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Abstract

The output from a color imaging sensor, or appar-

ent color, can change considerably due to illumination

conditions and scene geometry changes. In this work we

take into account the dependence of apparent color with

illumination an attempt to find appropriate color mod-

els for the typical conditions found in outdoor settings.

We evaluate three color based trackers, one based on

hue, another based on an intrinsic image representation

and the last one based on a proposed combination of

a chromaticity model with a physically reasoned adap-

tation of the target model. The evaluation is done on

outdoor sequences with challenging illumination con-

ditions, and shows that the proposed method improves

the average track completeness by over 22% over the

hue-based tracker and the closeness of track by over

7% over the tracker based on the intrinsic image repre-

sentation.

1. Introduction

As pointed out by Yilmaz et al. [5], color is one the

most widely used features for tracking, most probably

because of its discriminant power and its apparent ease

of use. However, except in scenarios where illumina-

tion conditions can be controlled or they don’t change

much, the apparent color from objects usually changes

a lot. This fact is usually ignored [1], or color spaces

with some invariant properties, such as HSV or rg, are

used [1, 4] instead of RGB, and in other cases some

adaptation strategies are adopted [3].

In this work we explicitly acknowledge the depen-

dence of apparent color with illumination conditions,

and particularly the conditions usually present in urban

outdoor settings when tracking is done from a mobile

platform. Our contribution is twofold: first, we show

that by using the intrinsic image proposed by Finlayson

et al. [2] as a feature we increase the robustness of the

Figure 1. Image sequence instances in the

circuit.

tracking results compared to using the hue component

of the HSV color space. This image representation is

based on a physical model of the image formation pro-

cess. To our knowledge, it hasn’t been assessed as a fea-

ture for tracking before. Second, we improve further on

these results by noting that the intrinsic image represen-

tation has very good invariant properties at the expense

of loosing discriminant power. We propose then a trade-

off solution between invariance and discriminant power

using the same image representation from where the in-

trinsic image is derived. The key idea is to allow the

color distribution of the model to change in a principled

way, following possible changes in the illumination.

2. Color based tracking

As a means for evaluating the impact of different

color models on tracking we have chosen the mean shift

algorithm [1]. The main motivations behind this selec-
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tion were the fact that it is a very well known algorithm,

most frequently used with color based features and well

suited for tracking in real time. The mean shift algo-

rithm is an efficient approach to tracking objects whose

appearance is defined by histograms. This appearance

is usually, but not limited to, color.

In this work we use three color based features: the

hue component of the HSV color space, the intrinsic

image representation [2], and a log-chromaticity repre-

sentation paired with a reference target model adapted

to illumination changes. From now on, we will refer

to these three tracking methods as hue, ii, and lc me,

respectively.

3. Color Models

Below, a brief overview of the color models used

is given, with an emphasis on their invariant properties

against illumination changes.

HSV. HSV is an approximately perceptually uni-

form color space. Its hue component, in particular, is

commonly used in tracking applications where some

degree of illumination changes are expected. The hue

component doesn’t contain intensity information, and

thus it is invariant to intensity changes in the illumina-

tion. Hue, however, is sensitive to light color changes.

Log chromaticity ratios and adapted target

model. Finlayson et al. [2] use a transformation of

the RGB color space that under certain assumptions

on the illuminant, the camera sensitivities and surface

reflectances, has some interesting properties. The as-

sumptions adopted are a Lambertian model of image

formation together with fairly narrow band camera sen-

sitivities. The illuminant is restricted to be Planckian,

and modelled with Wien’s approximation to Planck’s

law. Under these assumptions, it can be shown [2]

that forming the 3-vector chromaticities, ck, by divid-

ing each band by the geometric mean, 3
√
R×G×B

ck =
Rk

(
∏

3

i=1
Ri)1/3

, k = 1, 2, 3 (1)

and then calculating their logarithm, we arrive at a rep-

resentation

ρk = log(ck), k = 1, 2, 3 (2)

and in vector form

ρ = s+
1

T
e (3)

where Rk denote the sensor responses, s depends on

surface and the camera, e is independent of surface, but

which again depends on the camera, and T is the illu-

minant color temperature. All 3-vector ρ lie on a plane

orthogonal to u = 1/
√
3(1, 1, 1). The redundant di-

mension is removed by transforming 3-vectors ρ into a

coordinate system in the plane using a 2 × 3 matrix U

(see [2] for details)

