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Abstract

Propagation and fusion of geometric information is of
great significance in multisensorial systems, mainly in
robotics applications, where multiple sensors or mobile
sensor systems that change their perspective of the envi-
ronment capture uncertain sparse, and sometimes par-
tial, geometric data. In a sensor data fusion problem
a set of constraints that describe the relationships be-
tween problem inputs and desired solutions can be de-
fined. Constraints and geometric features can be or-
ganized in a graph in which nodes stand for geomet-
ric primitives – whose uncertainty in their location is
represented by regions in their parameter spaces – and
arcs for constraints. This paper deals with the problem
of propagating uncertainty sets over graphs of geomet-
ric constraints. When a new measurement is acquired,
a new uncertainty set is introduced for the correspond-
ing geometric feature. This set is propagated all over
the graph of geometric constraints and fused at each
node with previous information, updated sets are thus
obtained as well as final uncertainty regions for each
feature.

1. Introduction

The increasing requirements of adaptability and au-
tonomy in robotics demand the ability of a system to re-
act to sensor data. This is particularly true when the sys-
tem must operate in unstructured environments. How-
ever, unstructured situations pose challenging problems
in sensor data fusion and sensor-based decision making
under uncertainty.

∗This research has been partially supported by the ESPRIT III Ba-
sic Research Actions Program of the EC under contract No. 6546
(project PROMotion).

Basically, two approaches have been used, in the
robotics domain, to model uncertainties: (a) tolerance
limits, worst case or set membership approach [Br],
[AH], [DP89],[ST]; and (b) multidimensional probabil-
ity distributions or stochastic approach [Du], [N],[P],
[OHF], [SSC]. The latter assumes gaussian distribution
for errors thus representing uncertainties with a covari-
ance matrix. The former describes them with an uncer-
tainty vector that puts bounds on the parameters thus
defining an uncertainty set in the space of parameters
where the actual value is bound to be. The set member-
ship approach is adopted here because it makes no as-
sumption about the nature of sensing errors, being well-
suited for robotics applications where most important
errors come from quantization. Moreover, contrary to
the stochastic approach, it avoids the general assump-
tions of unbiased and independent measurements.

The underlying set membership principles have
been applied in the control and systems science do-
mains. In this context, two main sorts of uncertainty
sets have been used: polytopes [MB], [WP] and ellip-
soids [De], [F].

In unstructured environments, particularly when
geometric issues are involved, a set of constraints de-
rived from stored models or from the incoming data it-
self that are physically plausible and solvable will be
useful for sensor data integration. We assume that we
are able to obtain this set of constraints and we will
concentrate ourselves on the propagation and fusion of
uncertain information using those constraints.

This paper is structured as follows. Section 2 tack-
les the problem of finding a good representation for ge-
ometric features and their symmetries. Section 3 de-
scribes the adopted uncertainty model. Section 4 deals
with the problem of propagating information through
geometric constraints. Finally, an example is provided
in Section 5.
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2. Representation of Geometric Features
and Their Symmetries

In this section, we describe a representation, al-
ready introduced in [SSC] and [T], based on local ref-
erence frames that simplifies later treatments.

Any geometric feature has a local reference frame
attached to it. The location and orientation of a geomet-
ric feature is represented by the transformation (rigid
motion) from the global reference frame to its local
frame. A transformation tAB from frame A to frame B is
represented using a vector xAB composed by the three
cartesian coordinates for location and the Roll-Pitch-
Yaw angles for orientation, which is called location vec-
tor. In other words,

tAB = Trans(x,y,z) ·Rotz(φ) ·Roty(θ ) ·Rotx(ψ), (1)

xAB = (x,y,z,φ ,θ ,ψ)t being the location vector. Rep-
resenting geometric features by local references has the
advantage of homogeneity: all types of elements are de-
scribed by the same kind of parameters. Moreover, data
can be expressed in any reference (world frame, local
frame, sensor frame, object frame, etc.) and reference
changes can be performed whenever they are needed.

Many geometric features have intrinsic symme-
tries. For instance, a line in space has translational
and rotational symmetries along and around itself. Any
value is valid for a symmetry parameter in the location
vector, because them all define possible local references
for the feature. Geometric symmetries are represented
by the corresponding symmetry of an element.

Definition 1. Symmetry set. Given a geometric feature
defined by a set of points E ⊆ ℜ3, its symmetry set is
the set of transformations that preserve E.

