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Abstract. Given a set of graphs, the median graph has been theoret-
ically presented as a useful concept to infer a representative of the set.
However, the computation of the median graph is a highly complex task
and its practical application has been very limited up to now. In this
work we present a new genetic algorithm for the median graph compu-
tation. A set of experiments on real data, where none of the existing
algorithms for the median graph computation could be applied up to
now due to their computational complexity, show that we obtain good
approximations of the median graph. Finally, we use the median graph
in a real nearest neighbour classification showing that it leaves the box of
the only-theoretical concepts and demonstrating, from a practical point
of view, that can be a useful tool to represent a set of graphs.

1 Introduction

In structural pattern recognition, the concept of median graph [1] has been
presented as a useful tool to represent a set of graphs. Given a set of graphs S,
the median graph is defined as the graph that minimizes the sum of distances
(SOD) to all the graphs in S. It aims to extract the essential information of a set
of graphs into a single prototype. Potential applications include graph clustering
and prototype learning. For instance, it has been successfully applied to different
areas such as image clustering [2], optical character recognition [1] and graphical
symbol recognition [3].

Nevertheless, the computation of the median graph is a highly complex task.
In the past some exact and approximate algorithms have been developed. Opti-
mal algorithms include a tree search approach called multimatch [4] and a more
efficient algorithm which takes advantage of certain conditions about the dis-
tance between two graphs [3] . Suboptimal methods include genetic algorithms
[1], greedy-based algorithms [2] and spectral-based approaches such that of [3]
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and [5]. In spite of this wide offer of algorithmic tools, all of them are very lim-
ited in their application. They are often restricted to use small graphs and with
some particular conditions. None of them have been applied using real data.

In this paper we tackle the problem of the median graph computation under
a particular cost function. Using the results presented in [3], we present a new
genetic algorihtm for the median graph computation that allows us to use a
real database of 2,430 webpages. Firstly, we assess the accuracy of the median
demonstrating that we are obtaining good approximations of the median graph.
After that, we try to validate the median graph as a representative of a class of
graphs. Up to now, existing algorithms could only be applied to very limited sets
of graphs and the median graph could not be evaluated from a practical point of
view as a good representative of a class. To that extent, we perform a prelimi-
nary classification experiment using the median graph. In some cases, we obtain
slightly better results than a nearest-neighbor classifier with a much lower com-
putation time. Thus, we demonstrate, for the first time, that the median graph
can be a feasible alternative to represent a set of graphs in real applications.

The rest of the paper is organized as follows. In Section 2, we define the basic
concepts used in the paper. Then, in Section 3 the concept of the median graph
and its theoretical properties are presented. Section 4 introduces a new genetic
algorithm for the median graph computation. Then, Section 5 is devoted to
present our experiments and results. Finally, we terminate with some conclusions
and possible future research lines.

2 Definitions and notation

Let L be a finite alphabet of labels for nodes and edges. A graph is a four-tuple
g = (V,E, α, β) where V is the finite set of nodes, E is the set of edges, α is
the node labelling function (α : V −→ L), and β is the edge labelling function
(β : E −→ L). We assume that our graphs are fully connected. Consequently,
the set of edges is implicitly given (i.e. E = V ×V ). Such assumption is only for
notational convenience, and it does not impose any restriction in the generality
of our results. In the case where no edge exists between two given nodes, we can
include the special null label ε in the set of labels L to model such situation.
Finally, the number of nodes of a graph g is denoted by |g|.

Given two graphs, g1 = (V1, E1, α1, β1) and g2 = (V2, E2, α2, β2), g2 is a
subgraph of g1, denoted by g2 ⊆ g1 if, V2 ⊆ V1, α2(v) = α1(v) for all v ∈ V2

and β2((u, v)) = β1((u, v)) for all (u, v) ∈ V2×V1. From this definition, it follows
that, given a graph g1 = (V1, E1, α1, β1), a subset V1 ⊆ V1 of its vertices uniquely
defines a subgraph. Such subgraph is called the subgraph induced by V2.