χ ≡ Uρ, χ is 2× 1 (4)

One way to interpret equation (3) is by noting how the

transformed sensor responses, ρ, change with differ-

ent surfaces and illuminations. Surface properties af-

fect only the first term, which can be seen as an offset

with respect to the origin. Illumination color changes

are modelled by the parameter T , color temperature,

and they act as a scaling factor to e. Because surface-

related properties are concentrated on the first term and

illumination is concentrated on the second, changes in

illuminant color temperature result in shifts in the trans-

formed sensor responses. Moreover, the shifts are in the

same direction for all surfaces. This behavior is retained

in (4). These conclusions are based on some restrictive

assumptions. In practice, camera sensitivities are not

exactly narrow band, and combination of Planckian il-

luminants do not yield another exactly Planckian illu-

minant. It has been shown [2], however, that this model

is a good approximation in real situations.

Intrinsic image The invariant image representation

[2] is obtained by projecting the log-chromaticity rep-

resentation described above, χ, into the direction e⊥ or-

thogonal to e, obtaining a single scalar

I
′

= χ1 cos θ + χ2 sin θ (5)

and to remove the effect of the logarithm, the last step in

the derivation of the intrinsic image is to exponentiate

I = exp(I
′

) (6)

In this 1-dimensional invariant, all points in the χ
log-chromaticity representation that are colinear in the

direction of e are collapsed into a single point. As a

result, this representation achieves near perfect invari-

ance to illumination color change at the expense of loos-

ing discriminant power. In figure 2 we see an example

where two completely different surfaces, bricks from

the floor and a blue bin, are indistinguishable in the in-

trinsic image.

4. Proposed method

The properties of the log-chromaticity space, χ, can

be exploited for improving the robustness against illu-

mination changes as follows. At any particular frame,
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the target model is compared against target candidates

at different locations and some similarity measure is

maximized. Illumination color changes, intensity is al-

ready taken account for by normalization, will affect the

similarity between the model and the candidates. In

this representation, however, such changes will trans-

late into shifts along the direction of e. Without any a-

priori knowledge of how the illumination will change,

we assume that the illumination color temperature can

both increase and decrease up to a finite amount. Then,

to assure that we continue having a good similarity be-

tween the model and candidates, we enlarge the model

in the direction of e. In practice, given the particular

model representation used in this case, we smooth the

histogram of the target model by convolution with an

anisotropic Gaussian filter. To simplify things, we ro-

tate χ using a rotation matrix R so the direction of e is

coincident with the first axis, χ̂1

χ
′

= Rχ (7)

and then we smooth the histogram of the target model

with a gaussian filter

g(χ
′

1
, χ

′

2
) =

1

2πσ1σ2

exp(
χ

′

1

σ1

+
χ

′

2

σ2

) (8)

where sigma1 controls the amount of smoothing in the

direction of illumination change, and σ2 can be used to

account for model mismatches, i.e. the direction e has

some dependency with surface reflectance.

The consequences of enlarging the initial model are

that the invariant properties of the intrinsic image rep-

resentation are retained, up to a given change in color

temperature controlled by the amount of smoothing ap-

plied, while at the same time increasing its discriminant

power.

5. Experiments

For evaluation, we acquired three sequences in an

outdoor urban environment, at different times of the

day. A camera mounted on a mobile platform moves

together with a person around some raised garden beds

describing a closed path. The distance and relative po-

sition of the person and the camera vary during the se-

quences, although the person is always within the field

of view of the camera. The sequences can be charac-

terized as having different and rapidly varying illumi-

nation conditions, and present cast shadows, over and

under exposure during transitions from bright to dark

regions and vice versa. Being a circular path, the sun

position with respect to the camera also varies along the

sequences. Each sequence has around 300 frames, for

Figure 2. Image with two surfaces un-

der two different illuminants (highlighted

regions), and the corresponding log-

chromaticity representation. The line cor-

responds to the direction of illumination

change.

a duration of about a minute. All sequences were man-

ually annotated with the position and scale of the per-

son’s upper-body.

Each method was tested with a set of different pa-

rameters. For the hue and the ii trackers, the only pa-

rameter to select is the number of bins used to represent

the target and candidates model. We tried 180, 135 and

90 bins. For the lc me tracker, we have to select addi-

tionally the amount of smoothing applied to the model.