Symmetry sets are subgroups of the ℜ3 × SO(3),
the group of positive rigid motions in ℜ3 with compo-
sition operation. Symmetry groups of elements of the
same type are conjugated and thus isomorphic. Sym-
metry subgroups of elements of the same type are equal
if they are defined in their respective local frames.

Local references for each type of feature will be
chosen according to its geometric symmetry, so that
symmetry groups have simple expressions. A symme-
try group S can be expressed as S = M ·C, where M is a
group of continuous motions and C is a finite group of
cyclic motions [Bu]. A subgroup M of continuous mo-
tions can be expressed using the corresponding location
vectors and a specific kind of matrices, the binding ma-
trices [T]. A binding matrix B is a matrix formed by n

rows of the identity matrix I6, taken in order, with n≤ 6.
According to this definition

M = {t ∈ ℜ3 ×SO(3) | B ·x(t) = 0}. (2)

Some of the coordinates of x(t) do not appear in the
equation B ·x(t) = 0, they correspond to the degrees of
freedom of the feature, which will be called free coordi-
nates, and the others, assigned coordinates. For exam-
ple, the continuous motion group M of a line in space
is

M = Tx ·Rx = {t | x(t) = (x,y,z,φ ,θ ,ψ) and y = z = φ = θ = 0}=
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See [T] for a complete list of local references, sym-
metry groups and binding matrices for different types of
geometric features.

3. Uncertainty Model

3.1. Perturbation Vectors

A sensory observation of a geometric feature pro-
vides an approximate mesure tapp of the actual transfor-
mation tact between the world reference and the feature
reference. Therefore,

tact = tapp ◦ terror, (4)

or equivalently, tWE = tWE′ ◦ tE′E , where the transfor-
mation terror (or tE′E) is supposed to be small, that is,
near the identity transformation. Notice that terror is ex-
pressed in local reference E ′, not in the world reference.
Thus, when world frame is changed, tapp has to be up-
dated, but terror remains the same.

Equation (4) leads to

xact = xapp⊕xerror (5)

where ⊕ is the composition operator for location vec-
tors [SSC].

Since free coordinates are given in local coordinate
frames of the location vector xerror, they can be con-
sidered exactly known and, since any value is valid for
them, we will assume they are zero. Hence, only as-
signed coordinates have associated uncertainty [P].



Definition 2.Perturbation vector [T]. Given an incre-
mental vector xerror of a geometric feature, the corre-
sponding perturbation vector p is made up the assigned
coordinates of xerror.

It is easy to prove that p = B ·xerror, where B is the
binding matrix of the element. In addition, xerror = Bt p
and then equation (5) can be rewritten as

xact = xapp⊕Btp. (6)

3.2. Set Membership Approach to Uncertainty
Manipulation

A set membership approach is used here to model
uncertainty for perturbation vectors, so that the only
information known about an uncertain vector p is a
bounding set Up called uncertainty region. The actual
value of p is known to lie inside Up and any point in Up
is valid as an estimation of p [ST]. An observation of a
geometric feature will consist of a pair (x,U ) where x
is the nominal location vector with respect to the world
reference frame and U is the uncertainty region for the
perturbation vector.

Sensor errors can be approximately described as
bounds in each of the coordinates of the parameter vec-
tor describing a feature, so that they are linear and de-
fine halfspaces or strips in the parameter space. Uncer-
tainty regions are the intersection set of all these halfs-
paces leading to polytopes. Uncertainty polytopes can
also be approximated by ellipsoidal sets (ellipsoids or
ellipsoidal cylinders) containing them. Ellipsoidal sets
are represented by a vector (center) and a positive or
semipositive defined matrix, reducing computations to
matrix operations and decreasing the amount of storage.
While simple, ellipsoidal sets still model the different
uncertainty of the observations in different directions of
the parameter space.

Coordinates of perturbations vectors are not
overdetermined, they are never exactly known. Thus,
uncertainty sets have always maximum dimension, that
is they are not contained in any hyperplane. This means
that matrices representing ellipsoidal sets are always
well defined.

Information of a geometric feature given by an ob-
servation can be complete or partial. Uncertainty re-
gions of complete observations are bounded regions in
ℜn, where n is the number of degrees of freedom of
the sensed feature. That is, they will be bounded poly-
topes or non-degenerate ellipsoids of dimension n. On
the contrary, uncertainty sets of partial observations are
sets of ℜn unbounded along one or more directions.
Unbounded directions are those in which we do not

have any information. The number of these directions
is n− r, where r is the number of independent relations
between the coordinates. Therefore, uncertainty regions
for partial information are unbounded polytopes or el-
lipsoidal cylinders.

