View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Digital.CSIC

The Discretized Polyhedra Simplification (DPS):
a Framework for Polyhedra Simplification Based
on Decomposition Schemes

Carlos Anddjar Dolors Ayala Pere Brunet

February 4, 1999

Abstract

Automatic simplification of polyhedral objects is a major topic in many
computer graphics applications. This work discusses simplification algo-
rithms for the generation of a multiresolution family of solid represen-
tations from an initial polyhedral solid. We introduce the Discretized
Polyhedra Simplification (DPS), a framework for polyhedra simplification
using space decomposition models. The DPS is based on a new error
measurement and provides a sound scheme for error-bounded, geometry
and topology simplification while preserving the validity of the model. A
method following this framework, Direct DPS, is presented and discussed.
Direct DPS uses an octree for topology simplification and error control,
and generates valid solid representations. Our method is also able to
generate approximations which do not interpenetrate the original model,
either being completely contained in the input solid or bounding it. Unlike
most of the current methods, restricted to triangle meshes, our algorithm
can deal and also produces faces with arbitrary complexity. An extension
of the Direct method for appearance preservation, called Hybrid DPS, is
also discussed.

1 Introduction

Many computer graphics applications, including CAD and virtual reality sys-
tems, require modeling, handling and visualization of very large and geomet-
rically complex systems. Geometry simplification deals with generation of 3D
models that resemble the input model but involve less faces, edges and vertices.
A concept closely related is the approximation error —a quantification of the
difference between the original model and the simplification. Level of Detail is
concerned to the possibility of using different representations of a geometric ob-
ject having different levels of accuracy and complexity. Multi-resolution models
provide several level-of-detail representations of a geometric model and have be-
come a powerful tool in many computer graphics applications, including CAD,
virtual reality and scientific visualization, as they can accelerate the handling
of complex models by omitting unessential computation and reducing storage

https://core.ac.uk/display/36040396?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

space in visualization [Cla76], [Cro82], [RB93], [MS95], [RH94]|, [FS93], trans-
mission over networks [ANM97], [DLW94], [aa95], [CPD*96], [Hop96], query
acceleration [Vel92], collision detection, visibility analysis and acoustic model-
ing [ea98]. Simplification is also used for reducing the verbosity of 3D models,
adjusting the accuracy to the application’s requirements and multi-resolution
interactive modeling.

The need for multi-resolution representations was already stated in 1976 in the
context of real-time visualization. In [Cla76] J. Clark pointed out that objects
which cover a small area in the screen could be rendered with a simplified version
and he proposed a hierarchical model supporting several representations of an
object.

Although multiresolution representations are sometimes obtained interactively
[Cro82], [HG94], extensive research is being performed in developing algorithms
for the automatic generation of these multiresolution representations.

1.1 Solid Simplification vs. Surface Simplification

Most of the simplification methods published so far are concerned with a sub-
problem of geometry simplification which will be called surface simplification.
In surface simplification the approximation error is measured by some distance
defined on the points on the surface, regardless of the enclosed volume, if any.
We introduce a new approach for the geometry simplification problem, the solid
simplification (Table 1). Solid simplification deals with the approximation of
solid mathematical models, i.e. point-set models, whereas surface simplification
deals with entities inherently 2D (see Figure 1 a, b).

The behavior of surface simplification methods is independent on the volume
enclosed by the surface, and thus many surface simplification methods can deal
with non-manifold, self-intersecting and even open surface patches. Since the
disparity between the original surface and the simplified one should be measured
by some error metric based on the points on the surface, the goal is to calculate
a less complex surface which approximates the original one within a tolerance
bound around the surface.

Unlike surface simplification, solid simplification methods take into account the
volume enclosed by a two-manifold surface. Solid simplification measures the
error using the points inside the solid, and hence it has more freedom for mod-
ifying its geometry and its topology (genus and shells).

Solid simplification applications make us somewhat less concerned with pre-
serving surface appearance attributes, such as curvature and color, than some
visualization-oriented surface simplification methods are.

Surface simplification methods can be used for polyhedra simplification, and
good results could be expected when simplifying objects with a simple topology
and without e-zones (thin zones of the space crossed by two or more sheets
or the surface). Beyond these limited cases, the results obtained by surface
simplification methods are very poor. Figure 2 shows two sample objects which
cannot be successfully simplified with a surface simplification method.

]

00
]

]
L]

c

Figure 1: Surface vs. solid simplification. (a) The surface simplification prob-
lem. (b) The solid simplification problem. (c¢) A 2D solid being simplified by a
surface simplification method (top) and a solid simplification method (bottom).
The slots of the assembly must be preserved in the former case since otherwise
a great error is introduced, whereas the solid simplification is able to change the
topology in order to achieve a higher geometry reduction.

Figure 2: Top: A topology-preserving surface simplification method is unable
to simplify the back of the chair into a single face, even with a high tolerance.
Bottom: poor result obtained with a surface simplification algorithm over an
object with many shells. Note that many components appear disconnected in
the simplification.

1.2 Background and Previous Work

Although surface simplification is a well known problem and a great amount
of algorithms have been proposed, from terrain simplification up to triangular

Table 1: Surface simplification vs. Solid Simplification

Surface Simplification

Solid Simplification

Underlying entity

Basis for error control
Topology simplifica-

tion

Previous work

Applications

surface (2D)
points on the surface
very limited

intense research
visualization-oriented

point-set model (3D)
points inside the volume
high degree of freedom

papers are still rare

more general

=

mesh simplification, polyhedra solid simplification methods are still very rare
[2a96], [AABT96].

Related issues with simplification methods are topology simplification and er-
ror bounds. Topology simplification deals with the ability of the algorithm to
reduce the topology of the model, i.e., its genus and number of shells. This is
an important requirement in practical applications in order to get high simpli-
fication rates in objects with complex topologies and in assemblies [aa96]. The
existence of error bounds or tolerances for the approximations is also a basic user
requirement which is useful, in LOD-based applications, to choose the optimal
approximate representation for a distant object.

1.2.1 Previous work on surface simplification

Most of the current surface simplification methods are devoted to triangular
meshes (mesh simplification). Some of them are 3D extensions of 2D polygonal
simplification methods while others are direct 3D approaches. Although some
bottom-up methods exist [Vel93], most methods follow a top-down strategy,
performing a face reduction directly on the mesh by the iterative application of
reduction operators (incremental methods). Different operators have been pro-
posed: vertex removal [SZL92], [ea96], [SLI6], edge collapse [RR96], [Gue96],
[AS96], [Hop96], [Hop97], face removal [Ham94], superfaces merging [KT93],
[KT96] and edge flipping! [CCMS97], [BBCS96]. These operators are reviewed
in Section 1.2.2. Other mesh simplification methods are based on re-tiling
techniques [Tur92] and multi-resolution analysis [DLW94], [aa95], [CPD*96],
[GSGI6]. See [Ros96], [Eri96], [ABINI7] for a survey on such methods. With
a few exceptions, mesh simplification methods are unable to handle properly
objects with complex topologies since topology preservation limits geometry
simplification.

IEdge-flipping does not reduces the face count but may improve the fitting.

Other approaches are based on space-partitioning and clustering techniques in
3D space, like [RB93], [RR96], [Red96], [GHI7]. These methods allow topolog-
ical changes and yield high compression ratios but the resulting simplified rep-
resentations are not valid B-Rep (they contain dangling parts or non-manifold
boundaries), so they cannot be used for solid simplification.

1.2.2 Operators over triangle meshes

In this section we compare local mesh operators, which are a key ingredient of
the most populated family of surface simplification methods and is also one of
the key ingredients of our approach.

Incremental methods are based on a set of local operators which either reduce
the mesh complexity (reduction operators) or improve the fitting of the approx-
imated mesh (fitting operators).

-
BB WD
W W

Figure 3: Reduction and fitting operators: a) vertex-removal, b) edge-collapse,
c) vertex-clustering, d) face-removal, e) edge-flip and f) vertex-displacement.

d E E

>

The following reduction operators have been proposed in the geometry simpli-
fication literature (see Figure 3):

e verter-removal

The vertex-removal operator take as parameter the vertex to be removed.
The vertex and its ¢ incident triangles are removed. The resulting hole
is triangulated with ¢t — 2 triangles. The only computed parameter is the
new incidence graph of the hole’s triangulation. The operator reduces the
number of faces by two, the number of edges by three and the number of
vertices by one. Except in degenerate cases which can be easily identified
by inspection of the incidence graph, the vertex-removal operator preserves
the topology of the mesh. To avoid self-intersections, additional geometric
tests are required. The selection of the vertex to be removed is commonly
based on a curvature estimation at the vertex. Vertices with low curvature
values are removed first. The vertex removal operator is used in [SZL92],
[ea96], [SLI6] and in most terrain simplification methods.

o edge-collapse

The edge-collapse operator takes as parameter the edge to be collapsed,
or its equivalent, a pair of vertices sharing an edge. The two vertices are
collapsed in one vertex. As a result of this collapse, the triangles sharing
the edge degenerate in a segment and are removed. The only computed
parameter is the new vertex position, which usually is that of one of the
two old vertices, or a weighted average. The operator reduces the number
of faces by two, the number of edges by three and the number of vertices
by one. Except in degenerate cases which can be easily identified by
inspection of the incidence graph, the edge-collapse operator preserves
the topology of the mesh. To avoid self-intersections, additional geometric
tests are required. The selection of the edge to be removed is commonly
based on an estimation of the error in the Hausdorff distance [Grii67]
sense. Usually, feasible edge-collapse operators are computed in a previous
step, and stored in priority queue ordered by error. The edge-collapse
operator is used in most of the state-of-the-art methods: [RR96], [Gue96],
[AS96], [Hop96], [Hop97]. Due to its simplicity, the edge-collapse operator
has been used successfully both in geometry simplification (lossy) and
geometry compression (loss-less).

o vertex-clustering

The vertex-clustering of v vertices is conceptually equivalent to v — 1
vertex-clustering operation involving just two vertices, so we will review
only this latter form. The vertex-clustering operator takes as parameter
the two vertices to be collapsed. When these vertices are connected along
an edge, this operation is an edge-collapse, but disconnected vertices are
also allowed to be collapsed. If the latter case, only the number of ver-
tices is reduced; otherwise, the triangles sharing the edge degenerate in
a segment and are removed. The only computed parameter is the new
vertex position, which usually is that of one of the two old vertices, or
a weighted average. If the vertices are connected by an edge, the oper-
ator reduces the number of faces by two, the number of edges by three
and the number of vertices by one; otherwise only reduces the number of
vertices. Unlike previous reduction operators, the vertex-clustering does
not preserve the topology of the mesh, and creates non-manifold meshes.
To avoid self-intersections, additional geometric tests are required. In the
simpler methods, the selection of the vertices to be collapsed is based on
geometric proximity. Usually, several vertices are clustered at a time. The
vertex-clustering operator is used in [RB93], [RR96], [Red96], [GHI7].

e face-removal

The face-removal take as parameter the triangle 7' to be removed. This
triangle and all its neighbors sharing one vertex with 7" are removed. The
resulting hole is triangulated with the help of a new vertex. The computed
parameters are the coordinates of the new vertex, and the incidence graph
of the triangulation. The operator reduces the number of faces by four,
the number of edges by six and the number of vertices by two. Except
in degenerate cases which can be identified [Ham94], the face-removal
operator preserves the topology of the mesh. Due to the high number of
triangles involved, incremental methods using face-removal rapidly arrive

to a mesh which cannot be further simplified while maintaining its validity,
whereas other simpler operators such as edge-collapse could be applied.
The face removal operator is used in a few methods [Ham94].

In addition to reduction operators, which modify the count of the geometric en-
tities of the mesh, surface simplification methods often rely on fitting operators:

e edge-flip

The edge-flip operator take as parameter two adjacent triangles (or their
shared edge). The non-planar quadrilateral resulting of merging together
both triangles is triangulated using the opposite diagonal. There are no
computed parameters. The edge-flip operator preserves the topology of the
mesh but not the incidence graph. To avoid self-intersections, additional
geometric tests are required. The edge-flip is used for two purposes: a)
to improve the fitting of the simplification to the original surface, in non-
flat regions, and b) to create well-shaped triangles, in flat-regions. The
edge-flip operator is used in [Hop96], [CCMS97], [BBCS96], to minimize
the error produced by another previous operator, such as edge-collapse.

o vertex-displacement

The vertex-displacement operator take as parameter the vertex to be
moved. The only computed parameters are the new coordinates, usually
given as an offset vector. The vertex-displacement operator preserves the
topology of the mesh and the incidence graph. To avoid self-intersections,
additional geometric tests are required. The vertex-displacement is used
to locally improve the fitting of the simplification to the original surface.
Its relevance is due to the fact that the vertex displacement is closed in
the domain of valid triangle meshes (i.e. it preserves the validity); this
does not hold for arbitrary polyhedra, since vertex-displacement would
produce non-planar faces.

For many authors, edge-collapse is the most suitable operator for face reduction.
There are two reasons for that: its simplicity (only affecting two triangles at a
time), allowing further simplification when other operators cannot be applied,
and its generality, in the sense that all topology-preserving reduction operators
can be derived from a series of edge-collapses and edge-flips:

e One vertex-removal can be replaced by an edge-collapse and several edge-
flips.

e The multiple vertex-clustering of n vertices can be replaced by n — 1
vertex-clustering of two vertices, which in turn is a generalization of edge-
collapse to arbitrary pairs of vertices. Since we are interested in keeping
the two-manifold property of the surface, only edge-collapses are suitable.

e One face-removal can be replaced by two vertex removal, and hence by
two edge-collapses and several edge-flips. Note that, in the face-removal we
are considering, the triangulation is performed introducing a new vertex.
Otherwise, three edge-collapses instead of two would be necessary.

1.2.3 Previous work on simplification using decomposition models

Decomposition approaches [And98b] automatically guarantee both the topology
simplification and the error bounds. These approaches use an intermediate space
decomposition representation (usually a voxel or octree representation). Unlike
other approaches, topology is simplified in a discretization process, instead of
being simplified by means of operations over the brep.

A simplification method based on a decomposition model was introduced in
[AAB95], where an algorithm for the special case of orthogonal polyhedra is
presented. The algorithm used a special kind of octree, the Maximal Division
Classical Octree (MDCO) [BJNT88] as the intermediate model. This represen-
tation scheme is discussed in Section 3.1. The input of the method [AAB95]
is a closed polyhedron, which is discretized into an MDCO. For each terminal
grey node of the MDCO, the color of the eight vertices of the corresponding
octant is computed, resulting in black (inside the polyhedron) and white (out-
side) points. There are 28 = 256 possible configurations of the vertex colors of a
terminal node [LC87], [Sri81]. This configurations can be grouped by means of
symmetries into 14 equivalence classes (see Figure 4). Terminal grey nodes can
be non-regular (all vertices black or all white) or regular. Regular nodes can be
ambiguous or non-ambiguous.

After the vertex color computation, a reconstruction algorithm similar to March-
ing Cubes (MC) [LC87] is applied in two stages: the first one computes the
geometric information of each vertex of the result by means of a look-up ta-
ble indexed by the configuration of the eight vertices of the terminal node; in
a second stage the incidence graph is computed by grouping coplanar vertices
into loops and faces, following the algorithm presented in [Nav86]. Unlike MC,
the resulting polyhedron is orthogonal and the faces are not limited to triangles.
Furthermore, the ambiguity problem [GW94] can be easily solved by simply sub-
dividing once more ambiguous terminal nodes and adopting a black or white
proximity criterion.