Let S = {g1, g2, ..., gn} be a set of graphs. A graph gm(S) is called a maxi-
mum common subgraph of S if gm(S) is a common subgraph of {g1, g2, · · · , gn}
and there is no other common subgraph of {g1, g2, · · · , gn} having more nodes
than gm(S). In addition, a graph gM (S) is called a minimum common su-
pergraph of S if {g1, g2, · · · , gn} are subgraphs of gM (S) and there is no other



common supergraph of {g1, g2, · · · , gn} having less nodes than gM (S). We will
also denote the gm(S) and the gM (S) as mcs(S) and MCS(S) respectively.

The graph edit distance [6, 7] is commonly used to compute the dissimi-
larity between graphs. To that extent, a number of distortion or edit operations
e, consisting of the insertion, deletion and substitution of both nodes and edges
are defined. Then, for every pair of graphs (g1 and g2), there exists a sequence
of edit operations, or edit path p(g1, g2) = (e1, . . . , ek) (ei denotes an edit op-
eration) that transforms one graph into the other. Several edit paths may exist
between two graphs. This set of edit paths is denoted by ℘(g1, g2). A cost c is
assigned to each edit operation. The edit distance d between two graphs g1 and
g2 denoted by d(g1, g2) is the minimum cost edit path between two graphs.

In this work, we will use a particular cost function where the cost of node
deletion and insertion is always 1, the cost of edge deletion and insertion is
always 0 and the cost of node and edge substitution takes the values 0 or ∞
depending on whether the substitution is identical or not, respectively. Under
this cost function, the edit distance between two graphs can be expressed as [8]:

d(g1, g2) = |g1|+ |g2| − 2 |mcs(g1, g2)| = |g1|+ |g2| − 2 |gm| (1)

We will use Equation (1) as a distance measure in the rest of the paper.

3 Generalized Median Graph

Let U be the set of graphs that can be constructed using labels from L. Given
S = {g1, g2, ..., gn} ⊆ U , the generalized median graph ḡ of S is defined as
g ∈ U that minimizes the sum of distances (SOD) to all the graphs in S:

ḡ = arg min
g∈U

∑
gi∈S

d(g, gi) = arg min
g∈U

SOD(g) (2)

Note that ḡ is not usually a member of S and, in general, more than one
generalized median graph can be found for a given set S.

The computation of the generalized median graph is a rather complex task.
Both exact [4, 3] and approximate algorithms [1, 3, 5, 2] exist, although all of
them can only be applied to very limited sets of graphs.

When the computation of the median graph is not possible, the set median
graph ĝ can be used. While the search space for ḡ is U , the whole universe of
graphs, the search space for ĝ is simply S, the set of graphs in the learning set.
The set median graph is usually not the best representative of a set of graphs,
but it is often a good starting point towards the generalized median graph.

3.1 Theoretical Properties of the Median Graph

In [3], three new theoretical results, based on the use of the particular cost func-
tion presented in Section 2, are shown that can permit to reduce the computation
time of the median graph. Basically these properties relate the search space, the



size and the SOD of the median graph with the maximum common subgraph
(gm(S)) and the minimum common supergraph (gM (S)) of the set of graphs:

– Search space: The search space of the median graph of S is composed
only of all the induced subgraphs of gM (S).

– Size of the median graph: 0 ≤ |gm(S)| ≤ |ḡ| ≤ |gM (S)| ≤
∑n

i=1 |gi|

– Bounds of the SOD: SOD (ḡ) ≤ SOD(gm(S))

In the following we will use these results to derive a new genetic algorithm
for the median graph computation.

4 A New Genetic Algorithm

In this section we show how the three theoretical results presented in the previous
section can be used to develop a new sub-optimal algorithm for the median graph
computation. A genetic approach is chosen, since it allows us to easily encode a
possible solution and also to explore the search space more efficiently.

