolites, laser and wire systems use triangulation or trilateration
techniques. Trilateration and triangulation determine the relative posi-
tion between points by using the geometry of triangles. Triangulation
uses measurements of both distances and angles, whereas trilateration
uses only distance measurements.
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Measurement systems can be also classified according to their charac-
teristics, such as accuracy, resolution, cost, measurement range, porta-
bility, and calibration procedure. Laser tracking systems exhibit good
accuracy, which can be less than 1um if the system is well calibrated.
Unfortunately, they are very expensive, their calibration procedure is
time consuming, and they are sensitive to the environment. Vision sys-
tems have an accuracy of 0.1mm, they are low cost portable devices
but their calibration procedure can be complicate. Wire systems have
an accuracy of 0.1mm, they are also low cost portable devices but ca-
pable of measuring large displacements. Moreover, they exhibit a good
compromise among accuracy, measurement range, cost and operability.

Wire-based tracking systems consist of a fixed base and a platform
connected by six wires whose tension is maintained, while the platform
is moved, by pulleys and spiral springs on the base. They can be mod-
elled as six-degree-of-freedom parallel manipulators because wires can be
seen as extensible legs connecting the platform and the base by means
of spherical and universal joints, respectively. One of these wire mecha-
nisms was used in (Jeong et al., 1999) for robot pose, i.e. position and
orientation, measurements. The proposed system was studied as a 2-2-
2 Gough-Stewart platform and, as a consequence, its direct kinematics
could only be solved by a numerical method. This clearly limited its
use in real-time measurements. Alternatively, (Geng, 1994) and (Cecca-
relli et al, 1999) used a wire configuration equivalent to a 3-2-1 Gough-
Steward platform whose direct kinematics can be solved in closed-form
by using trilateration.

Dimension deviations due to fabrication tolerances, wire length un-
certainties, and joint clearances may result in an unacceptable perfor-
mance of wire-based tracking systems. Wire length uncertainties are
due, among other factors, to deflections caused by wire self-weights and
to discretization errors in the transducers. A way to compensate the
self-weight deflections is presented in (Jeong et al., 1999). Joint clear-
ances are due to the uncertainty related to the position of the wires with
respect to the corresponding joint holes on the base. They become more
evident with time because of the abrasion of the hole due to wire friction.
Unlike the effect of the dimension deviations, the effect of wire length
uncertainties and joint clearances can not be eliminated by calibration
because of their random nature. How these two factors contribute to
the measured pose error and how this error evolves when the system
approaches a kinematic singularity are the two issues addressed in this
paper.

Most error analysis techniques assume that the data are corrupted by
random noise whose probability density function is usually assumed to
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be gaussian, as in (Zhu and Ting, 2000). Real-world uncertainties, how-
ever, also include nongaussian, nonwhite noise and systematic errors.
These uncertainties can easily be considered in a set theoretic setting
which consists in defining bounds for the uncertain variables. The main
problem with this kind of uncertainty description is that, although the
initial uncertainty sets have simple shapes, the result of principal oper-
ations with them have a complicated shape. This is why some canonical
sets, that depend on a fixed number of parameters, are introduced for
the approximation of uncertainty sets. Among many possibilities, ellip-
soids are usually taken as these canonical sets because they: (a) can be
concisely described; (b) provide a satisfactory approximation of convex
sets in most applications; (c) can be represented using matrices inter-
pretable as weighted covariance matrices; and (d) are invariant, as a
class, under affine transformations.

Most ellipsoidal calculus are unable to deal with degenerate cases, that
is, with situations in with ellipsoids extend to infinity in some directions.
Here this is an important issue because this is what happens when a
tracking system approaches a kinematic singularity, as it will be shown
later. Fortunately, the calculus presented in (Ros et al., 2002) is immune
to degeneracies and can readily applied here.

This paper is organized as follows. Section 2 presents the adopted
uncertainty model and Section 3 gives a description of the singularities
first in terms of the wire lengths and then in terms of the configuration
of the moving platform. Finally, Section 4 gives the conclusions.

2. The uncertainty model

In order to describe the relative position between base and platform,
let us introduce an absolute and a relative frame fixed to the base and the
platform, respectively, as shown in Figure 2a. The pose of the platform
with reference to the base is given by the configuration vector q = (€2,t),
where t stands for the translation vector and €2 for the orientation vec-
tor given in Euler’s angles, i.e. q € R x SO(3). The corresponding
rotation matrix will be noted R(€2). The unit vector along wire ¢ will be
noted e; and I; the corresponding wire length. The centers of the artic-
ulations on the base and the platform for wire ¢ will be denoted a; and
b;, respectively, as shown in Figure 2a. According to these definitions
R(2)b; +t = a; + l;e;. Thus, the wire length [; can be expressed as:

Li=||R(Q)b;+t —a; || . (1)
Then, its linearization around the nominal values of a; and b; (a?

and bY), the measured value of I; (I?), and the calculated value of the
configuration q (q°) is:
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(a) (b)

Figure 1. Magnitudes associated with wire ¢ (a), and its associated joint clearances

(b)

0l; 0l; 0l;
Li—1f = a;(q—qo)‘l' 8;.(ai_ag)+8_bz.(bi—b?)- (2)

It can be proved, by taking derivatives (1), that:

0l; . Ol ‘ al; (t—a;) x e !
_— e — A = . Q —_— = .
Da. e;, b, e;R(Q2), and

Substituting in (2), we get:
¢
t—a;) xXe;
li—l?=(( 3;) e) (a—q") +vi =], (3)
where v; = e (R(2)b; — a;) and v) = e! (R(2)b{ — a) . Finally, col-

i
lecting (3) for the six wires into a single matrix expression, we get:

Ja—a®) = (1-v) - () "
where J = (t—ai) xer (t—ag)xey --- (t—ag)xes )ta
€1 ey e

1=(l1,...,ls), and v = (v1,...,vg).

Note that the above formulation is valid for any wire configuration
and can be extended to any number of wires. Note also that the rows
of J are the Pliicker coordinates of an arrangement of lines equivalent
to that of the wire lines. Actually, J is the linear mapping between
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wire extensions and platform velocities, i.e. the inverse Jacobian of the
associated parallel mechanism.

Let us assume that the real value of a; is inside a sphere of radius r,
centered around a? as shown in Figure 2b. The same can be done for the
platform joint clearances assuming that the radii of the corresponding
spheres are 7. Then, it can be checked that

(v = v (v =) < 6(ra +1)° (5)

is a conservative bound for v. We can also assume that all wire lengths
have the same error bounds so that

1-19'1-1°) <6} (6)
also provides a conservative bound for 1. Then, the Minkowski difference
between the spheres (6) and (5), that is

(1=v) = (1 =v") " (1=v) = (1° =v) <6(ra+ro+m)%  (7)

gives us the uncertainty region for (1 —v) (Ros et al., 2002).
Equation (7), together with (4), leads to:

(a—a")'3JI(a—q°) <6(ra + 714 +11)° 8)
which is an ellipsoidal bound for the uncertainty region associated with
q, i.e. the configuration of the moving platform. Since J is a square
matrix, it can be shown that the volume of the region defined by (8) is
proportional to the inverse of det(J). In other words, the uncertainty
region using this model is unbounded if, and only if, J is singular. The
next section is devoted to the characterization of these singularities.

3. Singular configurations

Since the rows of J are the Pliicker coordinates of lines, it is possible to
characterize the singularities in terms of the geometry of linearly depen-
dent sets of lines (Pottmann and Wallner, 2001). The set of conditions is
typical for many parallel manipulators (McCarthy, 2000). Nevertheless,
herein we will use an ad hoc approach that takes advantage of the 3-2-1
wire configuration.

First of all, let us define the function

0 ri2 713 T4

ro1 0 ra3 7og

Z(pP1,P2,P3,P4) = | 731 T2 0 734
T41 T42  T43 0

1 1 1 1

O = ===
—
Ne)
S—


Lluís Ros
111


112

Figure 2. General kinematic model of a 3-2-1 tracking system (a). There are up
to 8 possible solutions for the configuration of the platform compatible with a set of
wire lengths due to the two possible solutions for the location of by (b), b2 (c), and

bs (d).
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where p1,...,ps are four points in R and ri; is the square of the dis-
tance between p; and p;. It can be shown that the volume, V, of the
tetrahedron defined by these four points is related to (9) through the for-
mula 288V 2 = Z(p1, p2, P3, P4)- If determinant (9) vanishes, p1, p2, P3,
and p4 lie on the same plane. If it gives a negative value, the tetrahedron
cannot be assembled with the given distances. Although it is generally
accepted that this remarkable formula derives from a development given
by Euler in 1753 (Dorrie, 1965), the Italian painter Piero della Francesca
already obtained an equivalent result around 1490 (Peterson, 1997).

Formula (9) has a 2D counterpart (known as Herron’s formula) that
allows us to obtain the area of a triangle in terms of the lengths of
its edges. As a consequence, any of the heights of a tetrahedron can
readily be obtained by dividing its volume by the corresponding base
area using these formulas. The important point here is that (9) and its
2D counterpart are numerically stable and coordinate-free. Hence, this
permits to solve the direct kinematics of a 3-2-1 tracking mechanism
in an alternative way to that presented in (Ceccarelli et al, 1999), as
explained bellow.