In order to guarantee an error bound in the sense of the Hausdorff distance, non-
regular regions must be reconstructed separately. In addition to be restricted to
orthogonal simplifications, due to the non-regular regions problem the method
presented in [AAB95] usually tends to increase the number of shells.

2 3

7 8 9 10 11 12 13

Figure 4: The 14 equivalence classes of terminal nodes. Class 0 is non-regular.
Classes 1, 2, 5, 8, 9 and 11 are non-ambiguous, and classes 3, 4, 6, 7, 10, 12 and
13 are ambiguous.

A first extension of [AAB95] for the case of general polyhedra was proposed
in [AAB'96]. The algorithm has three major steps: discretization of the in-
put model, generation of a multi-resolution of octrees by simply pruning the
higher octree level, and reconstruction of a polyhedron for each octree. The in-
cidence graph reconstruction is based on a classification of terminal grey nodes
by planarity criteria and an iterative refinement guided by the minimization
of an energy function involving coplanarity of vertices, linear separability and
stabbing of nodes by the edges. The geometry reconstruction is based on a
numerical programming problem minimizing the previous goal function. Unfor-
tunately, the method presented in [AABT96] is quite complicated and, due to
the non-regular regions problem, often increases the number of shells.

A different approach based on signal processing is presented in [HHK'95]. The
algorithm has two steps. In the first one, the input polyhedron is sampled and
low-pass filtered resulting on a 3D grid of scalar values. The density is computed
using the following integration restricted to the interior points:

f(i,j,k):///h(x,y,z)d:cdydz (1)

where h(z,y, z) is a low-pass filter such that the contribution of points is max-
imum at the voxel’s center and null at some finite radius R:

h(p) = (R — dist(p,c))/ R. (2)

In the second step the surface is extracted with the original Marching Cubes
(MC) in [HHK'95] and an improved version in [aa96]. Unfortunately, the ap-
proximation error is not bounded, and the resulting triangle mesh has many
redundant triangles due to the verbosity of MC. Furthermore, the simplifica-
tion smoothes the object’s surface and the user must provide an isodensity value
for MC.

1.2.4 Surface extraction and octree-to-boundary conversion

The surface extraction problem is closely related to the simplification problem
[And98b]. On one hand, most surface simplification algorithms appeared as a
tool for reducing the verbosity of surface extraction problems such as Marching
Cubes, which produces high density of triangles even in regions of low curva-
ture. On the other hand, the simplification methods based on decomposition
models [AAB95], [AABT96], [HHK'95], [2a96] must use some kind of surface
extraction algorithm. The immediate consequence is that any low-verbosity
conversion algorithm from a decomposition model to a boundary representa-
tion can be used as the reconstruction step of a simplification method based
on decomposition schemes. Several low-verbosity conversion algorithms have
appeared in the context of voxels and octrees.

In [MSS94], an improved MC is presented. The method is based on a discretiza-
tion of face orientations, resulting in many coplanar triangles that are merged
together in a post-process step.

In [JAS95] a surface extraction method based on face octrees [Bru90] is pre-
sented. The main contribution is that the generated faces are not restricted

to lie inside a voxel. The algorithm has three main steps: construction of a
Geometrically Deformed Model [MBL91] using the minimization of an energy
function, construction of the face octree and reconstruction of the polyhedron.
Unfortunately, [JAS95] is unable to reconstruct the polyhedron inside some
‘thin’ regions, and hence approximation error is not bounded.

1.3 Problem Statement

The solid simplification problem for general polyhedra can be stated as follows:
given a general, two-manifold polyhedron P with ns(P) faces, a multi-resolution
family of two-manifold polyhedra P, P,_1, ... Py approximating the initial
object P must be generated. We look for a simplification algorithm fulfilling
the following requirements:

e The approximation of the individual polyhedra P must be monotonically
decreasing from the closest approximation P; to the coarser one Fy. More
precisely, a set of tolerances ¢, €;—1, ..., €1 with g < €1 must exist
such that some geometric distance between P and Pj_; is bounded by
ek. Several bound definitions will be discussed in Section 2.1.2.

e The number of faces of the polyhedra P should be monotonically decreas-
ing from the best approximation P, to Py, that is ny(Py_1) < nyg(Py).

e Both the geometry and the topology —genus and number of shells— of the
initial polyhedron P must be simplified. For topology simplification we
mean the proper modification of the genus and the number of shells in
order to achieve a high simplification ratio. Note that topology simplifi-
cation may suppose both the increment or decrement of genus and shells.
Usually, Fy will be a genus-0 approximation to P.

e Relevant features of P such as sharp edges must be kept as much as
possible during the simplification sequence from P; to Py.

e Flat regions of the initial polyhedron P must be approximated by large,
planar faces in P, whenever possible.

1.4 Contribution

In this work we introduce the Discretized Polyhedra Simplification (DPS), a
framework for polyhedra simplification using space decomposition models. Sev-
eral criteria for DPS methods are discussed, and two new algorithms, the Direct
DPS and the Hybrid DPS are presented. These methods, which are based on
an extension of the classical octree representation scheme, improve previous
methods presented in [AAB95] and [AAB96].

These new approaches generate error-bounded two-manifold approximations,
and are capable of reducing the topological complexity. Furthermore, these
methods are not restricted to triangular meshes, and the Direct DPS algorithm
deals and produces faces of arbitrary complexity (including holes). The Direct
DPS has many applications in image acceleration, occlusion analysis, query

10

acceleration and acoustic modeling. The Hybrid DPS is also suitable to LOD-
based visualization of complex assemblies.

1.5 Organization of this document

In section 2, the DPS framework is presented, and its relationship with surface
extraction methods and other simplification methods is discussed. In the next
sections, two different DPS methods are presented and discussed. The Direct
approach presented in section 3 is a complete parameterization of a DPS that
does not use the original BRep information once the decomposition model has
been generated, and thus it can be used as a surface extraction algorithm from
volume datasets. In section 4, the Hybrid DPS approach is outlined, which is
intended to exploit the advantages of classic surface simplification methods and
DPS methods by combining them in a region-based classification.

11

2 The Discretized Polyhedra Simplification (DPS)
framework

2.1 The DPS framework

The DPS framework models a family of simplification methods which have in
common the use of an intermediate space decomposition scheme to generate a
multi-resolution family of solid representations. The DPS framework involves
five components: a decomposition scheme, an error metric, and discretization,
reconstruction and face reduction processes. The DPS pattern (Figures 5 and
6) shows the integration of these components.

PD; Face Reduction P

O, ructi
O PD; Face Reduction P
Oy ructi

P —=| Discretization

PD, Face Reduction By

Figure 5: The DPS framework. O stands for a 2¥x2¥x2* division of the space

2.1.1 Decomposition Scheme

A space decomposition scheme allows sound topology simplification. Although
any decomposition scheme might be used in a DPS method, only those with
equal-sized, regular cells are practical, since they provide a convenient mecha-
nism to guarantee a tight and uniform error bound. The proposed methods rely
either on a voxel scheme or on a Maximal Division Classical Octree (MDCO)
[BIJNT8S].

Cell interpretation may strongly impact a DPS method. For instance, a dis-
joint partitioning of the space (where each point belongs to a unique cell) may
yield to different results with respect to the same method using a quasi-disjoint
decomposition.

Besides the closeness of cell’s boundary, coloring of such cells may vary from the
classic solid modeling interpretation—in which a cell is black if it contains part
of the solid, and is white otherwise—, to more sophisticated coloring schemes
such the volume buffers proposed in [HHK95] and [aa96], through schemes
distinguishing among black—completely inside—, white—completely outside—
and grey—containing a part of the boundary—mnodes.

2.1.2 Error Metric
Almost all the simplification methods use a metric based on the points of the

surface; such a metric is called on-metric. On-metrics are not appropriate for
solid simplification since they limit the topology reduction. The DPS framework

12

is based on a new approach for error measurement, the in-metrics, i.e., based on
the points inside the solid. Symmetrically, out-metrics are based on the points
outside the solid. The following distances represent these three approaches: In-
Hausdorff distance is the symmetric Hausdorff distance [Grii67] defined over the
points inside the volume enclosed by the solids. A solid P’ is said to approximate
P within a bound ¢ in the In-Hausdorff distance sense iff

VpeP Ip' e P’ | dist(p,p') <e and Vp'€P' IpeP | dist(p,p’) <e. (3)

The On-Hausdorff (resp. Out-Hausdorff) is the symmetric Hausdorff distance
defined over the points on the boundary (resp. outside the solid): A solid P’ is
said to approximate P within a bound ¢ in the On-Hausdorff distance sense iff

Vpe Surf(P) Ip'€Surf(P') | dist(p,p’) <e and
Vp' € Surf(P") I3peSurf(P) | dist(p,p') <e, (4)

where Surf(P) stands for the boundary of P.

A solid P’ is said to approximate P within a bound ¢ in the Out-Hausdorff
distance sense iff

Vpg P 3Ip'¢P' | dist(p,p') <e and Vp'¢P' IpgP | dist(p,p') <e. (5)

The In-Hausdorff is a good quantification of the difference between two solids
and allows topology simplification (especially shell reduction).

Although On-metrics are the most used in surface simplification, In-metrics
have a clear advantage over the On-metrics: they allow topology simplification
(particularly shell reduction) in regions where two sheets of the polyhedron
surface are near one of each other, with independence of their area (see Figures
1, 2). Since this circumstance is common in CAD models, specially in object
assemblies, In-metric based approaches may yield to higher compression ratios,
and thus, it is a very good error metric for solid simplification problems.

Brep-based simplification methods cannot properly handle In-metric bounds;
only DPS methods offer the appropriate framework for that criterion.

2.1.3 Discretization

The discretization process is the conversion of the input solid P into a multi-
resolution family of decomposition representations. The discretization proceeds
through a space subdivision producing the more accurate model followed by
iterative grouping of adjacent cells creating coarser representations. Grouping
in the octree case is achieved by pruning of deepest level. Since irregular de-
composition schemes are impractical for surface reconstruction purposes, from
now on we will focus on regular decomposition schemes —either a voxelization or
an octree. The notation Oy stands for a 2¥x2Fx2* division of the space. Every
intermediate representation O approximates P within an error bound & in
some metric distance.

According to how the discretization is performed, DPS methods can be classi-
fied in top-down and bottom-up methods. In the top-down approach, the user

13

provides a resolution parameter which defines the maximum resolution of the
decomposition. The discretization step is decomposed in two sub-steps. The
space decomposition step produces only the more accurate member of the de-
composition multi-resolution family. Coarser representations are obtained by
iteratively grouping adjacent cells, and thus making intensive use of the coher-
ence of the discretization of an object with different resolutions. For instance,
simplification in octree space is as simple as removing the last subdivision level.
The equivalent simplification in voxel space is the grouping of eight neighbor
voxels into a single, greater voxel. Note that in this approach, topology simpli-
fication is distributed between the space decomposition and the grouping steps.
The pseudo-code for the top-down discretization step is shown below:

function TopDownDiscretization(P: Polyhedron, L: int)
Or:=space_decomposition(P,L)
for k:=L — 1 to 1 step —1
Oy:=group(Ok+1)
end
return O;.. 1

end

In the bottom-up approach, the discretization step is performed by a step-
wise refinement of the previously calculated decomposition model. The first
iteration generates a very coarse decomposition, e.g. a single cell, and the rest
of the multi-resolution members are obtained by iteratively refining the previous
decomposition. In the case of an octree, each discretization step subdivides
each terminal node once. This process continues until a user-defined maximum
depth is reached or, more likely, when the resolution increase does not allow a
face reduction with respect to the original polyhedron P. The pseudo-code for
the discretization step in a bottom-up DPS is shown below:

function BottomUpDiscretization(P: Polyhedron, L: int)
O1:=one_cell()
for k:=2 to L
Oy:=refine(Ok_1, P)
end
return O;.. 1

end

Top-down DPS methods have the possibility of making a better use of the
coherence between successive simplifications; more precisely, certain parts of the
boundary of the last generated polyhedron, Pj41 can be used in the generation
of the current one, Py, and thus accelerating the algorithm and reducing the
discrepancy between consecutive representations.

The main advantage of bottom-up DPS methods is that, when the refinement
step is included inside the main loop, no user-defined parameters must be pro-
vided; the simplified representations are obtained from the coarsest one to the
finest until the face count difference with respect to the original polyhedron
is not relevant, so it never produces representations with more faces than the

14

original polyhedron that would be discarded.

2.1.4 Reconstruction

The reconstruction process is the generation of a polyhedral representation PDy,
for each member Oy of the multi-resolution family of decomposition models.
Since classic decomposition schemes are approximate representations of poly-
hedral solids, there exist many ways to interpret the underlying object, e.g.
Marching Cubes [LC87]. Surface fitting algorithms and isosurface extraction
algorithms are candidates for the reconstruction step. Since the aim of the DPS
method is to generate simplified models, the conciseness of the reconstruction
algorithm is often the key ingredient for a good simplification ratio. The re-
construction must guarantee that the distance between PDy and P is bounded.
This can be accomplished by using an octree as the decomposition model and
confining the boundary of PDj, to particular cells of the octree.

According to the input data of the reconstruction process, DPS methods can be
classified into direct and hybrid methods. A DPS method is said to be direct if
the only input necessary for its reconstruction step is the decomposition model
of the current iteration. The method is said to be hybrid if it uses both the
decomposition model and the polyhedron generated in the previous iteration
(the original polyhedron in the case of the first iteration). Hybrid DPS meth-
ods require a top-down approach, since the information provided by a coarser
polyhedron is not as useful for reconstruction purposes as the one provided by a
more precise one. Hybrid DPS methods may exploit such pre-calculated geom-
etry both to accelerate the execution and to increase the smoothness between
successive approximations.

2.1.5 Face Reduction

The face reduction is the incremental simplification of each intermediate polyhe-
dron PDj, by topology-preserving operators. Avoiding application of topology
reduction operators over the B-Rep is the key for producing manifold bound-
aries.

Reduction operators may range from simple coplanar facets merging up to lossy
techniques such as edge-collapsing, vertex removal and vertex clustering tech-
niques. The resulting polyhedron P} has fewer faces than PDj but the same
topology. The octree provides a bound of the surface which is exploited in the
face reduction.

Unlike other simplification methods in which the geometry reduction is per-
formed directly in the polyhedral representation domain, in a DPS method
geometry simplification is distributed in the discretization, reconstruction and
face reduction steps.

Furthermore, the topology of the generated polyhedra is independent of that
of the original polyhedron, and it is constructed regarding only the space de-
composition model, so topology simplification is achieved in a direct and robust
way in the discretization step, instead of applying topology reduction operators

15

Figure 6: DPS method 3D example. From left to right: original polyhedron,
multi-resolution of octrees (some front grey nodes have been culled to keep black
nodes visible), reconstructed models and final multi-resolution.

-
i

Figure 7: DPS method 2D example. From left to right: original polyhedron,
multi-resolution of spatial decompositions, reconstructed models and final multi-
resolution.

directly to the BRep representation, which frequently produce non-manifold
boundaries [GHI7].

16

2.2 Previous DPS methods

The DPS framework is both a generalization of previous simplification algo-
rithms and an extension of isosurface extraction and surface fitting algorithms to
the solid simplification field. The methods presented in [AAB95] and [AAB196]
follow the DPS pattern. In [AAB95] a method is presented which is intended
for orthogonal surface simplification. The decomposition scheme is a colored
MDCO. The metric used is the On-Hausdorff. The reconstruction step gener-
ates an orthogonal solid. No further face reduction is applied.

Its main contribution is the ability to create faces of arbitrary topology, even
with holes. Unfortunately, the results are restricted to orthogonal solids and
present the problem of the non-regular regions [And98b], i.e., regions composed
by terminal grey nodes whose 8 vertices have the same color. These regions
must be processed and reconstructed separately at the expense of increasing
the number of shells.