In genetic algorithms [9], a possible solution of the problem is encoded using
chromosomes, evaluated through a fitness function. Given an initial population
of chromosomes, genetic operators, such as mutation or crossover, are applied to
alter the chromosomes. This process is repeated until one or more stop conditions
are satisfied. In the following we explain our particular implementation.

Chromosome Representation: From the property 1 of Section 2 it follows
that a chromosome should be able to encode all the possible subgraphs of gM (S).
Thus, the size of the chromosome is equal to the size of the gM (S). Each position
in the chromosome, is associated to one node of gM (S), and may store either
a value of ”1” or a value of ”0”. Thus, the chromosome specifies which nodes
of gM (S) are present (positions with ”1”) and which not (positions with ”0”),
generating an induced subgraph of gM (S), since a subset of nodes of a given
graph uniquely defines a subgraph (Section 2). An example is shown in Figure
1. Assume that the gM (S) is the graph shown in Figure 1(a). the chromosome
(Figure 1(c)) codifies the induced subgraph of gM (S) shown in Figure 1(b).
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Fig. 1. A graph gM (S) (a), an induced subgraph g of gM (S) (b) and the chromosome
representing g (c).

Fitness Function: The fitness function of each chromosome c corresponds
to the SOD of the induced subgraph g of gM (S) the chromosome represents.



f(c) = SOD(g, S) =
n∑

i=1

d(g, gi) =
n∑

i=1

(|g| − |gi| − 2|mcs(g, gi|) (3)

The lower its fitness function is, the better the chromosome is. This fitness
function implies the computation of the maximum common subgraph of two
graphs, which is exponential in the general case. Such computational complexity
becomes polynomial when the considered graphs have unique node labels [10].

Genetic Operators: The crossover operator simply interchanges, with
a uniform probability, an arbitrary position of two chromosomes. Mutation is
accomplished by changing randomly a number in the array with a mutation
probability. After the genetic operators have been applied, every chromosome is
checked in order to validate whether it fulfils the bounds given in Section 3.1
regarding the size and the SOD of the median graph. If the chromosome is out of
such limits, it is randomly altered until it fulfils the conditions. This procedure
has two effects. First, we only take into account the induced subgraphs of gM (S)
that fulfils the conditions. In addition, we expect to accelerate the convergence of
the algorithm, since non-admissible candidate medians will never appear in the
population. To create the descendants, a roulette wheel sampling implementing
fitness-proportionate selection is chosen.

Population Initialization: The length of the initial population is set ac-
cording to a predefined value K (20 in our case), determined empirically. Then,
the first n chromosomes (with n ≤ K) corresponds to the n graphs in S. In this
way, we assure that the initial population includes the set median graph, which
is a potential generalized median graph. The remaining K-n chromosomes are
generated randomly but all of them must fulfil the bounds given in Section 3.

Termination Condition: The population evolution continues until either
the maximum number of generations is reached or the best SOD in the popula-
tion is less than the SOD of the set median graph.
5 Experiments

In this section we present two experiments on real data. The database is com-
posed of 2,430 graphs containing 6 classes, with unique node labels, representing
webpages with a mean size of around 200 nodes. In the first one, we evaluate
the quality of the median graph according to the SOD. Finally, in a second ex-
periment, we conduct a preliminary classification experiment in order to assess
the median as a good representative of a given set of graphs.

Experiment 1. Median Accuracy: This experiment was intended to qualita-
tively evaluate the median graph computation achieved by the genetic approach.
To this end, we computed the median graph of each class using 3, 4, 5, 6 and 7
graphs for each class, randomly selected. Then, we compare the SOD of the me-
dian computed using the genetic algorihtm with the SOD of the set median. We
do not compare the results of the genetic approach with other methods, because
none of them is able to deal with such large sets and graphs. This comparison
can give a good idea of whether it is potentially a good median.
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Fig. 2. SOD comparison function of the number of graphs in S.