3.3. Changing References

Proposition 1. Given an observation of an element with
respect to a reference W by (xW E ,UE) and an observa-
tion of the W reference location with respect to a ref-
erence V by (xVW ,UW ), then the location of the ele-
ment with respect to V is given by (xVE ,ÛE) where
xVE = xVW ⊕xWE , and ÛE is the image set of UW ×UE

by the linear map

(pW ,pE) 7→ JpW +pE (7)

where

J = BE(J2⊕(xWE ,0))−1J1⊕(0,xWE)Bt
W ,

J1⊕(x,y) and J2⊕(x,y) being the partial derivatives of
x⊕ y.

Proof. Equation (6) for actual xVW and W E leads to

xact
VE = xVW ⊕xWE ⊕Bt

EBE(	xWE ⊕Bt
W pW ⊕xWE ⊕Bt

EpE)
(8)

where 	 is the location vectors operator corresponding
to the inverse transformation. The above equation mean
that the new nominal vector is

xVE = xVW ⊕xWE , (9)

and the new perturbation vector is

p′
E = BE(	xWE ⊕Bt

W pW ⊕xWE ⊕Bt
EpE). (10)

Linearizing around pE = 0, pW = 0 we get p′
E = JpW +

pE . 2

When using polytopes as uncertainty sets, UW ×
UE will be a polytope and so ÛE can be exactly ob-
tained as a projection computation [DP90]. If UW and
UE are ellipsoids UW ×UE is not an ellipsoid, but the
smallest ellipsoid UW E containing it can be computed
by simple matrix operations. Then the linear image set
of the ellipsoid UW E will be an ellipsoid (see section
4.1) and can be taken as an ellipsoid approximating ÛE .
In addition, if UE and UW are the best ellipsoidal fit for
polytopes PE and PW , the resulting ellipsoid UW E is
the best ellipsoidal fit for PE ×PW .



There are two noticeable particular cases of propo-
sition 1. Firstly, when changing world reference, exact
location of reference W with respect to V is known. In
this case, since there is no uncertainty on W , J = 0 and
ÛE = UE . Secondly, when exact location of a feature
with respect to W is available, ÛE is the image set of
UW by the linear map pW 7→ JpW , avoiding the compu-
tation of UW ×UE .

3.4. Fusion of Competitive Information

Since the sensory information of geometric fea-
tures are uncertain, multiple competitive observations
of the same feature have to be combined to obtain a
good estimation. Different measurements, each one
with its own uncertainty are fused to obtain a unique
estimation. Uncertainty of the resulting estimation is
also required.

In the set membership approach actual data is
known to lie inside all the uncertainty sets of the re-
dundant measurements to be fused, consequently inter-
section of the uncertainty sets is needed. When deal-
ing with polytopic sets, Computational Geometry tech-
niques are used to compute intersection of polytopes
[BS, PW]. If the ellipsoidal approach is used, the fusion
ellipsoid is computed in several steps, each one comput-
ing the smallest ellipsoid containing the intersection of
the previous estimation ellipsoid and a halfspace (or a
strip). This is directly carried out through simple ma-
trix computations [ST, WP]. This fusion technique al-
lows fusion of complete information as well as partial
information.

Tests for detecting inconsistent and redundant mea-
surements can be easily implemented. If two measure-
ments are inconsistent, their uncertainty sets are dis-
joint. If two measurements are redundant, one uncer-
tainty region associated with one measurement is totally
contained in the other one.

As it has been already mentioned, one of the main
advantages of the set membership approach is that in-
dependency between observations to be fused is not re-
quired. This is important because the propagation algo-
rithm described in next section is based on this fact.

4. Geometric Constraints

A point lying on a line, two parallel lines, a plane
containing a point, etc. are spatial relationships which
can be expressed as geometric constraints. Since in-
formation about a feature gives information about other
features related to it through constraints, constraints al-
low to transfer information. Also, relations between
sensed elements can be checked for consistency using

this idea.
A geometric constraint between two geometric

constraints E and F is given by functional vectorial
equation h(p,q) = 0 between their perturbation vectors
p and q. Relations between the uncertainty sets can be
computed through the vectorial equations.