We only applied smoothing in the direction of the illu-

mination change, to provide a better comparison with

the ii tracker. We used 60 × 60, and 40 × 40 bins and

a smoothing of 0.25, 0.2 and 0.15 expressed as a frac-

tion of the number of bins. For each sequence, we ini-

tialized the tracking at three relative positions, start of

the sequence, one third and two thirds of the sequence

length. Because the sequences were acquired over a cir-

cular path, we could start the tracking anywhere in the

sequence and let it run for the whole sequence. This

gave us a total of nine runs for each method and param-

eter set, totalling 108 experiments.

For the quantitative evaluation of the results, we use

some of the metrics defined by Yin [6]. Track com-

pleteness, c, measures the temporal overlap between a

ground truth track and a system track, and average track

completeness, C, gives the same measure for a set of

tracks. The average closeness of track, at, is defined

as the average spatial overlap between a ground truth

track and a system track. The closeness of track, A, and

its standard deviation, σA, measure the average spatial

overlap between ground truth tracks and system tracks

for a complete video sequence.

For each method, we selected the parameters giv-

ing he best results and present them here. For the hue

tracker, the best results corresponded to 180 bins, al-

though all results were very close. The ii tracker also
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Table 1. Performance evaluation metrics

by runs.

hue ii lc me

a c a c a c

1 0.758 0.440 0.524 0.847 0.617 0.847

2 0.587 0.109 0.496 0.618 0.651 1

3 0.772 0.170 0.638 1 0.768 0.170

4 0.768 1 0.623 1 0.708 1

5 0.716 1 0.614 1 0.689 1

6 0.792 1 0.719 1 0.783 1

7 0.659 0.399 0.606 1 0.722 1

8 0.695 1 0.551 1 0.600 1

9 0.689 0.788 0.633 1 0.741 1

showed the best results with 180 bins. The lc em tracker

performed best with 60 × 60 bins and a smoothing pa-

rameter of 0.15. Table 1 shows the results by runs.

None of the methods were able to complete success-

fully the nine runs. The hue tracker lost the target pre-

maturely in 5 of the 9 runs. Both the ii and the lc em

trackers lost the target prematurely in 2 of the nine runs.

The hue tracker has better discriminant power, reflected

by the fact of having the highest average closeness of

track in most of the runs. It is the most affected, how-

ever, by illumination changes, only being able to track

completely 4 runs. Both ii and lc me trackers are able

to complete more runs and both show average closeness

of track values lower than hue, although lc me has con-

sistently higher average closeness of track than ii. The

results seem to indicate a trade-off between discrimi-

nant power and invariance to illumination conditions.

Table 2 summarizes the results for the nine runs, that

confirm that both ii and lc me outperform hue, and that

that lc me improves over the target spatial localization

from ii.

Both the ii and lc me trackers were able to complete

more runs successfully, seven against four, and covered

successfully 22.5% more frames. The lc me tracker im-

proved, by over a 7%, over the ii tracker in the spa-

tial localization of the target. Examination of the se-

quence frames that led the trackers to loose their target,

showed significant amount of pixel clipping within the

target, while having a background of similar color to the

model. The hue based tracker, besides failing on frames

similar to those causing failures to the other trackers,

also failed at frames where there was pixel clipping in

the region of the target person and dark background.

The characteristics of the target and the background

color distributions in these sequences don’t expose the

limitations of the intrinsic image representation, that is,

Table 2. Performance evaluation metrics

calculated over the nine runs.

A σA C

hue 0.731 0.098 0.655

ii 0.624 0.128 0.880

lc me 0.695 0.111 0.888

its reduced discrimant power. Given different color dis-

tributions for the target and background, see figure 2

for such an example, we expect the ii tracker to perform

much worst. The proposed method, on the other hand,

would maintain its good performance, assuming that

the distance, in the direction of the illumination change,

between target and background in the log-chromaticity

space is bigger than the smoothing applied to the target

model.

6. Conclusions

We have evaluated the usefulness of the intrinsic im-

age representation for tracking with challenging illumi-

nation conditions. The intrinsic image based tracker

outperforms in all metrics the hue based tracker. More-

over, the proposed use of the log chromaticity represen-

tation combined with and enlargement of the model in

the direction of the illumination change shows more dis-

criminant power, as suggested by better average spatial

localization of the target, while retaining the invariant

properties.
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