In a 3-2-1 wire-based tracking system, some of the joints in the plat-
form coincide in the way shown in Figure 2a. This configuration greatly
simplifies the analysis of the direct kinematics of the system. Indeed,
given 1, ls, and 3, the location of b; can be obtained using the vol-
ume and area formulas given above. Note that there are two possible
solutions which are specular with respect to the plane defined by a;, as,
and az (Figure 2b). Once one of these two solutions for by is chosen,
ay, as, by and by define another tetrahedron with known edge lengths.
Again, there are two possible specular locations for b, in this case with
respect to the plane defined by a4, a5, and by (Figure 2¢). Finally, af-
ter choosing one of the two solutions, ag, by, by, and bs define another
tetrahedron with known edge lengths. In this case there are two specular
possible locations for bg with respect to the plane defined by ag, by and
by (Figure 2d). We conclude that, if Z(a;, as,as, b1), =(a4, as, ba, bs),
and =(ag, b1, bg, bs) are all different from zero, there are 8 possible con-
figurations for the moving platform compatible with a given set of wire
lengths. Let us choose one of these solutions and let us infinitesimally
modify the wire lengths. This will univocally give a new configuration
for the platform. This means that the Jacobian relating the platform and
wire velocities is well-defined if, and only if, none of these determinants
vanish. In other words, these three determinants fully characterize all
the singularities of the tracking system. This characterization is given in
terms of the wire lengths, but in most cases we want to give it in terms of
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the configuration of the platform. The solution to this problem curiously
comes from the developments in motion planning for polyhedra.
Note that Z(p1, P2, P3, P4) is zero if, and only if, p1, p2, ps, and py

p1 1
. . . 1
lie on a plane. In other words, if, and only if, gz 1 1=0. As a con-
ps 1
a; 1 a; 1 ag 1
sequence, when at least one of | 22 ! as 1 by 1 vanishes
q ) as 1|’ by 1% by 1 ’
b; 1 bs 1 bs 1

the system is in a singular configuration. Now, the problem is to explic-
itly express these determinants in function of the configuration of the
platform q € R x SO(3).

These three determinants, when equated to zero, can be seen as the
implicit equations of the C-surfaces in 23 x SO(3) associated with each
of the three basic contacts between polyhedra (see (Thomas, 1995) for
details). In particular, with the face-vertex, edge-edge and vertex-face
contact, respectively. The algebraic expressions for these surfaces were
first given in (Donald, 1984). They are rather long (particularly the one
corresponding to the second determinant), thus requiring a computer
algebra system for their manipulation.

Each C-surface, a variety of dimension 5, divides 3 x SO(3) into two
half-spaces. Then, the three C-surfaces lead to a partition of the configu-
ration space into 8 regions with congruent signs for the 3 determinants.
During normal operation, a 3-2-1 wired-based tracking system should
work in one of these regions without getting out of it to avoid ambigu-
ities. If one of the above determinants goes below a certain threshold
the system should stop under the risk of trespassing a C-surface. The
explicit description of these 8 regions is not easy but, if the moving plat-
form is constrained to move in a plane, the configuration space becomes
R? x SO and the technique used in (Avnaim et al., 1988) for obtain-
ing such descriptions can be applied. Iterating this for different parallel
planes, a discretization can be obtained.

A motion of the platform defines a trajectory in the configuration
space, and each point of this trajectory has an associated ellipsoidal un-
certainty region. These ellipsoids, as obtained in the previous section,
are unbounded if, and only if, the configuration is on a C-surface. In this
case, it can be shown that the ellipsoid degenerates into a strip contain-
ing the tangent plane to the C-surface at the considered configuration
(Figure 3). Thus, even in the case the system is in a singularity, the
associated uncertainty remains bounded in the direction orthogonal to
the corresponding C-surface.
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Figure 3. The C-surfaces induce a partition of the configuration space of the mov-
ing platform with the same signs for the associated determinants. A motion of the
platform corresponds to a trajectory (shown here in dotted line). Each point of this
trajectory has an associated uncertainty ellipsoid which degenerates into a strip when
trespassing a C-surface.

4. Conclusions

An ellipsoidal uncertainty model for wire-based tracking systems with
wire length uncertainties and joint clearances has been presented. Using
this model, a one-to-one correspondence between kinematic singularities
of the tracking system and configurations with unbounded uncertainty
arises. Then, although it is possible to characterize the singularities in
terms of the geometry of linearly dependent sets of lines, we have pre-
sented an ad hoc approach that takes advantage of the 3-2-1 wire config-
uration. It has also been shown that these singularities, when expressed
in the configuration space of the moving platform, can be identified as
C-surfaces associated with the three basic contacts between polyhedra.
Since the contacts between wires can be formulated in the same terms,
this representation of the problem leads to a unifying formalism where
the region for safe tracking —i.e. free from singularities and without wire
wrapping problems— is a region of the configuration space of the moving
platform bounded by a set of C-surfaces. This point, as well as the ex-
perimental validation of the presented results concentrates our current
efforts.
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