Let us suppose that features E and F satisfy a
given constraint, say point F lies on line E . Then, the
transformation tEF between them has to satisfy some
parameter constraints. Due to the way local references
have been chosen, most of the constraints can be ex-
pressed using binding matrices, that is, E is related with
F if and only if

B ·xEF = 0 (11)

where B is a binding matrix.
In our example point F lies on line E if and only

if tEF ∈ TxRxyz or, in other words,
((

0 1 0
0 0 1

)

0
)

xEF = 0. (12)

Equation (11) can be written in terms of perturba-
tion vectors of E and F , leading to

B(	Bt
Ep⊕ x̂EF ⊕Bt

Fq) = 0, (13)

where x̂EF is an estimation of xEF and BE and BF are
the binding matrices of features E and F .

Only linear equations allow effective computation
for the related uncertainty sets, therefore non linear
equations must be linearized. Since p and q are as-
sumed to be small, equation (13) can be linearized
around p = 0 and q = 0.

4.1. Transferring Uncertainties in Local Refer-
ences

The information about the perturbation vector q ob-
tained from the information about p, using a constraint
between them, will be either complete or partial, de-
pending on the number of independent relations (range
of h) which will be always less or equal than dimension
of vector q.

Given a linear constraint h(p,q) = 0 between two
elements and the uncertainty set of one of them, say
Up, the corresponding uncertainty set Uq for the other
can be computed. Transformation of polytopes through
linear relations can be carried out using Computational
Geometry techniques [DP90]. Transformation of ellip-
soids is computed using the following proposition.

Proposition 2. Given an ellipsoid Upwith center
p0 and matrix Ep, the image ellipsoid through the linear



relation Ap+Cq+D = 0 has center q0 such that Ap0 +
Cq0 +D = 0 and matrix

Eq = Ct (AE−1
p At)−1

C. (14)

Proof. Let us define r = −Ap = Cq + D. The
projection of ellipsoid Up is obtained through matrix
operations, getting an ellipsoid Ur with matrix Er =
(AE−1

p At)−1 and center r0 = −Ap0. Simple substitu-
tion of r = Cq+D into Ur equation, gives the equation
for Uq. 2

4.2. Checking Relations between Sensed Fea-
tures

Given two geometric features with perturbation
vectors p and q and associated uncertainty sets Up and
Uq, respectively, we are interested in checking whether
they satisfy the equation h(p,q) = 0. An uncertainty
set U(p,q) for (p,q) can be easily computed, from sets
Up and Uq, using matrix operations. Then, using the
proposition in previous section, an uncertainty set Uh

can be derived for h = h(p,q). The equation h(p,q) = 0
is said to be uncertainly satisfied with uncertainty Uh if
0 ∈ Uh.

Uncertain satisfaction arises when performing
recognition tasks with uncertain data. Recognition
methods require to check a lot of relations, such as two
features are the same, a point lies on a line, angles be-
tween faces are the same, etc.

In practice, since most relation checking have nega-
tive response, a previous test to reject clearly unsatisfac-
tory cases for ellipsoidal uncertainty sets can be carry
out [OHF].

A point p is inside ellipsoid U with center p0 and
inverse matrix M, if

(p−p0)
t M−1(p−p0) ≤ 1. (15)

On the other hand, it can be shown that

1
trace M

(p−p0)
t(p−p0) ≤ (p−p0)

t M−1(p−p0)

(16)
Thus, if

1
trace M

(p−p0)
t(p−p0) ≥ 1, (17)

inequality (15) will not be satisfied, avoiding further
computations thus reducing computational cost.

4.3. Graph of Geometric Constraints

A graph of geometric constraints has been defined
as a graph whose nodes stand for geometric features and
edges stand for geometric constraints. Unlike the rela-
tion graphs defined in [Du] and [SSC], arcs of the graph
adopted here are associated with geometric constraints
(known without uncertainty), that is, they do not stand
for uncertain spatial relations between features.

Each time a new sensory observation of an element
is acquired, the information should be propagated to all
other nodes in the graph through the edges. In each
node when a new information is arrived (coming di-
rectly from a sensor or from an other node), it will be
transferred to its neighbour nodes and later fused with
the previous information to obtain a new uncertainty set.