In [AAB™96] an improved version is presented, producing arbitrarily oriented
faces, but still has the non-regular regions problem.

The method presented in [HHK195] is in fact a single-iteration DPS. The de-
composition model is a voxel grid where the color of voxel’s center (referred
as volume buffer) is calculated by applying a low-pass filter over the object’s
volume in its neighborhood. The reconstruction is performed with a corrected
MC in the first version, and with an enhanced, less verbose MC in [2a96].

17

3 The Direct DPS method

Direct DPS (Figure 6) is a solid simplification method following the DPS pattern
(Figure 5). A maximal division classical octree (Section 3.1) is used as the de-
composition scheme; the approximation error is measured using the In-Hausdorff
distance (the extension to support the Out-Hausdorff distance is straightfor-
ward); the direct reconstruction is a region-based combination of an orthogonal
reconstruction (Section 3.5) and an extended DMC (Section 3.6), and the face
reduction is based on merging of adjacent faces (Section 3.8). In each iteration
the octree is pruned removing the last level (Figure 6).

3.1 Maximal Division Classical Octree

Some DPS methods are based on the voxel representation [HHK'95], [aa96]
whereas others [AAB95], [AAB96] use hierarchical octree representations. Oc-
tree representations can be seen as voxel representations with a hierarchy on
top of them. However, octree representations are more flexible as they allow
information being transmitted from the leaves to the parent nodes, as it will be
discussed in next sections.

The Maximal Division Classical Octree [BJNT88], denoted as MDCO(P,1), is
an octree representation of P, containing White (W), Black (B), Grey (G)
and terminal grey (TG) nodes with all TG nodes belonging to the last level
l. White nodes correspond to cubic regions completely outside P and Black
nodes correspond to cubic regions completely inside P. Grey nodes correspond
to cubic regions containing part of the object boundary and therefore must be
subdivided by bisecting each direction into eight octants. These octants are
represented as the eight son nodes of the initial Grey node. Finally, TG nodes
are Grey nodes at the deepest allowed level [of the tree and are not subdivided
(see Figure 11 b).

The boundary of P is completely contained in the set of TG nodes. From now
on we will refer to sets of nodes using calygraphic letters, i.e. B is the set of B
nodes, and so on.

There are several ways to define the cubic region C associated to an octree node.
The usual definition leads to a disjoint decomposition of the space, where a cell
of size [centered in ¢y, ¢y, ¢, includes the points defined by the three half-opened
intervals given by the equation

C:{(w,y,z) |£L“€[C$ —l,Cx-l-l),yE[Cy—l,Cy+l),Z€[CZ—l,CZ+l)} (6)

where the closed endpoint of each interval if defined by convention. The border
of this cube is closed in a vertex, three edges and three faces. This definition
is used in octrees such as the Extended Octrees [Nav86], where entities such
as vertices must belong to a unique cube. Such an MDCO will be referred as
Disjoint MDCO.

Another way to define the cube is as follows:

C= {(m,y,z) |£L“€[C$ —l,cm+l],y€[cy—l,cy+l],ze[c2—l,cz+l]}, (7)

18

i.e., by means of three closed intervals. This definition leads to a non-disjoint
decomposition, and we will show that it yields to a more flexible representation
of the object’s boundary since TG nodes with underlying connected regions are
6-connected. Such an MDCO will be referred as quasi-disjoint MDCO. Due to
its convenient connectivity properties, the Direct MDCO DPS method is based
on a this kind of MDCO.

One of the interesting properties of the MDCO scheme is presented in the fol-
lowing theorem:

Theorem 3.1 In a MDCO, a B node is never 26-adjacent to a W node.

Proof: In a MDCO, the intersection of two 26-adjacent nodes is not empty
(they share at least a vertex, edge or face). If a B node were 26-adjacent to a
W node, this non-empty shared region would be, at the same time, completely
in and out the polyhedron, so this circumstance can never occur. =

3.2 Discretization: Border and Interior TG nodes

The discretization consists of the construction of the MDCO from a boundary
representation. This is a well known problem based on a simultaneous space
subdivision and clipping of the boundary of the polyhedron; the implementation
details are given in Section 3.9.3. Depending on the selected error criterion, TG
nodes can be further classified into border and interior nodes, as follows (see
Figure 11 b, e, h):

Definition A TG node is a border TG node (BTG") if at least one of its
26-neighbor nodes is a W node.

Definition A TG node is an interior TG node (ITG") if none of its 26-
neighbor nodes is a W node.

The corresponding definitions for BTG® and ITG® are obtained by simply
exchanging the role of B and W nodes:

Definition A TG node is a BTG® node if at least one of its 26-neighbor nodes
is a B node.

Definition A TG node is a BTGP node if none of its 26-neighbor nodes is a
B node.

An important property that will be relevant for the reconstruction algorithm
is that, given a polyhedron P, only BTG" (resp. BTGP) nodes are relevant
for the generation of an approximating polyhedron P, fulfilling the In (resp.
Out) Hausdorff distances with respect to P, respectively. In other words, by
definition of the MDCO, the boundary of P spreads into border and interior
TG nodes, but the boundary of P, only needs to traverse the BTG nodes.

The TG nodes of a MDCO have the following connectivity property:

Theorem 3.2 Given a one-shell polyhedron, let BTG be the set of BTG" nodes
and ITG the set of ITG"Y nodes of its MDCO representation. Then, BTG has
a unique 6-connected component.

19

Proof: The MDCO can be viewed as a (6,26) 3D digital picture P whose black
points are defined by the center of the B and TG nodes of the MDCO. The
border points of the (6,26) digital picture are the black points that are 26-
adjacent to one or more white points, so the border points of P correspond
exactly to the BTG" nodes (the black points derived from B and ITG" nodes
are not 26-adjacent to any other white point). Since the border of a black
component with respect to a white component in a (6,26) digital picture is
6-connected [KR89], the set BTG" nodes is 6-connected.

Note that previous theorem is not valid for BTG® nodes, and that the MDCO
yields to a quasi-disjoint decomposition.

Corollary 3.2.1 Each mazimally 26-connected subset of the set BUITG" is
enclosed inside a 6-connected subset of BTG" nodes.

Proof: The 26-neighbors of B and ITG" nodes cannot be W by Theorem 3.1
and definition of ITG" nodes. =

3.3 Error control

The three error metrics for general DPS methods are suitable for the Direct
DPS. In fact, as we will show in Section 3.5.2, the associated algorithms have
a full symmetric structure, and the implementation of the reconstruction and
face reduction steps for one of such criteria can be trivially extended to gen-
erate polyhedra fulfilling the other two criteria. From now on the discussion
is centered on the In-Hausdorff distance, which is a good solid simplification
error metric, and the symmetric definitions of the algorithm steps for the other
criteria are specified when required.

In order to generate a polyhedron PD from an MDCO O we define a set of
conditions of PD with respect to O in order to guarantee some distance bound.
This set of conditions is called a feasibility, F.

Here we define several feasibilities, each of them leading to differents solids:

Definition Feasibility is said to be homogeneous if it includes at least the
following two rules: (a) cubic regions associated to the B nodes of O are com-
pletely inside PD and (b) cubic regions associated to W nodes are completely
outside PD.

The following three feasibilities are useful as In, Out and On-metrics criteria,
respectively:

Definition The Solid Qverflow Feasibility SOF is an homogeneous feasibility
that also includes these two rules: (a) cubic regions associated to the BTG
nodes contain a part of the boundary of P and (b) cubic regions associated to
the ITGY nodes contain a part of the solid.

It is called ‘Solid Overflow’ because, in some way, TG nodes are treated as B
nodes and thus all TG nodes contain at least a part of the solid.

Definition The Solid Underflow Feasibility SUF is an homogeneous feasibility
that includes these two rules: (a) cubic regions associated to the BTGP nodes

20

contain a part of the boundary of P and (b) cubic regions associated to the ITGP
nodes contain a part of the ‘background’.

It is called ‘Solid Underflow’ because, in some way, TG nodes are treated as W
nodes and thus all TG nodes contain at least a part of the background.

Note that both the Overflow and Underflow feasibilities are weak in a the sense
that ITG nodes are not required to be completely inside/outside the solid though
they can be. The immediate advantage of this definition against the strong ver-
sion (requiring ITG" nodes to lie completely inside the solid) is that the original
polyhedron P satisfies the proposed feasibilities. This situation is illustrated in
Figure 8.

il
]

| =il |

Figure 8: The three reconstructions on the right all satisfy the OOS feasibility,
whereas only the two on the right would satisfy a strong OOS feasibility. In
this case, the optimal reconstruction is the original polyhedron, and a strong
feasibility enforcement will increase the number of faces.

Definition The Solid Balance Feasibility SBF is an homogeneous feasibility
that includes this rule: cubic regions associated to the TG nodes contain a part
of the boundary, thus all TG nodes contain a part of the solid and a part of the
background.

Definition Given a MDCO O and a feasibility F, a polyhedral object P 1is said
to be F — feasible with respect to O iff P fulfills all the conditions of F.

A polyhedron P is said to be In-Feasible (resp. Oui-Feasible) with respect to a
MDCO iff P fulfills all the conditions of the SOF (resp. SUF) feasibility.

Definition A feasibility F is said to be compatible iff for any valid MDCO O,
there exists a polyhedral object PD so that it is F — feasible with respect to O,
i.e., VP AP'" | P is F-feasible with respect to M DCO(P).

Now, we show what feasibility should be used to guarantee each of the error
bounds proposed in Section 2.1.2.

Lemma 3.2.1 If P, is T\ — feasible with respect to MDCO(P,1) then P; sat-

isfies the In-Hausdorff distance with respect to P, where € is 2—\/,5, i.e. the length
of the main diagonal of a terminal node of MDCO(P,1).

Proof: In order to satisfy the In-Hausdorff bound with respect to P, P; must
verify these requirements: (a) for every point Q in P there exists a point R
in P; such that dist(Q, R) < €, and (b) for every point Q in P; there exists

21

a point R in P such that dist(Q, R) < €. Since P; is 7\ — feasible, B nodes
of MDCO(P,1) are inside P;; W nodes of MDCO(P,1) are outside P;, BTG"
nodes contain both in and out points of P;, and ITGY nodes contain in points
of P;. Every point of P belongs to a B, BTG" or ITG"Y node of MDCO(P,1),
and thus there exists a point of P; such that its distance is at most the main
diagonal of a terminal node of MDCO(P,l). Symmetrically, every point of P;
belongs to a B, BTG"Y or ITG" node, and thus there exists a point of P such
that its distance is at most €, so P; fulfills both conditions. =

Symmetrically:

Lemma 3.2.2 If P; is ONU — feasible with respect to MDCO(P,1) then P;
satisfies the Out-Hausdorff bound with respect to P, where € is defined as in
Lemma 3.2.1.

The proof is symmetric to that of the Lemma 3.2.1.

Lemma 3.2.3 If P, is SBF — feasible with respect to MDCO(P,l) then P;
satisfies the On-Hausdorff bound with respect to P, where € is defined as in
Lemma 3.2.1.

Proof: P;’s boundary traverses exactly the same set of nodes traversed by P
(the TG nodes), and thus the Hausdorff distance is at most €. =

3.4 Parameterization of Orthogonal Reconstructions

In this section a parameterized discrete interpolation between the white and the
black boundaries is discussed. The parameterization is based on the concept of
discrete offsets.

The White Surface W S(O) is the cuberille surface that separates W nodes from
the rest of nodes. Symmetrically, the black surface BS(O) separates B nodes
from the rest. The following theorem shows the symmetry in the generation of
both boundaries:

Theorem 3.3 WS(O) = BS(O)

Proof: WS(0) = faces shared by | BTG" and W nodes of O = faces shared by
BTG?® and B nodes of O = BS(0). The middle equality is consequence of the
black and white role exchange produced by the complement operation. =

Definition et be a fraction of the unit. do-offset(WS) is defined as WS; for
i > 1 d;-offset(WS) is the result of covering d;_;-offset(WS) with sub-nodes of
size 0L that lie inside a TG node and are 26-adjacent to d;_1-offset(WS).

Symmetrically, we can define the §-offsets of BS. The § parameter represents the
thickness of the offset relative to the length L of TG nodes e.g. § = 1/4 means
that the thickness of the offset is a quarter of the length of TG nodes. Discrete
offsets can be described using the Minkowski addition operator: the volume
enclosed by d;-offset(WS) is BU (TG — (W @ Os;)) and the volume enclosed

22

by d;-offset(BS) is BU (TG N (B @ Os;)), where ‘@’ is the Minkowski addition
operator [Mat95] and O,, is a cube of length 2Ln centered at the origin, L being
the length of TG nodes.

Note that for some integer m, d,,-offset(WS)=BS and symmetrically, for some
integer n, d,-offset(BS)=WS. The d-offsets from the WS and the BS are shown
in Figure 9.

We can equally weight the contribution of the WS and the BS to obtain a more
symmetric parameterization, introducing the constrained offsets:

Definition et § be a fraction of the unit. dp-constrained offset(WS) is defined as
WS; for ¢ > 1 §;-constrained offset(WS) is the result of covering d;_1-offset(WS)
with sub-nodes of size JL that lie inside a TG node, are 26-adjacent to §; 1-
offset(WS) and lie outside d;-offset(BS).

The symmetrically we define the is-constrained offset of the BS.

The i5-constrained offset(WS) and is-constrained offset(BS) are shown in Figure
9. Note that there exists some j such as beyond j the constrained offset is not
modified, i.e. is-constrained offset(WS)=js-constrained offset(WS) for i > j.
Similarly we can define a limit value for the constrained offsets of the BS.

The constrained offsets define a sequence of parameterized reconstructions start-
ing at WS and ending at BS, each of them with ¢ increments: WS=05-coffset(WS),
15-coffset(WS), ..., js-coffset(WS), os-coffset(BS), (0 — 1);5-coffset(BS), ..., 0s-
coffset(BS)=BS.

This sequence is show in Figure 9.

.

b
R
7 8

" ol

e

== e gse IR
& H-cl-l]
| Ml

| Mol

Figure 9: Parameterized reconstruction based on discrete offsets: a) Original
polyhedron and its MDCO; b) WS and i, /4-offsets of WS; ¢) BS and i, /4-offsets
of BS; d) WS and i, /4-coffsets of WS; e) BS and i, /4-coffsets of BS.

Symmetrically, negative offsets can be defined from the WS, providing the nec-

essary framework for creating representations completely bounding the input
solid.

3.5 The Orthogonal Reconstruction

Here we propose a Direct reconstruction which is based on node neighborhood
information and which creates a two-manifold, orthogonal solid whose faces have
arbitrary complexity and may have holes. This method is an improvement of the
orthogonal reconstruction method presented in [AAB95]. Particularly, our pro-
posal does not have the non-regular regions problem discussed in Section 1.2.3,
which leads to disconnected regions even when the corresponding regions were
connected in the original polyhedron, and which must be treated separately;
our reconstruction method using the In-Hausdorff bound never increases the
number of connected components of the solid.

The main theoretical concepts involved in the reconstruction step are presented
below (see Figure 11 c, i):

3.5.1 Definition of the orthogonal solids
Definition iven a MDCO O, the associated Orthogonal Overflow Solid O0S(0O)
is defined as the solid enclosed by 1/3;-offset(WS).

Definition iven a MDCO O, the associated Orthogonal Underflow Solid
OUS(0) is defined as the solid enclosed by 1/3;-offset(BS).

3.5.2 Construction of the orthogonal solids

Definition The octant associated to a TG node can be partitioned, by means
of 8 pairs of orthogonal planes, in 27 equal-sized sub-cubes, called small cubes.