Figure 2 show the results of this comparison as a function of the number of
graphs in the set S. The results show that we obtain a better SOD with our
method than with the set median for any number of graphs in the set. What is
important in this figure is the tendency in the difference between the set median
SOD and the SOD of the approximate median. This difference increases as the
number of graphs in S increases. This tendency suggests that the more informa-
tion of the class the method has (more elements in S), better representations is
able to obtain.

With these results at hand, we can conclude that we obtain good approxi-
mations of the median graph with this new genetic approach.

Experiment 2. Classification Accuracy: In this experiment, the median
graph is used to reduce (filter) the number of classes before the application of an
1NN classifier. That is, firstly, the median is used to obtain the representative
of each class using the training set. Then, we compare every element of the test
set against the median graph of all the classes. For each element in the test
set, we rank all the classes according to the distance to these median graphs.
After that, the same element is classified using the 1NN classifier but using only
the elements in the training set of the best k classes according to the previous
ranking, instead of using all the classes as in the 1NN classical approach. It is
clear that, if k is set to 1, then the results are the same as those obtained with
the classification using simply the median graph. Conversely, if k is equal to 6,
then the results are the same as in the classical 1NN classifier. In order to better
generalize the results, we performed 10 repetitions of the classification task. In
each repetition, the training set was composed of 36 elements (6 per class), and
the test set was composed by 324 elements (54 per class).

Figure 3 shows, for every value of k, the maximum, the average and the mini-
mum classification accuracy achieved along the 10 repetitions of the experiment.
An important observation is that, even for k = 1 or k = 2, the best results using
the median graph could outperform the worse results using the 1NN classier.
That means that, with the median graph, it is possible to achieve similar results
to the 1NN, but using a lower number of comparisons.
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Fig. 3. Maximum, average and minimum classification accuracy for each value of k
along the 10 repetitions.

Figure 4, shows for every value of k the number of repetitions where this
value of k permits to obtain the same or better classification results as in the
1NN classifier. We can see that, in four repetitions (40%), we only need at most 4
classes (k = 4) to obtain better results. That means that, we can obtain the same
calssification accuracy of the 1NN classifier with less number of comparisons (for
k = 4 we need around a 24% less of comparisons than the 1NN classifier). In
addition, in 80% of the repetitions, we need at most 5 classes to obtain better
results than the 1NN classifier. In this case the reduction is around a 7%. Thus,
the median graph can be used in this sense as a representative of a class.
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Fig. 4. Minimum number of classes to achieve the same results as in the 1NN classifier.

It is important to recall that this is a preliminary experiment with the aim to
show that the median graph can be a good representative of a set of graphs. To
apply the median graph to real classification problems, further work is required.

6 Conclusions and Future Work

The median graph has been presented as a good alternative to compute the
representative of a set of graphs. The existing methods do not permit to use this
concept it in real pattern recognition applications.



In this paper we have presented a new genetic algorithm for the median graph
computation. With this new algorithm we performed a set of experiments using
webpages extracted from real data. The first conclusion of these experiments is
that, with this new algorithm, we are able to obtain accurate approximations
of the median graph (in terms of SOD) with a computation time that permits
to work with sets of graphs composed of around 200 nodes each. Although the
applicability of the median graph to real problems is still limited, these results
show that the concept of median graph can be used in real world applications. It
demonstrates, for the first time, that the median graph is a feasible alternative
to obtain a representative of a set of graphs. For instance, we have shown in a
preliminary experiment that the classification using the median graph can obtain
similar results as a nearest-neighbor classifier but with a lower computation time.

Nevertheless, there are still a number of issues to be investigated in the future.
More accurate bounds or properties might be investigated using these new results
in order to improve the knowledge of the median graph. Such advances may lead
also to obtain more accurate and efficient approximate solutions of the median
graph. Applying other optimization algorithms, such as tabu search, remains
as an open path to be explored. In addition, the preliminary experiments on
classification open the possibility of applying the median graph to classification
algorithms where a representative of the set of graphs is required.
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