Information from one node to all the others should
be propagated through all the possible paths in the
graph, because some edges may give different informa-
tion than the others. However, paths followed should
not form a loop because an observation of a node com-
ing from itself gives no new information. Propagation
paths are cut down when some of the following situa-
tions arise: i) a terminal node is reached, ii) new infor-
mation does not improve previous information about the
node and iii) uncertainty volume of new information is
too large (there is no profit on propagating very poor in-
formation). Propagation is carried out by the following
recursive algorithm where each edge has been replaced
by two directed edges (with opposite directions) and all
edges are assumed to be initially marked as ‘non vis-
ited’.

algorithm Propagation
input node, U new

node
create an imaginary edge leaving and arriving at the node

and having the identity functional relations
PropagateThrough (imaginary edge)

endalg

subalgorithm PropagateThrough (edge)
nodei= initial node of the edge
nodef= final node of the edge
U new

nodef=Transformation of U new
nodei using the edge relations

if InconsistencyTest (U new
nodef, Unodef) = YES then exit

if ImproveTest (U new
nodef, Unodef) = NO then exit

if VolumeTest (U new
nodef)= ‘too large’ then exit

Unodef = Fusion( Unodef, U new
nodef)

for each edge arriving to nodef



mark it as ‘visited’
endfor

for each edge t leaving from nodef
if visited(t) = NO then PropagateThrough (t)
endif

endfor

for each edge arriving at nodef
mark it as ‘non visited’

endfor

endsubalg

In the above procedure the propagation of an ob-
servation from node A many new observations for any
other node B, one for each path from A to B. All the
new observations in B will be fused with its previous
estimation. Therefore the fusion technique used need to
allow non-independent measurements, since in the case
described they are clearly dependent.

The presented propagation procedure ensures the
consistency of the graph, in the sense that uncertainty
sets in all nodes are consistent.

5. Example

In the object of fig. 1 vertices v1,v2,v3 and v4,
edges e1 and e2 and faces f1 and f2 are considered. In-
cidence constraints stored in the model define the cor-
responding graph of geometric constraints (fig. 2).

Graph arcs of type (vi, f j) stand for relation vertex
vi in face f j and have vectorial equation of form (13).
The estimation x̂ f jvi can be taken satisfying B f vx̂ f jvi =
0, since actual x f jvi satisfies this constraint. Therefore,
linearizing equation (13), we get

B f v

(

J2⊕(x̂ f jvi ,0)Bt
vpvi − J1⊕(0, x̂ f jvi)B

t
f p f j

)

= 0,

(18)
where

B f v = (0 0 1 0 0 0) , Bv =









1 0 0
0 1 0
0 0 1



 0





,

B f =





(0 0 1) 0

0
(

1 0 0
0 1 0

)





,

pv = (xv,yv,zv)
t
, and p f = (z f ,φ f ,θ f )

t

Likewise, constraints of type (vi,e j) can be ex-
pressed as

Bev

(

J2⊕(x̂e jvi ,0)Bt
vpvi −J1⊕(0, x̂e jvi)B

t
epe j

)

= 0 (19)

where

Bev =

((

0 1 0
0 0 1

)

0
)

, Be =
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0 1 0
0 0 1

)

0

0
(

1 0 0
0 1 0

)









and
pe = (ye,ze,φe,θe)

t

Finally, constraints of type (ei, f j) can be expressed
as

B f e

(

J2⊕(x̂ f jei ,0)Bt
epei − J1⊕(0, x̂ f jei)B

t
f p f j

)

= 0

(20)
where

B f e =

(

0 0 1 0 0 0
0 0 0 0 1 0

)

In the proposed experiment uncertain sensory data
are available for elements v1,v2,v3,v4, f1 and f2, but not
for e1 and e2. With the above explained graph propaga-
tion procedure more accurate estimations of the former
features are obtained, as well as estimations for edges
e1 and e2. In the final paper numerical results will be
provided showing uncertainty volumes before and after
propagation.

Estimations and uncertainties for edges e1 and e2
are derived from estimations of other features, with no
direct sensory acquisition. Situations like this one show
the great profit that can be obtained from propagation
technique. Also the resulting estimations may state,
with small uncertainty, that both edges are collinear, us-
ing the methods presented in section 4.2. The collinear-
ity constraint in vectorial linear form leads to

h(p1,p2) =

= Bee
(

x̂E1E2 + J2⊕(x̂E1E2 ,0)Bt
ep2 − J1⊕(0, x̂E1E2)B

t
ep1

)

= 0
(21)

where

Bee =









(

0 1 0
0 0 1

)

0

0
(

0 1 0
0 0 1

)









Since 0 belongs to the uncertainty set of h(p1,p2)
and the volume of this set is under a threshold, it means
that 0 is a good estimation for it, and so e1 = e2 is a
valid statement.
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