See Figure 10.

g]

L

Figure 10: A BTG node with its 27 small cubes.

Definition A small cube is said to be black if it is not 26-adjacent to a W node,
i.e., its distance to the white boundary is greater than l/3, being l the length of
TG nodes.

Definition A small cube is said to be white if it is 26-adjacent to a W node,
i.e., its distance to the black boundary is less than 1/3, being l the length of TG
nodes.

24

Now we define the OOS and OUS in terms of small cubes and other nodes of
the MDCO:

Definition Given a MDCO O, the associated Orthogonal Overflow Solid OOS(O)
can be computed as the closed union of the cubic regions associated to (a) B
nodes, (b) ITG" nodes and (c) the black small cubes of BTGY nodes.

Definition Given a MDCO O, the associated Orthogonal Underflow Solid
OUS(0) can be computed as the closed union of the cubic regions associated to
(a) B nodes and (b) the white small cubes of BTG® nodes.

Although On-metrics are not as useful as In-metrics, in order to be exhaustive
we include the Orthogonal Balanced Solid in our discussion: the OBS(O) is
the solid generated by the algorithm presented in [AAB95] using the white-
proximity criterion.

A simple 2D example illustrating these concepts is shown in Figure 11.

3.5.3 Properties of OOS and OUS solids

Following we list some properties related to the OOS and OUS:

Symmetry of OOS and OUS

The following theorem justifies the parallel treatment of the In- and Out- volume
versions in our discussion, since the implementation of the Direct MDCO for any
of them can be trivially adapted to generate polyhedra for the other criterion,
by simply inverting the B and W nodes of the MDCO:

Theorem 3.4 OOS(MDCO(P,1)) = OUS(MDCO(P,1))

Proof: The proof is similar to that of the symmetry of WS with respect to BS.

Corollary 3.4.1 OUS(MDCO(P,l)) = OOS(MDCO(P,1))

Containing relationships

The following theorem establishes the containing relationship between the vol-
ume of each orthogonal solid:

Theorem 3.5 B C OUS(MDCO(P,l)) C OBS(MDCO(P,1)) C OOS(MDCO(P,1)) C
BUTG

Obviously, BC P CBUTG.

Geometric properties

The boundary of each type of orthogonal solid is confined to different sets of
TG nodes. Bound(X) denotes the boundary of solid X.

25

-
Q-l
1
-

A |
== =
|
I
_.l @
n 1

o
|

Figure 11: (a) An initial 2D polyhedron with two shells; (b) MDCO with TG
nodes shaded; (c) WS and BS; (d) the OBS (e) octree with B, W, BTG" nodes
(light) and ITG" nodes (dark); (f) idem with Bound" highlighted; (g) the
00S (h) octree with B, W, BTG® nodes (dark) and ITG® nodes (light); (i)
idem with Bound® highlighted; (j) the OUS.

Theorem 3.6 Nodes(Bound(O0S(0))) = BTGV (0)

Theorem 3.7 Nodes(Bound(OUS(0))) = BTGP (0)

Theorem 3.8 Nodes(Bound(OBS(0))) = TG(0)

Proof: Tt comes directly by definition of OOS, OUS and OBS. =

Corollary 3.8.1 The area of Bound(OOS(0)) and Bound(OUS(0)) are lower
than that of Bound(OBS(0)).

26

The following theorem is fundamental because it bounds the discrepancies be-
tween proposed solids:

Corollary 3.8.2 Nodes(Bound(OOS(O) zor OUS(0))) =ZTG6"W UZTG? c
TG

That is, the nodes containing the symmetric difference are restricted to a precise
set of ITG nodes. In fact, the non-regular nodes referenced in [AAB95] are a
subset of ZTG" UTTGP.

Since we are interested in solid simplification, the Direct MDCO uses a OOS
reconstruction. The OOS and OUS have a very interesting property which is
the basis of the further face reduction:

Theorem 3.9 All O0S vertices have degree three or siz.

Figure 12 shows the only five possible vertex configurations of an OOS, which
are resumed in the table below:

V1 V1

Figure 12: The five vertex configurations of an OOS. From left to right: V1,
V1,V2,V2and V3.

Vertex Type | Degree Edge Configuration (X=convex, V=concave)
V1 3 X, X, X

Vi 3 V,V,V

V2 3 X, V, X

V2 3 V, X,V

V3 6 XV, X, V, X,V

Note that the first two configurations are the complement one of each other,
and the same applies for the second couple of vertex configurations.

Minimum Degree Transformation

As noted above, all OOS vertices have degree three except the V'3 vertex, which
has degree six. However, the V3 vertex can be easily splited into two vertices,
resulting in a V2 and a V2 pair, as shown in Figure 13, where the new V2 vertex
has been moved along one of the concave edges of V3.

Definition minimum degree solid is a polyhedral solid whose vertices have
degree three (i.e. three incident faces).

If all the V'3 vertices of the OOS are splited, the resulting solid is a minimum
degree solid (see Figure 14). There are three basic properties of minimum degree
solids which will be key ingredients in the face reduction step (see Figure 14):

27

Figure 13: Splitting of a V'3 vertex into a V2 and a V2.

Theorem 3.10 Given a minimum degree solid P, if two faces fi and fy of P
are incident to the same vertex, then f1 and fo must be adjacents, i.e. they
share a common edge.

Theorem 3.11 Given a two-manifold minimum degree solid P, if two faces f;
and fo of P are adjacent to a common edge (vi,v2), then there exists exactly
two faces fur and fuvy in P such that both are adjacent to both fi and fz, fuy
incides to v1 and fuvs incides to vs.

Theorem 3.12 The dual graph of a minimum degree solid is the graph of a
triangulation.

Properties of the boundary of OOS

The following series of properties are concerned on distance bounds between
different parts of the boundary of the OOS, and provide the basis for simplified
self-intersection tests which are required after reduction operations (see Figure
15 a, b):

Theorem 3.13 Given two 6-adjacent BTGY nodes sharing a node face f, the
boundary of the OOS stabs both nodes, and the interior of the OOS stabs f.

Proof: The boundary of the OOS stabs all BTG" nodes by definition. The
shared face f does not belong to the Bound"', and hence al least two small
cubes on both sides of f must be black. =

As a result of the previous theorem, several orthogonal structures cannot appear
in an OOS (see Figure 15 c).

Theorem 3.14 Given a face f of the OOS, the nearest face in the direction
of the normal vector of f is at least at %l and the nearest face in the opposite
direction is at least at %l, l being the edge’s length of BTG nodes.

Corollary 3.14.1 Given a face f of the OOS, for all concave sequence {e;}
of edges of f, dist(e;,e;) >= gl provided that with |i — j| > 1. For convex
sequences, dist(e;,e;) >= %1 for |i — j| > 1.

See Figure 15 d-h for examples of valid and invalid OOS.

28

Figure 14: Minimum degree solids. Top: The four vertex configurations of
minimum degree solids (faces do not need to be orthogonal). Middle: a) A
vertex of degree greater than three, which do not satisfy Theorems 3.10— 3.12;
b) The same vertex with its dual model; ¢) The dual model of a non-minimum
degree solid is not a triangle mesh. Bottom: d) An orthogonal example of
minimum degree solid; e) A non-orthogonal example of minimum degree solid.

Ensuring error bounds

Theorem 3.15 0O0S(0) is In-feasible with respect to O.

Theorem 3.16 OUS(O) is Out-feasible with respect to O iff O contains at least
a B node.

Theorem 3.17 OBS(0O) is On-feasible with respect to O.
Corollary 3.17.1 OOF, OUF and OBF are compatible.

Note: The OUS of some MDCO may be a null, i.e. volume 0, solid when
card(B) = 0.

3.6 Discretized Unambiguous Marching Cubes
Some simplification methods based on MC [LC87] use vertex colors to extract a

polyhedral surface from a 3D picture. Our approach uses the 26-neighborhood
of TG nodes instead of vertex colors. Meanwhile, vertex color information can

29

—
w'a;

W'k

g h

Figure 15: Geometric properties of OOS: a) 6-adjacent BTG nodes, with small
cubes in dotted lines; b) minimum number of black small cubes in two 6-adjacent
BTG nodes; c) impossible structure in an OOS; d) the OOS surface in the
normal direction of a face is at least at gl distance, and in the opposite direction,
at least at $[; e) and f) impossible OOS; g) another example of valid face for

an OO0S; h) another example of invalid face for an OOS.

be derived from the MDCO such that the reconstruction of the resulting 3D
digital picture is topologically equivalent to an OOS:

Theorem 3.18 Given a MDCO O, there exists a 3D digital picture P such
that the extraction of an isosurface from P is non-ambiguous and generates a
surface S topologically equivalent to OOS(O) enclosing an In-feasible volume,
provided that the extraction guarantees that all stabbed edges, and only them,
are intersected by S.

Proof: T wshe proof is based on a constructive method to obtain the 3D digital
picture P from the MDCO O, called induced grid. The grid points of P are
defined as the corners of the octants resulting by subdiving once the terminal
nodes of O. A grid point v of P is white if v has contact with a W node of O;
otherwise it is black. If neighbor grid points of P are arranged into voxels, as
usual in isosurface extraction, the only possible configurations are the planar,
non-ambiguous classes [And98a], so extraction methods such as MC generate a
closed surface. It is straightforward to see that this surface S is topologically
equivalent to O0OS(0), and that limits an In-feasible solid.

The DMC [MSS94] is an extension of MC based on a discretization of the planes
in 13 different orientations, so coplanar triangles can be merged forming large
faces. Given a MDCO O, the Unambiguous Discretized Marching Cubes solid,

30

UDMC, is defined as the polyhedron generated by the DMC algorithm from the
grid induced by O. The UDMC only uses the non-ambiguous, planar classes
of DMC and creates In-feasible, valid solids. The only possible configurations
of voxels in P are those numbered 1, 1, 2, 2, 5, 5, 8 and 9 in Figure 4 (plus
rotations and symmetries).

Q
oy
(@]
o

o0 0O O 0o o o

o O O O o O o o
O O O o e e e O
O O O e e e e O
O e e o o e o O
O O O o e e e O
O O O o e e e O
O O @ O e e e O
0O 0O 0O 0 0O O O O
o 0 O 0o 0o 0O o o
o O O O o O o o
0O 0O 0O 0 0O O O O
o 0 O 0o 0o 0O o o

[e)
e}
o

o O O
o O O

o O O

f g

Figure 16: Orthogonal reconstruction vs. Marching Cubes reconstructions: a)
MDCO with B, W, BGT and ITG nodes; b) non-ambiguous 3D digital picture
obtained by subdivision; ¢) reconstruction obtained by MC-like from picture b;
d) orthogonal reconstruction from the MDCO); e) ambiguous 3D digital picture
obtained by identifying grid points with center of MDCO nodes; f) and g) two
possible reconstructions from picture e.

o 0O O O o o

D

An example of the digital picture defined above is shown in Figure 16, where sev-
eral reconstructions are compared: the orthogonal reconstruction OOS obtained
from the MDCO, a MC-like reconstruction from the non-ambiguous digital pic-
ture constructed by the method presented above, and the two possible inter-
pretations obtained with a MC-like reconstruction from the ambiguous digital
picture obtained by simply generating the grid points from the center of MDCO
terminal nodes.

3.7 Direct Solid

Directt DPS uses a mixed reconstruction combining the OOS and the UDMC
in a shell-basis producing the Direct Solid. Reconstruction selections takes into
account the final number of vertices, which can be computed by inspection of the
octree and its induced digital picture, respectively. The Direct Solid keeps the
main properties of OOS and UDMC: it is two-manifold and In-feasible. Regions
coming from the OOS have the minimum degree property.

31

3.8 Face reduction

The direct solid obtained after the reconstruction step has a simpler topology
but many planar regions have an staircase-like reconstruction, so further sim-
plification should be done. The basis of the face reduction step is based on the
low degree of the OOS vertices and the application of a very simple reduction
operator which always reduces the face count and never increases the degree of
the vertices.

3.8.1 Mesh Simplification in the Dual Model

As stated above, one of the properties of the OOS is that it can be easily
converted to a minimum degree solid by splitting all its V'3 vertices. The interest
for a 3-degree solid comes from Theorem 3.12: the dual model [Man88] of a
minimum degree solid is a triangular mesh. Thus we can take profit of the
extense literature on mesh simplification, specially the different operators over
triangle meshes, in order to find a suitable operator for the face reduction of
minimum degree solids.

Most of the surface simplification methods deal with triangulated surfaces be-
cause of the simplicity of its incidence relations [And98b]. The first outcome
of this fact is that reduction operators become simpler. For instance, we can
modify the coordinates of a vertex in a triangle mesh without producing a
non-planar face, fact that does not hold on non-triangular models. The dual
equivalent of vertex displacements is the modification of face orientations. Since
all the vertices of a minimum degree solid have degree three, the positions of
the vertices of the modified face can be calculated by intersecting their three
incident planes. Note that three non-parallel planes always intersect at a point,
but the intersection of more than three non-parallel planes is usually empty.

Figure 17 shows the topology-preserving mesh operators discussed in the Sec-
tion 1.2.2 and their effect in the dual model. Note that the vertex-clustering is
not included because it does not preserve topology. A very important property
is that, since all mesh operators are closed (the result is still a triangle mesh),
their duals preserve the degree of vertices. The description of the duals of the
mesh operators follows:

e face-merge

The face merge is the dual of the vertex-removal and the edge-collapse
operators. The face merge takes as input parameters the two adjacent
faces to be merged. Both faces are replaced by a single face, losing the
shared edge and its shared vertices. The only computed parameter is the
plane for the new face, which in fact determines the position of its vertices
by intersecting its incident faces. The operator reduces the number of faces
by one, the number of edges by three and the number of vertices by two.
Except in degenerate cases which can be easily identified by inspection of
the incidence graph, the face-merge operator preserves the topology of the
mesh. To avoid self-intersections, additional geometric tests are required.
The face-merge has been extensively used with coplanar faces in surface
simplification literature [KCHN91], [MSS94].

32

e vertez-removal (multiple face-merge)

The multiple face-merge is the dual of the face-removal, and it can be
replaced by a sequence of two face-merge. The multiple face-merge takes
as input parameters the vertex to be removed (or, equivalently, the three
faces to be merged). The three faces are replaced by a single face, losing
their shared edges and their shared vertex. The only computed parameter
is the new plane, which in fact determines the position of its vertices by
intersecting its incident faces. The operator reduces the number of faces
by two, the number of edges by six and the number of vertices by four.
Except in degenerate cases which can be easily identified by inspection
of the incidence graph, the multiple face-merge operator preserves the
topology of the mesh. To avoid self-intersections, additional geometric
tests are required.

e cycle flip

The cycle flip is the dual of the edge-flip. The cycle flip takes as input
parameters the edge to be flipped. Given the cycle of four faces defined
by the edge, the edge is removed and a new edge is introduced so that
the pair of adjacent faces is the opposite pair (see Figure 17 d). The are
no computed parameters. The operator preserves the number of faces,
edges and vertices. To avoid self-intersections, additional geometric tests
are required.

o face-adjustment

The face-adjustment is the dual of the vertex-displacement. It takes as
parameter the face to be adjusted. The only computed parameter is the
new plane equation. As a result of the modification of the support plane,
the vertices of the face must be recalculated by intersecting its incident
faces. Any of the parameters of the plane (A, B,C, D) can be changed.
Note that this vertex re-calculation can be done only in a minimum-degree
solid; if more than three faces incide on a vertex, their intersection will be
probably null.

The question that arises now is which of these mesh operators is more suitable
for reducing the face count of our non-triangular polyhedron. We are looking for
a reduction operator p having these properties: a) p must preserve the topology
b) p must be easy to implement; c) the iterative application of p must reduce the
face count as much as possible; and d) p must modify a low number of faces at
a time, since each re-oriented face can intersect a non-B7TG node and invalidate
the operation.

We have realized that the face-merge, which is the dual of the most pop-
ular mesh simplification operators, vertex-removal and edge-collapse [RR96],
[Gue96], [AS96], [Hop96], [Hop97], fulfills the previous criteria and can be easily
implemented on minimum degree solids. The face-merge operator (see Figure
18) replaces two faces sharing an edge with a single face. In the operation, the
number of faces and edges are decreased by one, and the number of vertices is
decreased by two. The edge-collapse operator preserves the mesh topology, and
so does its dual, and it does not modify the degree of the involved vertices.

33

.
ﬂj

VIR
o || o
Al

\ il d E.4
&y o aw

Figure 17: Dual operators. First column: triangle mesh and dual model before
operator; second column: triangle mesh and dual model after operator; third
and fourth column: example of the dual operator in a minimum degree solid.
a) vertex removal, b) edge-collapse, c) face-removal, d) edge-flip and e) vertex-

displacement.

Figure 18: Edge-collapse and its dual, face merge.

The face-removal is equivalent to two face-merge operators so it does not add
reduction power; however the face-removal involves three faces at a time, and
hence it decreases the chances for a valid replacement, so we do not use directly
this operator in our face reduction step.

The dual of the edge-flip does not reduce the face count, but can improve the
fitting of the solid being simplified with respect to the OOS. However, in the
context of our DPS method, a closer fitting to the OOS does not imply a closer
fitting to the original polyhedron, and using the cycle-flip to improve the fitting

34

with respect to the original solid is both complicated and inefficient. Hence, the
cycle-flip operator is not considered in our face reduction. However, the other
incidence-preserving operator, the face-adjustment, can be used in conjunction
with the face-merge to find out a new plane generating a feasible polyhedron.

3.8.2 Face reduction based on face-merge operator

The face reduction step consists in the iterative application of the face-merge
operator, starting from the direct solid and preserving both the minimum degree
and the In-feasibility of the polyhedron being simplified. This operation is
repeated until no more faces can be merged without violating the In-feasibility.
Thus the resulting polyhedron, which has a 2-manifold boundary topologically
equivalent to the direct solid but with fewer faces, satisfies the In-Hausdorff
bound within an € equal to the length of the main diagonal of the TG nodes of
the MDCO.

The face reduction algorithm is outlined below:

procedure FaceReduction(P: Polyhedron)
while there faces to be merged do
(f1,f2):=select_two_faces(P)
(a,b,c,d):=compute_new_plane(P, f1,f2)
if feasible then merge_faces(P,f1,f2,a,b,c,d)

end

The face-merge operator, which is graphically shown in Figure 18, take as pa-
rameter the pair of faces being merged. From now on the following notation will
be used (see Figure 19). The faces being merged are referred as f; and fo. Let
e be the common edge, and v; and vs its extreme vertices. Let V' be the set of
vertices of fi and fo, excluding v; and vy. Let f3 be the third face containing vy
(it is unique since all vertices have degree 3) and fy is the third face containing
va. Let F' be the set of faces inciding in some vertex of V', excluding f1 and fs.

fa

(e) /

h

—

U1

IE

Figure 19: Face merge notation.

First step: selection of faces

This function selects a pair of neighbor faces to be merged. At this stage, there
are a few quick tests that can prune some face pairs which would not create a
feasible solid. Given a pair of faces f1, f2, the following conditions are checked:

35

adj(f1, f2) (8)

nvert(f1) + nvert(fs) > 7 9)
nvert(fs) > 4 and

nvert(fs) > 4 (10)

L3 ¢ Nodes(f1)U Nodes(f>) (11)

02 ¢ Nodes(f1) U Nodes(f2) (12)

Conditions 8-10 are inherent incidence constraints to the face merge operator
in order to preserve validity. Equation 8 says that f; and fs must share exactly
one edge. Equation 9 guarantees that the new face will have at least three
vertices (seven minus two times the two vertices that are removed). Equation
10 guarantees that faces f3 and f; will have at least three vertices.

Conditions 11 and 12 are necessary but not sufficient for a successful face merge
which are explained below. A subset S of TG nodes is linearly separable iff
there exists a plane intersecting the interior of all nodes in S. If such a plane
does not exist, it is impossible to create a face stabbing all nodes in S, and
hence the faces inside S cannot be merged together maintaining the feasibility
of the solid.

The L3 and O2 are two common linearly non-separable configurations (see Fig-
ure 20). If a set of TG nodes contains one of such configurations, then it is
linearly non-separable. Since both Nodes(f1) and Nodes(f2) must be linearly
separable, any linearly non-separable subset of Nodes(f;)UNodes(f2) must con-
tain at least one node in Nodes(fi1)NNodes(f2), which is a superset of Nodes(e).
Hence, the presence of L3 and O2 configurations in Nodes(f1) U Nodes(fz2) can
be determined walking along Nodes(f1) N Nodes(f2) nodes (Equations 11 and
12).

[] =
a b c d

Figure 20: Linearly non-separable regions: a) L3; b) O2; c) linearly non-
separable set containing an L3 subset; d) linearly non-separable set containing
an 02 subset.

Second step: computing the new plane

The new plane of f will determine not only the orientation and position of
the new face, but also the coordinates of all vertices in V. There are several
strategies to compute the new plane, which are shown in Figure 21. Each
strategy is based in one of these point sets:

36

a b
<] ‘\
] N
c d
BN
AN
]]
e f
1]
g h

Figure 21: Computing new plane for a face-merge. On the left: 2D examples;
on the right, the same examples in 3D. a) faces to be merged; b) Nodes(f1) U
Nodes(f2); c¢) points in V; d) plane calculated by regression of V' points; e)
middle point of stabbed edges; f) plane calculated by regression of middle point
of stabbed edges; g) positive and negative points; h) maximal points of convex
hull of negative points and minimal points of convex hull of positive points;
since both convex hulls do not intersect, positive and negative points are linearly
separable.

o Polyhedron vertices in V

As defined above, V' is the set of vertices of f; and fo, excluding v; and
vg, and hence they provide a good starting point for the estimation of the
new plane.

o Middle point of stabbed edges

Stabbed edges are edges of nodes in Nodes(f1) U Nodes(f2) such that
their four incident nodes belong to Nodes(f1) U Nodes(f2), so they must
be stabbed by the new plane and hence they can be used to compute the
new plane.

o Positive and Negative points

Positive points are corners of the stabbed edges in Nodes(f1) U Nodes(f2)
such that they are outside the polyhedron being simplified. Symmetrically,

37

negative points are the corners inside the polyhedron. In order to be
feasible, to plane of the new face must separate the positive from the
negative points. That is the well know problem of separability of two sets
of points, in this case on a grid. One well-known result in this field is
shown in the following theorem [SW70].

Theorem 3.19 Two sets of points are linearly separable iff their conver hulls
do not intersect.

Both the set of vertices in V' and the middle points of stabbed edges admit an
average plane or a regression approximation. The last strategy, based on sepa-
rability of positive and negative points, uses a linear programming method. The
separability approach is the only one that always returns a separating plane if
such a plane exists. The computation of the separability plane is a linear pro-
gramming programming problem involving four unknowns (those of the equation
of the plane) and at most n linear constraints, n being the number of positive
and negative points. The number of constraints can be greatly reduced by pre-
computing and storing the convex hulls of the positive and negative points.
This separating plane can be computed in optimal O(n) time using the linear
programming technique presented in [Meg83].

None of the previous strategies for the new plane computation, including the sep-
arability approach, guarantees a feasible replacement, since although the plane
may stab all nodes, the nodes intersected by the actual face after computing its
edges might be different to Nodes(f1) U Nodes(f2). However, it is possible to
represent these additional conditions as a set of linear constraints. There are
four unknowns corresponding to the four coefficients of the plane, (A,B,C,D).
To guarantee that the plane separates the positive and negative points, there
must be a restriction with the form

ziA+y;B+2,C+D >0 (13)

for each positive point (z;,y;,2;) and a restriction
ziA+y;B+2,C+D <0 (14)

for each negative point. To guarantee that the edges of f are contained in edge
nodes, there must permutations of:

(=B'yo — C'z — D')A + (A'yo) B + (A'20)C + A'D > 0 (15)

where (A',B',C',D') is the equation of the plane of an adjacent face f' and
(0,Y0,20) is the origin of a node in Nodes(f) N Nodes(f'). To guarantee that
the vertices of f lie in the same nodes than the vertices of f; and fo, there must
be permutations of:

(ZoVg — L0 — TrminVs) A+ (ZoVy — Lo — Tminvy) B+ (£0v: — Lo — Tminv:)C —D > 0

(16)
where for each edge containing a vertex in V', (xg,y0,20) is a point of the support
line of the edge, (v, vy, v) is a vector in the direction of that line and 4, is the
x-coordinate of the origin of the node containing the vertex at the intersection

38

of f with that edge. Similarly, we can define restrictions for 0z, Ymin, Ymaz,
Zminy Zmaz- Lhis linear programming problem can be solved in optimum O(n)
time [PM85] using method proposed in [Meg83]. Unfortunately, the number of
constraints is O(n) where n is the number of nodes in Nodes(f).

We have found that computing the normal vector of the plane as the average of
points in V' and computing D with a linear programming method is quite fast
and generates very good results, and hence this is the approach adopted in our
implementation.

Third step: checking feasibility

Before committing the operation, several simple tests should be performed in
order to guarantee the OOS-feasibility preservation.

The edges of the new face are generated by merging the ciclycally ordered ver-
tices in V. The coordinates of vertices in V' are calculated by intersecting its
three incident faces. If these planes do not intersect in a point, or if the inter-
section point does not belong to a TG node, the face merge is not feasible.

In order to guarantee that the new solid is In-feasible, the face merge must fulfill
these two conditions: a) Nodes(f1) U Nodes(f2) = Nodes(f), i.e. the new face
is contained and intersects exactly the same set of nodes than the merged faces,
and b) the resulting solid has a non-selfintersecting boundary, i.e., the faces in

F U {f} —those whose vertices have changed— do not intersect other faces in
Nodes(f).

The former condition can be easily checked by a rasterization of f, but there is
no need to evaluate it when any of the following conditions is true: a) the plane
of f has been computed by the linear programming approach described in the
previous section; b) the distance of the new plane to the vertices vy and vo is
greater than e.

The latter condition can be checked looking for self-intersections of f with the
others faces. Note that, although more faces have also changed their geometry
(those in F'), their vertices still lie in the original plane, so any self-intersection
of a face in F' must be caused by their modified edges, which also belong to f, so
testing self-intersection for f is sufficient. Only the faces intersecting Nodes(f)
can intersect f, so the self-intersection test simply looks for intersections between
edges in Nodes(f) and f.

Fourth step: merging faces

The incidence changes of a face merge in the BRep model are described below:

e The faces f; and f, are removed.

e The edge e is removed. Since the boundary is two-manifold, each edge is
shared by exactly two faces.

e The vertices v; and vy are deleted, since they have degree three before
operator’s application.

39

e A new face f is introduced, whose plane was calculated in the previous
step. Its edges and vertices are computed as described in the previous
sections.

e The faces f3 and f; lose one vertex.
Note that the vertex coordinates recalculation exploits the minimum degree

property of the solid. The V'3 split operation is performed only when needed,
i.e., when one or more vertices in V' U {v;,v2} are V3.

A more complicated face-merge is shown in Figure 22 which, depending on the
underlying TG node size, would not be feasible.

o[

Figure 22: Top left: polyhedron before face-merge of stabbed faces; bottom left:
unaffected vertices (black circle), vertices to be recalculated (white) and vertices
to be removed (cross); right: polyhedron after face-merge.

The step by step simplification of an OOS including V1, V2 and V3 vertices
into a tetrahedron is shown in Figure 23. In Figure 24, a single face is derived
from a collection of V'3 vertices.

SEa
B

Figure 23: Face-merge Simplification of a OOS with V1, V2 and V3 vertices

into a tetrahedron.
! b

Figure 24: Simplification of a large V3 region.

1~
B

‘

Ly

s

40

3.8.3 Extended SOF-feasibility

The Direct DPS uses the octree mainly for two purposes: in the reconstruction
step, the octree provides the final topology of the simplified solid and an initial
geometric description; in the face reduction step, the octree is used as a bound of
the simplified solid to guarantee the error bound measured with the In-Hausdorff
metric. The SOF feasibility, defined in Section 3.3, forces each new face to
intersect exactly the same set of nodes intersected by the faces being merged,
and guarantees that each polyhedron of the multi-resolution family fulfills the

In-Hausdorff bound within ¢ = %, l being the depth of the octree. In this
section we will show that this feasibility is too much restrictive, in the sense
that it keeps many pairs of faces from being merged even when there exists a
replacing face inside a tolerance § We will show that the SOF feasibility can
be easily and efficiently relaxed to allow most of such face merges, and thus
increasing the face reduction, at the only expense of a little increment of the
tolerance.

The main idea is to adapt the shape of the octree-bound in order to approximate
better the bound induced by the Hausdorff distance around the original faces.
In the SOF-feasibility, the octree bound corresponding to a pair of faces fi,
f2 is the orthogonal region composed by the set of nodes intersected by the
faces, Nodes(f1) U Nodes(f2). Figure 25 a~-d compares the octree bound of one
and two faces, with respect to their respective Hausdorff bounds. Although the
maximum error of the new face with respect to the original ones is the same
within both bounds, the octree bound is clearly more restrictive: the two faces
of Figure 25 c¢ cannot be merged fulfilling the octree bound while they can be
merged using the Hausdorff bound.

Unlike the Hausdorff bound, the octree bound is not symmetric with respect to
the involved faces and, with the exception of orthogonal coplanar faces, it is not
uniform. As stated before, a necessary condition for a succesfull face merge is
that the convex hulls of the positive and negative points do not intersect. Let
dmin be the minimum distance between both convex hulls. Two faces fi, fo are
candidates to be merged iff d,,;, of their octree bound is not zero. Figure 25
e, h shows the upper and lower convex hulls of one and two faces, respectively.
In the former case, d,;, is positive, so the positive and negative points are
linearly separable (e.g. by the original face), but note that this distance is far
less than the maximum error. This restriction in the freedom of modifying
the new face becomes crucial when the new plane separate both point sets
but the actual face do not intersect exactly Nodes(f1) U Nodes(f2) due to the
intersection of adjacent faces, and because d,,;, approaches very rapidly to zero
as the resolution increases (Figure 25 k)—a few discrete face orientations are
exceptions, such as orthogonal faces. In the latter case, Figure 25 h, d,;;, is
zero so the two faces will not be merged, although there are many replacing
faces inside the Hausdorff bound.

The Extended SOF feasibility, XOF, is a relaxation of the SOF-Feasibility that
overcomes most of its problems at the expense of a little tolerance increment,
allowing higher simplification rates. Given two faces f; and f, being replaced
by f, the condition of feasibility Nodes(f1) U Nodes(f2) = Nodes(f) of the
original feasibility is replaced in the extended feasibility by the following rules.

41

a b c d k

h i i

Figure 25: Extended feasibility: a) octree-bound of a face; b) Hausdorff bound
of a face; ¢) octree-bound of two faces; d) Hausdorff bound of two faces; e) upper
and lower convex hull of positive and negative points; f) extended octree bound;
g) octree-bound with nodes fifty percent larger; h) octree-bound of two faces
with dp,in, = 0; 1) extended octree-bound with d,,;, = €; j) the octree-bound
with nodes fifty percent larger still has dp,;, = 0; k) dpin rapidly approaches
zero as resolution or face size increase.

Let Nyq be Nodes(f1)UNodes(f2), and let Ny be Nodes(f). If Npew = Nowg
then the face is feasible. If not, the following further tests are made. Let D,y
the set difference Nyew — Nowg, and symmetrically, let D,;4 the set difference
Noig — Npew. For each node n in Dy, n must have a 6-adjacent in Nyq4;
otherwise the merge is not feasible. Furthermore, n is divided once resulting
eight son nodes. For each son s intersected by f, let Adj, be the three 6-adjacent
nodes of s that lie outside n. If n is B, all nodes in Adj,, must belong to BUNy4.
If nis W, all nodes in Adj,, must belong to WU N,;4. In both cases, at least one
node in Adj,, must belong to Ny4; otherwise the merge is not feasible. Finally,
for each node in D4, there must exist a 26-adjacent son s in D, intersected

by f.

The extended octree-bound is shown in Figure 25 f. Note that d,,;,, which was
near zero in the octree bound, now is greater than €. Now, the two faces of
Figure 25 ¢ can be merged (Figure 25 i).

The extended feasibility captures the most important advantages of the OOS-
feasibility: a) it guarantees a tight bound of the error, which is 1.5¢ instead of

g, i.e., %; and b) each B and W node in D,,,, is used exclusively by a single
sheet of the surface. This guarantees that the old test for self-intersections is still

42

valid in the extended feasibility approach. The extended feasibility has these
extra properties not found in the OOS-feasibility: a) the shape of the extended
octree-bound is closer to the Hausdorff bound than the original octree-bound
(Figure 25 b, f); b) the extended octree-bound is more symmetric than the
original octree-bound; c¢) in most cases dy,;, of the extended octree-bound is
far greater than d,,;, of the original octree-bound. The main outcome of the
extended feasibility is that it increases the number of face merge operations and
hence alows the generation of more compact simplifications.

Although the maximum error is incremented a half, it is important to notice that
the extended octree-bound is very different to the octree-bound corresponding
to nodes 50% bigger (Figure 25 g, j). Note that increasing the size of the nodes
always increases the maximum error but does not necessarily increase d,iy,, as
it is shown in Figure 25 j, where two faces cannot be merged using the 50%
bigger octree-bound but can be merged using the extended octree-bound.

The extended feasibility improves the fitting to the Hausdorff bound by sub-
dividing some nodes once more. Subdividing more times can improve this fit-
ting, but we prefer only one subdivision because: a) it guarantees that no self-
intersections appear inside B and N nodes, since each node is used exclusively
by a connected sheet of the surface; b) it is more efficient; since f intersects
the B/W node, the classification of its center with respect the support plane
of f can be used to know which octants are intersected by f; c) the relative
increment of d,,;, achieved with further subdivisions is very small.

3.9 The Direct DPS algorithm implementation

In this section, the implementation of the algorithm for the Direct MDCO DPS
based on the In-volume criterion is presented. It uses a special data structure
that links the boundary representation of a polyhedron with the set of TG nodes
in its MDCO representation: the TGMap.

3.9.1 The TGMAP Data Structure

A TGMap is a data structure involving the set of TG nodes of an MDCO
together with the BRep of a polyhedron. More precisely, a TGMap is a vector
< Brep, MDCQO, LNodes, LFaces> where:

BRep is the boundary representation of a polyhedron. It contains the relations
F — V plus the relation V. — F i.e., the incident faces to a vertex. The
complexity of the polyhedron is unrestricted. It may have many shells, arbitrary
genus and faces with holes of arbitrary complexity.

MDCO is the quasi-disjoint MDCO representation of the polyhedron.

LNodes and LFaces are mappings between the BRep and the MDCO. LNodes
contains, for every face of the BRep, a list of (pointers to) the TG nodes tra-
versed by that face. LFaces contains, for each TG node, a list of (pointers to)
the faces of the BRep traversing that node.

43

3.9.2 Implementation Overview

The algorithm is graphically presented in Figure 26.

P R=P

GenerateTGM

v v v
o« TGM, P

Oneiteration Iteration
v

Ok‘a TG‘M k1 P‘ki

P Multiresolution
k-1 family

Iteration

v v R

0
0, TGM, P,

0 0

Figure 26: General simplification algorithm. 7T'GM} contains the relations
LNodes and LFaces

The algorithm of each iteration is graphically presented in Figure 27, where
TGM includes the relations LNodes and LFaces.

Ok TGM, R

<
s
k=]
E
B
Z
5
8
g
5

Optional Merge

Prunning
e |

Figure 27: Loop iteration

The first polyhedron of the output multi-resolution family is the initial polyhe-
dron P. Then the MDCO representation of P, Oy, is generated by the Gen-
erateTGMap function. The relations LNodes and LFaces are obtained as a
sub-product of the octree construction process in the GenerateTGMap func-
tion.

After the first O has been obtained, the algorithm enters in a loop where in
each iteration a new polyhedron P, is constructed from the MDCO Oy, and
the relations LNodes and LFaces. At the end of each iteration, the resulting
octree Og_1 is obtained by a pruning process applied to Oy, being k the depth
of the octree. The last used octree Oy (O is created but not used) produces a
very simple, genus 0 polyhedron F,.

44

3.9.3 The GenerateTGMap function

The GenerateTGMap function obtains the MDCO representation of the initial
polyhedron P. The MDCO generation from a BRep is a well known problem
and is based on a simultaneous space subdivision and clipping of the boundary
of P [BIN*88]. See [CH88] for a revision of other methods of octree construction
from BRep schemes. This function is called only once since the rest of MDCO
are all obtained from the first one by means of a pruning process, following a
top-down DPS approach.

Although only BTG nodes will contain a part of the boundary of the recon-
structed polyhedron, the MDCO stores the four types of nodes (B,W,G and
TG) since they will be required for the DirectReconstruction function.

The TGMap is obtained as a subproduct of the MDCO construction. The
LFaces mapping is easily obtained since in the subdivision process, the geome-
try (faces, edges and vertices) inside a node is known, and this information is
inherited by the descendents.

The other component of the TGMap, LNodes, is obtained associating a list of
nodes to every face of P. At the beginning of the MDCO construction, the
MDCO has a single grey node which is included in all the lists. In the recursive
subdivision process, the node lists of all faces associated to every son node are
updated adding all the son nodes traversed by the face and removing the parent
node.

The TG nodes are obtained by an algorithm very similar to the construction of a
polyhedron from an Extended Octree [Nav86]; the rest of terminal nodes (B/W
segmentation) are generated by a seed algorithm starting from nodes that are
known to be W, instead of using a less robust point-inside-solid classification.

3.9.4 The Prune function

The Prune procedure performs a one-level pruning operation on the current
MDCO. Let k the deepest level of the MDCO. The nodes involved in the pruning
operation are these from levels £ and £ — 1. Nodes from level k are removed
and grey nodes from level £ — 1 become TG nodes. As a result of the pruning
operation, the size of TG nodes is doubled in each direction and the resulting
number of TG nodes is the number of terminal nodes of level k divided by eight.

3.9.5 The DirectReconstruction function

The function DirectReconstruction uses a simple and direct method to obtain
the OOS from Oy, which will be the first approximation PkD of the final polyhe-
dron. The algorithm first calculates the set of BTG nodes from the set of TG
nodes by examining the 26-neighbor nodes. The geometry inside each BTG is
obtained with the help of a look-up table, similar to that of [AAB95] but indexed
by 26-neighborhood configuration instead of vertex colors configurations. First,
BTG configurations that contain orthogonal vertices are identified, and the set
of final vertices is calculated, including vertex coordinates, plane equations of

45

#levels #f Direct #t mesh decim. max. error

9 178 (360 t) 406 0.3%
8 122 (248t) 294 0.6%
7 86 (176 t) 217 1.2%
6 64 (132 t) 161 2.1%
5 56 (116 t) 80 4.5%
4 34 (68 t) 59 6.1%

Table 2: Number of faces returned by Direct DPS (second column) and mesh
decimation (third column) on model A of Figure 28

its three/six incident faces and convex/concave edge configurations, which are
obtained from the look-up table. After all vertices have been extracted, they are
combined to form large, orthogonal faces with the domino-matching algorithm
presented in [Nav86], and hence it does not contain adjacent and coplanar faces,
so there is no need of a compactation post-process. The TGMap T'G M Dy,, which
is associated to P Dy, is also obtained by the DirectReconstruction function. For
details on the UDMC reconstruction, see [MSS94].

3.10 Results and Discussion

We tested Direct DPS on several test models. Model A is a genus 2 CAD
mechanical piece with 1,366 faces (Figure 28). Results of model A have been
compared with the results of a free implementation of mesh decimation. To draw
the comparison we had to triangulate both model A (2,728 triangles) and the
model returned by Direct DPS. We have selected the tool described in [CS96] for
computing the resulting approximation error on the outputs of both methods.
The comparison is shown on Table 3.10. Figures 38-47 show the results of each
method compared to the original model, where approximation error is shown
by color mapping.

Taking the number of triangles as the basis for the comparison, Since the model
has a very simple topology, Direct DPS produced less triangles than mesh dec-
imation in accurate approximations but more triangles in coarse ones.

Regarding the number of faces, Direct DPS always produced less faces than
mesh decimation (faces of arbitrary complexity). Mesh decimation produced
self-intersections specially in coarse levels, while Direct DPS always preserved
validity. Mesh decimation did not simplify topology while Direct DPS reduced
the genus. Since Direct DPS faces were Delaunay-triangulated after simplifica-
tion, resulting triangles had better aspect ratio.

Model B is a building with many nearby shells involving 4,866 faces. Results
with several octree depths are shown on Table 3.10. Model B shows the power
of Direct DPS on topologically very complex models, resulting in high reduction
rates.

Model C and D, a slot machine and a dart with 1,279 and 2,032 triangles resp.
have been simplified using Direct DPS and mesh decimation (Figures 30 and 31).

46

Figure 28: From left to right: input solid polyhedron, multi-resolution of octrees
(front grey nodes have been culled to keep black nodes visible), reconstructed
solids and final multi-resolution

In all cases, the fact that the original polyhedron is not used beyond discretiza-
tion carries many advantages: the running times of reconstruction and face
reduction do not depend on the complexity of the original polyhedron, so cheap

47

#levels #f Direct #v Direct max. error

Original 4,866 4,134 N/A
7 140 248 1.2%
6 84 146 2.1%
5 61 100 4.4%

Table 3: Number of faces and vertices returned by Direct DPS (third column)
on model B of Figure 29

Figure 29: From left to right: original building (4,866 faces), detail, and simpli-
fications with 140, 84 and 61 faces.

34

Figure 30: From left to right: original slot machine (1,279 triangles), Direct
DPS result (37 faces) and mesh decimation output (210 trlangles)

7

Figure 31: From left to right: original dart (2,032 triangles), Direct DPS result
(34 faces) and mesh decimation output (48 triangles).

simplifications are cheap to compute (e.g. 3D thumbnails generation); Direct
DPS is not restricted to BReps and it can simplify any model which can be con-
verted to an octree; finally, it is not affected by degeneracies of the input surface,
and produces two-manifold solids even with non-manifold inputs so Direct DPS
can be viewed as a lossy conversion from non-manifolds to manifolds.

Compared to mesh simplification, Direct DPS minimizes the number of planes

48

by using arbitrary faces, so it is especially suitable for BSP-based applications.
In occlusion analysis, Direct DPS provides a fast and sound way of computing
big occluders from a complex scene, specially in reverberation path calculation,
used in acoustic modeling, where significant high tolerances can be used.

Before the OOS construction, if TG are converted to B and W nodes 26-adjacent
to new B are converted to TG, then OOS is a bounding volume of the input
solid. Symmetrically, if TG become W and 26-adjacent B become TG, then
OOS will be completely contained in the input solid (Figures 32-34. Due to its

ability to produce bounding or bounded approximations, it is also suitable for
real-time acceleration of collision detection.

k\;\\

Figure 32: Original object (shaded on the left) and bounding simplification with
47 faces (wire on the left, shaded on the right).

Figure 33: Original object (shaded on the left) and bounding simplification with
38 faces (wire on the left, shaded on the right).

Figure 34: Original object (shaded on the left) and bounding simplification with
21 faces (wire on the left, shaded on the right).

Meanwhile, the Direct DPS method has several limitations. The cost of the
Direct DPS method depends on the maximum subdivision level of the MDCO,

49

which in real world applications is determined by the error tolerance. For very
small error tolerances (less than 0.05%), a surface simplification method is prob-
ably better, since not much topology changes would be expected and the running
times of most surface simplification methods decrease with the tolerance 2.

Regarded as a surface simplification method, the fact that the Direct MDCO
DPS is unable to use information of the original polyhedron in the reconstruc-
tion step carries some drawbacks. The use of the original (or previously gen-
erated) polyhedron in the face reduction step would enable the preservation of
the orientation of important faces, which is a major topic in rendering-oriented
simplifications to avoid the visual artifacts produced by the shading of slightly
different planes. The Direct DPS method does not provide any support to pho-
tometry attributes. More precisely, it does not provide a suitable framework
for identifying and keeping unsimplified faces with very different values of pho-
tometry attributes. The extension outlined in the next section overcomes these
limitations.

2However, the running times of some incremental simplification methods are quite inde-
pendent of the tolerance since the pre-computation of a queue prioritizing the entities to be
collapsed dominates the overall cost.

50

4 The Hybrid MDCO DPS method

4.1 Introduction

As stated in the previous section, the Direct MDCO method is suitable for those
applications where surface appearance, such as curvature and color information,
does not need to be preserved. Examples of these applications are found in
visibility analysis, collision detection and global illumination. However, one
of the most important applications of multi-resolution models, the LOD-based
visualization [HG94], [MS95], [FS93], requires the overall surface appearance to
be preserved in the simplified models.

In this section we introduce the Hybrid MDCO DPS, which is another member
of the family of simplification methods modeled by the DPS framework. The
Hybrid MDCO DPS is a visualization oriented extension of the Direct MDCO
DPS in the sense that it provides mechanisms for surface appearance preserva-
tion.

4.2 Visualization-oriented simplification

Multi-resolution models for visualization applications must fulfill the following
extra requirements:

o Normal preservation

The overall orientation of faces must be preserved, since on-screen color in
most lighting models depends on the surface normal. Radiosity models,
which store final color information in a per-vertex basis, are an exception
to these rule. In this case, the simplified representations must preserve
the per-vertex or per-corner color information. A method for surface ap-
pearance simplification which do not require the preservation of overall
orientation of faces is presented in [COM98]. The method is based on a
parameterization of the triangulated surface and the storage of surface ap-
pearance attributes in normal and color maps. Although it achieves very
realistic approximations of complex shapes and provides a bound in the
resulting image error, normal maps are still available only in prototyped
hardware [OL98], and texture maps increase rasterization cost and can
decrease overall performance if the graphics subsystem is raster-limited.

e Color preservation

The other surface appearance attributes, such as color and texture pa-
rameters, must be preserved. When these parameters come on a per-face
basis, faces with different values for such attributes can be merged to-
gether only if the impact on the final image is acceptable. Only a few
of the existing surface simplification methods deal with such appearance
attributes [CPD96], [Hop97].

o (Coherence between consecutive representations

In addition to the increasing bound on the appearance error between the
original representation and each approximation, there should be a fixed,

o1

user-defined bound on the appearance error between two consecutive rep-
resentations. This requirement is very important to limit the impact of
the image artifacts caused by the real-time switching between consecu-
tive representations. Some surface simplification methods allow a smooth
transition between two consecutive LOD representations [RB93], [Tur92],
[HHK195], [aa95], [DLW94] but the cost of computation of the interme-
diate representations, which must be done in visualization time, often ex-
ceeds the speed-up of the LOD-based visualization. Some high-end APT’s
provide a mechanism to reduce these artifacts. In [Eck97] an image-space
smooth transition is achieved by a weighted blending of both represen-
tations in a small interval around the switch point. The previous tech-
niques are not mutually exclusive, and both object-space and image-space
smoothing techniques should be used together to reduce the perception of
these image artifacts.

Note that the solid simplification metrics, such as the In-metrics introduced
along with the DPS framework, are still valid for visualization purposes. As it
was shown in Figure 2, distances based on points on the surface unnecessarily
limit face reduction and yield to pour results on objects with complex topology.

A key difference with respect to all-purpose solid simplification is that visual-
ization oriented applications are less concerned in maintaining large, complex
faces whenever possible, since polyhedra are in general triangulated for visual-
ization purposes, and triangle meshes are efficiently handled by most API’s and
graphics subsystems [Ros96].

4.3 Combining surface and solid simplification strategies

One of the most important results of the comparative of the Direct MDCO DPS
against surface simplification methods is that the former is more suitable when
the object’s topology is very complex or the tolerance value is high, due to its
powerful capability of simplifying the object’s topology maintaining its validity.
With very small tolerances, or when the objects have a simple topology, surface
simplification methods will suffice.

Since the union of the optimum domain of each approach covers the whole
polyhedra domain, we could figure out a smart scene simplification algorithm
which requests one representative of each family for the simplification of each
object, founding this decision on its topological complexity with respect to the
user-defined tolerance. As we will show later, the Hybrid MDCO approach is, in
fact, an adaptive version of this smart algorithm, but operating in a region-based
basis instead of in a object-based one, where regions correspond to subsets of
the BTG" nodes of the MDCO, and hence it is suitable for the whole domain
of polyhedra.

4.4 Features of the Hybrid DPS Method

As MDCO-based approaches, both the Direct MDCO and the Hybrid MDCO
methods share the decomposition scheme definition and interpretation, the full-

92

closed MDCO. They differ basically in the reconstruction step: the former uses
a direct approach, i.e. all the information for the reconstruction step is ob-
tained from the MDCO alone, and the latter uses a hybrid approach, i.e. the
reconstruction is based on the MDCO but directed by the polyhedron generated
in the previous iteration. Since face orientation information is lost in the de-
composition scheme, no Direct reconstruction method is capable of appearance
preservation.

As an extension of the Direct MDCO, the Hybrid method inherits most of its
advantages (generation of error-bounded, low genus, two-manifold solids) but
solves most of its limitations: unlike the Direct MDCO, the Hybrid MDCO
makes the most of the algorithm’s coherence between iterations, resulting in
both a speed-up of the running times and a bounded transition between con-
secutive LOD’s, and supports appearance preservation.

4.5 The Hybrid MDCO DPS algorithm

The key ingredient of the Hybrid MDCO DPS is the application of a surface
simplification algorithm to the object’s surface inside some regions and the ap-
plication of a solid simplification inside the rest of regions, basing this decision
on local topology changes (by local we mean inside a set of BTGY nodes).
By virtue of this process, the boundary of the generated simplification involves
patches from two different sources, the surface of the previous generated polyhe-
dron, and that of the orthogonal reconstruction, OOS. This approach is outlined
in Figure 35.

Due to its bias towards visualization, and unlike the Direct MDCO DPS, the
Hybrid MDCO triangulates all faces of the original polyhedron and produces
only triangle meshes, which are fully supported by most surface simplification
strategies.

The top-level Hybrid MDCO algorithm is identical to that of the Direct MDCO,
except for the fact that the faces of the original polyhedron have been triangu-
lated, such as in [RB93]. The only different function is the reconstruction step,
whose algorithm follows. Note that Og4; and P4 are the MDCO model and
the mesh of the previous iteration, respectively.

function HybridReconstruction(Oy,, Ogy1: MDCO; Pj41: TMesh)
< BestOrtho, BestInput >:=classify_BTG_nodes(Oy, Ok+1)
divide_regions(BestOrtho, BestInput)
OrthoPatches:=direct reconstruction(Oy, BestOrtho)
ImputPatches:=import_surface(Py+1, BestInput)
Py.:=merge(BestOrtho, OrthoPatches, InputPatches)
surface_simplification (P)
returnpP;

end

The BTG nodes of the current MDCO Oy, are classified into two categories. The
first category is called best ortho, and contains all the BTG nodes with topology
changes of the previous polyhedron Py with respect to the OOS corresponding

53

‘ =
N
53 jfpf,l ,,}
—_— b c
r —
|
d e l
r —
|
f L/ g
|
h 1

Figure 35: Hybrid reconstruction Overview: a) original solid; b) Ogy1; ¢) Pr1;
d) Og; e) Pry1 (same as c) but viewed inside nodes of a higher level; shaded
nodes correspond to nodes with topology changes; f) the surface inside nodes
with topology changes is reconstructed with the Oy; g) the surface inside nodes
without topology changes is reconstructed with the Pyy1; h) the previous sur-
faces are merged in a polyhedron topologically equivalent to Oy but geometri-
cally closer to Pyy1; 1) resulting polyhedron after surface simplification.

to its one-lower level MDCO, Oy,. The second category is called best input, and
contains the rest of BTG nodes, i.e., nodes whose interior surface cannot be
topologically simplified and therefore a surface simplification of the surface of
the previous iteration polyhedron is preferred.

Once BTG nodes are classified, each subset is partitioned in 6-connected regions.
The surface inside best ortho regions is reconstructed by clipping the orthogonal
reconstruction of the BTG nodes of that region, producing the ortho patches.
Similarly, the surface inside best input regions is reconstructed by clipping the
surface of the previous generated polyhedron, producing the input patches. At
this stage, topology reduction has been done (on best ortho regions), but the

o4

surface is invalid since it has discontinuities in the union of the ortho and input
patches.

The next step is the merge of input-patches and ortho-patches, in order to
ensure the surface continuity between nodes. The merge creates new triangles
and generates a two-manifold, feasible boundary; it may contain more faces than
the original, but a simpler topology.

The last step is the incremental surface simplification method, which performs
a topology-preserving face reduction. Each of these steps is described in depth
in the following subsections.

4.6 Classifying the BTG nodes

The classification of the BTG nodes takes into account topology, geometry and
photometry properties. In order to explain how these elements are used, the
following definitions must be introduced:

Definition In a given iteration i, i being the depth of the MDCO, the Input-
surface(i) is Pijt1, i.e., the polyhedron generated in the previous iteration (the
previous LOD to that being generated).

Figure 35 c¢) shows the input-surface for a given level. Note that in the first
iteration, Input-surface(l) is the original polyhedron P.

Definition In a given iteration i, i being the depth of the MDCO, the Ortho-
surface(i) is OOS(M DCO(P,1)), i.e., the orthogonal reconstruction correspond-
ing to the MDCO with depth i.

Figure 35 b) shows the ortho-surface for a given level. Note that, in the Direct
MDCO DPS, the result of the reconstruction process at iteration i is simply
Ortho — sur face(i).

Definition Given a BTG node n, the Input-surface(i, n) is the Input-surface(i)
clipped to the cubic region associated to n.

Definition Given a BTG node n, the Ortho-surface(i, n) is the Ortho-surface(i)
clipped to the cubic region associated to n.

Definition Let k be the current iteration depth. A BTGY noden of MDCO(P, k)
is classified as best-input only if the following conditions are satisfied: a) Input-
surface(k, n) and Ortho-surface(k, n) have the same number of sheets, and b)
every sheet of Input-surface(k, n) intersects the same faces of n than the corre-
sponding sheet of Ortho-surface(k, n). Otherwise, the node is best-ortho.

Figure 35 d) and e) show the classification of BTG nodes in best-input and
best-ortho nodes. Note that when a node is classified as best-input, the topol-
ogy of the input-surface is the same as that of the ortho-surface. In other
words, replacing Input-surface(k, n) with Ortho-surface(k, n) will not simplify
the topology and will increase both the number of staircase-like set of faces and
the surface appearance error. The best-input nodes are so called because it is
more convenient to reconstruct the surface inside them using the input-surface
instead of the ortho-surface.

BTG nodes n of M DCO(P, k) not satisfying the conditions of best-input nodes

39

are classified as best-ortho, so called because it is more convenient to reconstruct
the surface inside them using the ortho-surface instead of the input-surface.

The following theorem is fundamental in the classification algorithm:

Theorem 4.1 If the face reduction step of the Hybrid DPS method preserves
both the topology and the SOF feasibility of the mesh, then for every BTG node
n of MDCO(P, k), Input-surface(k, n) and Ortho-surface(k-1, n) have the same
number of sheets and intersect the same set faces of n.

The face reduction step we will use in the Hybrid MDCO DPS satisfies both
conditions, and hence the classification of BTG nodes can be done by comparing
Ortho-surface(k, n) with Ortho-surface(k-1, n). Since the complete geometry
of both OOS can be completely reconstructed from a look-up table indexed
by node neighborhood configurations, the classification of BTG nodes do not
involve any explicit geometric test at all.

Both the number of best-ortho and the number of best-brep nodes can be zero
for some input polyhedra (although not at the same time). In the former case,
the Hybrid MDCO is reduced to a surface simplification algorithm, with no
orthogonal reconstruction at all; on the latter case, it is a triangulated version
of the Direct MDCO reconstruction.

4.7 Partitioning the BTG nodes

Once the BTG nodes have been classified in best-input and best-ortho nodes,
each category must be partitioned into 6-connected components.

Then, some best-input nodes are converted into best-ortho until the partition
satisfies these two conditions: a) if a best-ortho node n in level ¢ has a best-
ortho 26-neighbor m and ortho-surface(i, n) intersects the shared vertex, edge
or face, then both n and m belong to the same region, and b) if a best-input
node n has a best-input 26-neighbor m and input-surface(i, n) intersects the
shared vertex, edge or face, then both n and m belong to the same region. The
resulting regions are 6-connected, and two different best-input regions are not
26-adjacent unless there is not any surface crossing the common boundary. The
same holds for two best-ortho regions. This transformation guarantees that C°
continuity between patches must be enforced only in shared faces of a best-input
and a best-ortho region.

4.8 Extracting the patches

The input-patches are extracted from the surface of the previous iteration poly-
hedron. There is a brep-patch for each 6-connected best-input region. The
patch is calculated by collecting all triangles of P41 completely inside the re-
gion, and clipping to the region’s boundary those triangles partially inside the
region. The resulting patches involve one or more sheets of the Input-surface,
Py+1. Since Py, is triangulated and the clipping region is orthogonal and with
integer coordinates, this clipping is a simple case of the general polygon clipping
problem.

96

The ortho-patches are extracted in a similar way, but using the Ortho-surface
instead of the Input-surface. The resulting patches involve one or more or-
thogonal sheets of the Ortho-surface. Note that, although input-patches are
triangular meshes, ortho-patches involve faces of arbitrary number of contours.
They will be triangulated in the merge step.

Vertices of both the Ortho-patches and the Input-patches have a flag called
border indicating whether they also belong to the ortho-surface (input-surface)
or they appeared as a result of the clipping to the region’s boundary.

4.9 The merge step

The merge process modifies the ortho patches so that the resulting surface has
C° continuity along the faces shared by a best-input and a best-ortho region.

There are five types of continuity between nodes: a) between nodes of a best-
input region, b) between nodes of a best-ortho region, ¢) between nodes of
different best-input regions, d) between nodes of different best-ortho regions,
and e) between a best-input and a best-ortho node.

The first two still hold since the input and the ortho patches are C°. The second
pair can be ignored, since different best-input regions are not 26-adjacent unless
there is not any surface crossing the common boundary, and the same holds for
best-ortho regions. Thus the continuity must we ensured only in stabbed node
faces shared by a best-input node and a best-ortho node.

The merge consists in a constrained triangulation of the ortho-patches by con-
necting the borders of the input-patches maintaining the ortho-patch incidence;
the geometry of the surface inside best-input regions is preserved:

procedure Merge(BestOrtho, OrthoPatches, InputPatches)
foreach patch in OrthoPatches do
mapping(patch, InputPatches)
foreach face f in patch do
foreach contour ¢ in face do
replace_border_vertices(c, patch)

end
triangulate(f)
end
end
end

The mapping function M maps each border vertex of the input-patch with at
least one border vertex of the ortho-patch. Each border vertex of the input-
patch has an order number ord(v;) which is obtained by cyclically visiting each
edge-connected contour of border vertices of the input-patch.

The mapping must fulfill the following requirements: a) each border vertex of
the input-patch is mapped to at least one border vertex of the ortho-patch;
b) each border vertex of the ortho-patch is referenced by an edge-connected
sequence of at least one border vertex of the input-patch; and c) for each pair
of border vertices v;,v; of an edge-connected contour of the input-patch, if

o7

ord(v;) < ord(vj) then ord(M(v;)) < ord(M/(vj)).

The mapping can be implemented by simultaneous traversal of the border ver-
tices of both the input-patch and the ortho-patch, where the current element
is advanced in one of the two lists depending on geometric proximity and the
mapping restrictions.

In the next step, each border vertex of the ortho-patch is replaced by the ordered
sequence of edge-connected border vertices of the input patch given by the
mapping. This replacement is done in a per-contour basis to guarantee the
feasibility of the resulting surface.

The result is a non-planar face, topologically equivalent to the original ortho-
patch, but including only the non-border vertices of the ortho-patch and the
border vertices of the input-patch. Finally, the non-planar face is triangulated.
This process is illustrated on figure 36.

)

h

Figure 36: Merge of patches: a) the input-surface; b) the ortho-surface; c)
input-patch; d) ortho-patch; e) non-planar contour including border vertices
of the input-patch and non-border vertices of the ortho-patch; f) triangulated
patch; g) resulting surface after merge; h) resulting surface after edge-collapses.

The result of the merge process is a triangle mesh topologically equivalent to
the Ortho-surface, but geometrically closer to the Input-surface. In most cases
its topology is simpler than that of the Input-surface.

4.10 Patch simplification

Finally, the merged surface is object to a face reduction step. The surface sim-
plification must fulfill the following requirements: a) the simplified surface must
traverse exactly the same set of nodes, and b) the topology must be preserved.

58

The proposed Hybrid framework is not limited to a particular surface simplifi-
cation method, and different methods can be used to produce different results
(though some incremental methods are more suitable since can be easily ex-
tended to support the above restrictions).

There are two important properties which simplify the surface simplification. On
one hand, the octree provides a suitable bound for the application of reduction
operators, so only appearance-preserving criteria must be added to the surface
simplification algorithm. On the other hand, unlike most incremental methods,
the use of a queue prioritizing the operators does not make sense since all feasible
reductions should be applied. We have selected the edge-collapse due to its
simplicity and generality.

4.11 Discussion

The Hybrid MDCO method solves most of the pitfalls of the Direct MDCO while
inheriting many of its advantages. Making a better use of coherence between
iterations, it can reduce the disparity between LOD’s, and provides a framework
in which the collapse of faces with very different photometry attributes can
be easily avoided. When simplifying simple objects with accurate tolerances,
hybrid’s behavior is more suitable.

99

5 Concluding Remarks and Future Work

In this report a framework for polyhedral solid simplification has been presented.
Instances of this framework are simplification methods capable of modifying the
topology of the solid while guaranteeing an interior-points error bound.

Both the Direct MDCO produces valid, two-manifold objects, even when the
input is non-manifold. Unlike most of the current simplification methods, which
are restricted to triangular meshes, the presented algorithms can deal and also
produce faces with arbitrary geometry and topology, independently of the input
surface subdivision.

Although other surface simplification methods might produce better-looking
approximations of topologically simple objects from the point of view of LOD-
based rendering, DPS methods are more suitable for LOD-based applications
where surface appearance preservation is not as much important as topology
reduction, such as collision detection, occlusion analysis and acoustic modeling
[ea98].

Compared to triangular meshes, the unconstrained planar-faces boundary rep-
resentation is a more concise representation of polyhedral objects, which is suit-
able in most of the applications listed above; real-time visualization is the only
exception since many APIs and hardware subsystems are optimized for triangle
meshes and triangle strips.

Future work includes the analysis of different variants of the face-merge operator,
such as allowing the merge of faces sharing more than one edge (loop creation).
We have shown that moving one face at a time we cannot achieve optimal results.
Figure 37 shows a simple object that cannot be obtained from the OOS without
moving two faces simultaneously, so future work also includes the study of an
iterative face-merge version, which tries to move two or more faces at the same
time. Shortcuts for the iterative application of face-merge operations should be
studied (see figure 37).

Figure 37: a) Original object b) OOS with two faces being merged c¢) a simpler
0O0S-feasible solid cannot be produced without simultaneously modifying the
third face.

Regarding to the Hybrid MDCO, several surface simplification options should be
studied, and an improved merge of ortho and brep patches should be developed.

60

6 Acknowedgements

The authors would like to thank the Geometry Group people at the GVU Center
of the Georgia Institute of Technology for their helpful comments, especially
Jarek Rossignac, Greg Turk and Renato Pajarola.

61

£2292

2.8062

3.3833

2.9604

Figure 38: Test polyhedron (1366 faces) and output of Direct DPS (34 faces)
using depth 4. Maximum error is 4.2%

§.9382
54584
39608

34682

Figure 39: Test polyhedron and output of a typical mesh decimation (59 trian-
gles). Maximum error is 4.9%

62

20526

27583

24429

2.137%

Figure 40: Test polyhedron and output of Direct DPS (56 faces) using depth 5.
Maximum error is 3.1%

35419
21877
| 2gu5
2.4793

2.1251

Figure 41: Test polyhedron and output of a typical mesh decimation (80 trian-
gles). Maximum error is 3.5%

63

Figure 42: Test polyhedron and output of Direct DPS (64 faces) using depth 6.
Maximum error is 1.5%

1E16
14647
12931

11318

Figure 43: Test polyhedron and output of a typical mesh decimation (161 tri-
angles). Maximum error is 1.6%

64

0.9273

0.8361

| 07sRs

06435

Figure 44: Test polyhedron and output of Direct DPS (86 faces) using depth 7.
Maximum error is 0.9%

0.9757
LE:
0.7805

0683

Figure 45: Test polyhedron and output of a typical mesh decimation (217 tri-
angles). Maximum error is 0.9%

65

0.238%

0.2145

0.1307
Dlsss ’

Figure 46: Test polyhedron and output of Direct DPS (178 faces) using depth
9. Maximum error is 0.2%

0.1893
: ’
|

Figure 47: Test polyhedron and output of a typical mesh decimation (406 tri-
angles). Maximum error is 0.2%

66

References

[2a95]

[2a96]

[AABYS]

[AAB+96]

[ABIN97]

[And98a]

[And9sb]

[ANM97]

[AS96]

[BBCS96]

[BIN88]

[Bru90]

[CCMS97]

Matthias Eck at al. Multiresolution analysis of arbitrary meshes. In
Proc. SIGGRAPH, pages 173-182, 1995.

Taosong He at al. Controlled topology simplification. IEEE Transac-
tions on Visualization and Computer Graphics, 2(2):171-184, 1996.

D. Ayala, C. Anddjar, and P. Brunet. Automatic simplification
of orthogonal polyhedra. In D.W. Fellner, editor, Modelling Vir-
tual Worlds Distribuited Graphics, pages 137-147. Internationallen
Workshop MVD’95, Infix, 1995.

C. Andugjar, D. Ayala, P. Brunet, R. Joan, and J. Solé. Automatic
generation of multiresolution boundary representations. Computer
Graphics Forum, 1996.

D. Ayala, P. Brunet, R. Joan, and I Navazo. Multiresolution ap-
proximation of polyhedral solids. In D. Roller and P. Brunet, ed-
itors, CAD Systems Development: Tools and Methods, pages 327—
343. Springer-Verlag, 1997.

Carlos Anddjar. The discretized polyhedra simplification: A frame-
work for polyhedra simplification based on decomposition schemes.
Technical report, Universitat Politecnica de Catalunya, LSI-98-XR,
1998.

Carlos Andujar. Simplificacion de modelos poliedricos (written in
spanish). Technical report, Universitat Politecnica de Catalunya,
LSI-98-1T, 1998.

Andrea L. Ames, David R. Nadeau, and John L. Moreland. The
VRML 2.0 sourcebook. Wiley, New York, NY, USA, second edition,
1997.

M.-E. Algorri and F. Schmitt. Mesh simplification. Computer Graph-
ics Forum, 15(3):C77—C86, September 1996.

Chandrajit L. Bajaj, Fausto Bernardini, Jindong Chen, and Daniel
Schikore. Automatic reconstruction of 3d cad models. In Proc. of
Theory and Practice of Geometric Modelling, 1996.

P. Brunet, R. Juan, Isabel Navazo, J. Sole, and D. Tost. Scientific
Visualization. Advances and challenges. Academic Press, 1988.

P. Brunet. Face octrees. involved algorithms and applications. Re-
port LSI-90-14, Departament de Llenguatges i sistemes informatics,
Universitat Politecnica de Catalunya, 1990.

A. Ciampalini, P. Cignoni, C. Montani, and R. Scopigno. Multires-
olution decimation based on global error. The Visual Computer,
Springer International, 13(5):228-246, 1997.

67

[CHSS]

[Cla76]

[COMOYS]

[CPD+96]

[Cro82]

[CS96]

[DLW94]

[ea96]

[ea98]

[Eck97]
[Eri96]

[FS93)]

[GH97]

[Grii67]

[GSGI6]

H. Chen and T. Huang. A survey of construction and manipulation
of octrees. Computer Vision, Graphics and Image Processing, 43,
1988.

J. H. Clark. Hierarchical geometric models for visible surface algo-
rithms. Communications of the ACM, 19(10):547-554, 1976.

Jonathan Cohen, Marc Olano, and Dinesh Manocha. Appearance-
preserving simplification. Computer Graphics Proceedings, Annual
Conference Series, 1998 (ACM SIGGRAPH ’98 Proceedings), pages
115-122, 1998.

A. Certain, J. Popovic, T. DeRose, T. Duchamp, D. Salesin, and
W. Stuetzle. Interactive multiresolution surface viewing. In Proc.
SIGGRAPH, pages 91-99, 1996.

F. C. Crow. A more flexible image generation environment. Com-
puter Graphics, 16(3):9-18, 1982.

C. Rocchini P. Cignoni and R. Scopigno. Metro: measuring error
on simplified surfaces. Technical report, Istituto I.E.I.-C.N.R.., Pisa,
Italy, January 1996.

Tony D. DeRose, M. Lounsbery, and J. Warren. Multiresolution
analysis for surfaces or arbitrary topological type. In Proc. SIG-
GRAPH, 1994. Course notes.

Jonathan Cohen et al. Simplification Envelopes. ACM SIGGRAPH
’96 Proceedings, pages 119-128, 1996.

Thomas Funkhouser et al. A beam tracing approach to acoustic
modeling for interactive virtual environments. ACM SIGGRAPH
’98 Proceedings, 1998.

George Eckel. IRIS Performer Programmer’s Guide. Silicon Graph-
ics, Inc. Document no. 007-1680-040, 1997.

C. Erikson. Polyhedral simplification: An overview. Tr 96-016,
Departament of Computer Science, UNC-Chapel Hill, 1996.

T.A. Funkhouser and C.H. Sequin. Adaptive display algorithm for
interactive frame rates during visualization of complex virtual envi-
ronments. In Proc. SIGGRAPH, pages 247-254, 1993. Computer
Graphics Proceedings, Annual Conference Series.

Michael Garland and Paul S. Heckbert. Surface simplification using
quadric error metrics. In SIGGRAPH 97 Conference Proceedings,
pages 209-216. Addison Wesley, August 1997.

Branko Griinbaum. Convex Polytopes. Interscience Publishers, New
York, 1967.

Markus H. Gross, Oliver G. Staadt, and Roger Gatti. Efficient tri-
angular surface approximations using wavelets and quadtree data
structures. IEEE Transactins on Visualization and Computer
Graphics, 2(2), June 1996.

68

[Gue96]

[GW94]

[Ham94]

[HG4]

[HHK*95]

[Hop96]

[Hop97]

[JAS95]

[KCHNO1]

[KR89]

[KT93]

[KT96]

[LC87]

[Man88]

Andre Gueziec. Surface simplification inside a tolerance volume.
Technical report, Yorktown Heights, NY 10598, March 1996. IBM
Research Report RC 20440.

Allen Van Gelder and Jane Wilhelms. Topological considerations in
isosurface generation. ACM Transactions on Graphics, 13(4):337—
375, 1994.

B. Hamann. A data reduction scheme for triangulated surfaces.
Computer Aided Geometric Design, 11:197-214, 1994.

P.S. Heckbert and M. Garland. Multiresolution modelling for fast
rendering. Proc. Graphics Interface 94, pages 43-50, May 1994.

T. He, L. Hong, A. Kaufman, A. Varshney, and S. Wang. Voxel
based object simplification. In G.M. Nielson and D. Silver, editors,
Visualization’95, pages 296-303, Atlanta, GA, October 29 — Novem-
ber 3 1995.

H. Hoppe. Progressive meshes. Computer Graphics, 30(Annual Con-
ference Series):99-108, 1996.

Hugues Hoppe. View-dependent refinement of progressive meshes.
In SIGGRAPH 97 Proceedings, pages 189-198. ACM SIGGRAPH,
Addison Wesley, August 1997. ISBN 0-89791-896-7.

Robert Juan-Arinyo and Jaume Solé. Constructing face octrees
from voxel-based volume representations. Computer-Aided Design,
27(10):783-791, 1995.

Alan D. Kalvin, Court B. Cutting, B. Haddad, and M. E. Noz.
Constructing topologically connected surfaces for the comprehensive
analysis of 3D medical structures. In Medical Imaging V: Image
Processing, volume 1445, pages 247-258. SPIE, February 1991.

T. Y. Kong and A. Rosenfeld. Digital topology: Introduction and
survey. Computer Vision, Graphics and Image Processing, 48:357—
393, 1989.

Alan Kalvin and Russell Taylor. Superfaces: Polyhedral approxima-
tion with bounded error. Technical Report RC19135, IBM Research
Division. T.J. Watson Research Center., 1993.

Alan D. Kalvin and Russell H. Taylor. Superfaces: Polygonal mesh
simplification with bounded error. IFEE Computer Graphics and
Applications, 7(?7):64-77, 1996.

William Lorensen and Harvey Cline. Marching cubes: A high resolu-
tion 3d surface construction algorithm. In Proc. SIGGRAPH, pages
44-50, 1987. Computer Graphics vol. 21 no. 4.

Martti Mantyla. An Introduction to Solid Modeling. Computer Sci-
ence Press, Rockville, MD, 1988.

69

[Mat95]

[MBL+91]

[Meg83]

[MS95]

[MSS94]

[Nav86]

[OL9S]

[PMS5]

[RBY3]

[Red96]

[RHO4]

[Ros96]

[RR96]

J Mattioli. Minkowski operations and vector spaces. Set-Valued
Analysis, 3(1):33-50, 1995.

James Miller, David Breen, Willian Lorensen, Robert OBara, and
Michael Wozny. Geometrically deformed models: A method for ex-
tracting closed geometric models from volume data. In Proc. SIG-
GRAPH, pages 217-226, 1991. Computer Graphics, vol. 25 no. 4.

N. Megiddo. Linear-time algorithms for linear programming in 3d
and related problems. Siam J. Computer, 12(4):759-776, 1983.

Paulo W. C. Maciel and Peter Shirley. Visual navigation of large
environments using textured clusters. In Pat Hanrahan and Jim
Winget, editors, 1995 Symposium on Interactive 3D Graphics, pages
95-102. ACM SIGGRAPH, April 1995. ISBN 0-89791-736-7.

C. Montani, R. Scateni, and R. Scopigno. Discretized marching
cubes. In Visualization’94, pages 281-287. IEEE Computer Society
Press, 1994.

Isabel Navazo. Contribucio a les tecniques de modelat geometric
d’objectes polimerics usant la codificacio amb arbres octals (written
in Catalan). PhD thesis, Universitat Politecnica de Catalunya, 1986.

Marc Olano and Anselmo Lastra. A shading language on graphics
hardware: The pixelflow shading system. Computer Graphics Pro-
ceedings, Annual Conference Series, 1998 (ACM SIGGRAPH 98
Proceedings), pages 159-168, 1998.

F. Preparata and M.Shamos. Computational Geometry. Springer
Verlag, 1985.

J. Rossignac and P. Borrel. Multiresolution 3D aproximations for
rendering complex scenes. In Modeling in Computer Graphics.
Springer-Verlag, 1993.

M. Reddy. SCROOGE: Perceptually-driven polygon reduction.
Computer Graphics Forum, 15(4):191-203, 1996. ISSN 0167-7055.

John Rohlf and James Helman. IRIS performer: A high performance
multiprocessing toolkit for real-Time 3D graphics. In Andrew Glass-
ner, editor, Proceedings of SIGGRAPH 9/ (Orlando, Florida, July
24-29, 1994), Computer Graphics Proceedings, Annual Conference
Series, pages 381-395. ACM SIGGRAPH, ACM Press, July 1994.
ISBN 0-89791-667-0.

Jarek Rossignac. Geometric simplification. In ACM SIGGRAPH
Course notes No. 35. ACM Press, 1996.

R. Ronfard and J. Rossignac. Full-range approximation of triangu-
lated polyhedra. Computer Graphics Forum, 15(3):C67-C76, C462,
September 1996.

70

[SL96]

[Sri81]

[SW70]

[SZL92]

[Tur92]

[Vel92]

[Vel93]

Marc Soucy and Denis Laurendeau. Multiresolution surface model-
ing based on hierarchical triangulation. Computer Vision and Image
Understanding: CVIU, 63(1):1-14, January 1996.

Sargur N. Srihari. Representation of three-dimensional digital im-
ages. Computing Surveys, 13(4):399-424, 1981.

Josef Stoer and Christoph Witzgall. Convezity and Optimization in
Finite Dimensions, volume 163 of Die Grundlehren der mathematis-
chen Wissenschaften in Einzeldarstellung. Springer-Verlag, Berlin,
1970.

W. J. Schroeder, J. A. Zarge, and W. E. Lorensen. Decimation of
triangle meshes. In Proc. SIGGRAPH, pages 65—70, 1992. Computer
Graphics vol. 26 no. 2.

Greg Turk. Re-tiling polygonal surfaces. In Proc. SIGGRAPH, pages
55-64, 1992. Computer Graphics vol. 26 no. 2.

R.C. Veltkamp. Closed Object Boundaries from Scattered Points.
PhD thesis, Erasmus University Rotterdam, 1992.

Remco C. Veltkamp. 3D computational morphology. In R. J. Hub-
bold and R. Juan, editors, Eurographics ’93, pages 115-127, Oxford,
UK, 1993. Eurographics, Blackwell Publishers.

71

