
The Discretized Polyhedra Simpli�cation (DPS):a Framework for Polyhedra Simpli�cation Basedon Decomposition SchemesCarlos And�ujar Dolors Ayala Pere BrunetFebruary 4, 1999AbstractAutomatic simpli�cation of polyhedral objects is a major topic in manycomputer graphics applications. This work discusses simpli�cation algo-rithms for the generation of a multiresolution family of solid represen-tations from an initial polyhedral solid. We introduce the DiscretizedPolyhedra Simpli�cation (DPS), a framework for polyhedra simpli�cationusing space decomposition models. The DPS is based on a new errormeasurement and provides a sound scheme for error-bounded, geometryand topology simpli�cation while preserving the validity of the model. Amethod following this framework, Direct DPS, is presented and discussed.Direct DPS uses an octree for topology simpli�cation and error control,and generates valid solid representations. Our method is also able togenerate approximations which do not interpenetrate the original model,either being completely contained in the input solid or bounding it. Unlikemost of the current methods, restricted to triangle meshes, our algorithmcan deal and also produces faces with arbitrary complexity. An extensionof the Direct method for appearance preservation, called Hybrid DPS, isalso discussed.1 IntroductionMany computer graphics applications, including CAD and virtual reality sys-tems, require modeling, handling and visualization of very large and geomet-rically complex systems. Geometry simpli�cation deals with generation of 3Dmodels that resemble the input model but involve less faces, edges and vertices.A concept closely related is the approximation error |a quanti�cation of thedi�erence between the original model and the simpli�cation. Level of Detail isconcerned to the possibility of using di�erent representations of a geometric ob-ject having di�erent levels of accuracy and complexity. Multi-resolution modelsprovide several level-of-detail representations of a geometric model and have be-come a powerful tool in many computer graphics applications, including CAD,virtual reality and scienti�c visualization, as they can accelerate the handlingof complex models by omitting unessential computation and reducing storage1
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space in visualization [Cla76], [Cro82], [RB93], [MS95], [RH94], [FS93], trans-mission over networks [ANM97], [DLW94], [aa95], [CPD+96], [Hop96], queryacceleration [Vel92], collision detection, visibility analysis and acoustic model-ing [ea98]. Simpli�cation is also used for reducing the verbosity of 3D models,adjusting the accuracy to the application's requirements and multi-resolutioninteractive modeling.The need for multi-resolution representations was already stated in 1976 in thecontext of real-time visualization. In [Cla76] J. Clark pointed out that objectswhich cover a small area in the screen could be rendered with a simpli�ed versionand he proposed a hierarchical model supporting several representations of anobject.Although multiresolution representations are sometimes obtained interactively[Cro82], [HG94], extensive research is being performed in developing algorithmsfor the automatic generation of these multiresolution representations.1.1 Solid Simpli�cation vs. Surface Simpli�cationMost of the simpli�cation methods published so far are concerned with a sub-problem of geometry simpli�cation which will be called surface simpli�cation.In surface simpli�cation the approximation error is measured by some distancede�ned on the points on the surface, regardless of the enclosed volume, if any.We introduce a new approach for the geometry simpli�cation problem, the solidsimpli�cation (Table 1). Solid simpli�cation deals with the approximation ofsolid mathematical models, i.e. point-set models, whereas surface simpli�cationdeals with entities inherently 2D (see Figure 1 a, b).The behavior of surface simpli�cation methods is independent on the volumeenclosed by the surface, and thus many surface simpli�cation methods can dealwith non-manifold, self-intersecting and even open surface patches. Since thedisparity between the original surface and the simpli�ed one should be measuredby some error metric based on the points on the surface, the goal is to calculatea less complex surface which approximates the original one within a tolerancebound around the surface.Unlike surface simpli�cation, solid simpli�cation methods take into account thevolume enclosed by a two-manifold surface. Solid simpli�cation measures theerror using the points inside the solid, and hence it has more freedom for mod-ifying its geometry and its topology (genus and shells).Solid simpli�cation applications make us somewhat less concerned with pre-serving surface appearance attributes, such as curvature and color, than somevisualization-oriented surface simpli�cation methods are.Surface simpli�cation methods can be used for polyhedra simpli�cation, andgood results could be expected when simplifying objects with a simple topologyand without "-zones (thin zones of the space crossed by two or more sheetsor the surface). Beyond these limited cases, the results obtained by surfacesimpli�cation methods are very poor. Figure 2 shows two sample objects whichcannot be successfully simpli�ed with a surface simpli�cation method.2
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Figure 1: Surface vs. solid simpli�cation. (a) The surface simpli�cation prob-lem. (b) The solid simpli�cation problem. (c) A 2D solid being simpli�ed by asurface simpli�cation method (top) and a solid simpli�cation method (bottom).The slots of the assembly must be preserved in the former case since otherwisea great error is introduced, whereas the solid simpli�cation is able to change thetopology in order to achieve a higher geometry reduction.

Figure 2: Top: A topology-preserving surface simpli�cation method is unableto simplify the back of the chair into a single face, even with a high tolerance.Bottom: poor result obtained with a surface simpli�cation algorithm over anobject with many shells. Note that many components appear disconnected inthe simpli�cation.1.2 Background and Previous WorkAlthough surface simpli�cation is a well known problem and a great amountof algorithms have been proposed, from terrain simpli�cation up to triangular3



Table 1: Surface simpli�cation vs. Solid Simpli�cationSurface Simpli�cation Solid Simpli�cationUnderlying entity surface (2D) point-set model (3D)Basis for error control points on the surface points inside the volumeTopology simpli�ca-tion very limited high degree of freedomPrevious work intense research papers are still rareApplications visualization-oriented more general
mesh simpli�cation, polyhedra solid simpli�cation methods are still very rare[aa96], [AAB+96].Related issues with simpli�cation methods are topology simpli�cation and er-ror bounds. Topology simpli�cation deals with the ability of the algorithm toreduce the topology of the model, i.e., its genus and number of shells. This isan important requirement in practical applications in order to get high simpli-�cation rates in objects with complex topologies and in assemblies [aa96]. Theexistence of error bounds or tolerances for the approximations is also a basic userrequirement which is useful, in LOD-based applications, to choose the optimalapproximate representation for a distant object.1.2.1 Previous work on surface simpli�cationMost of the current surface simpli�cation methods are devoted to triangularmeshes (mesh simpli�cation). Some of them are 3D extensions of 2D polygonalsimpli�cation methods while others are direct 3D approaches. Although somebottom-up methods exist [Vel93], most methods follow a top-down strategy,performing a face reduction directly on the mesh by the iterative application ofreduction operators (incremental methods). Di�erent operators have been pro-posed: vertex removal [SZL92], [ea96], [SL96], edge collapse [RR96], [Gue96],[AS96], [Hop96], [Hop97], face removal [Ham94], superfaces merging [KT93],[KT96] and edge ipping1 [CCMS97], [BBCS96]. These operators are reviewedin Section 1.2.2. Other mesh simpli�cation methods are based on re-tilingtechniques [Tur92] and multi-resolution analysis [DLW94], [aa95], [CPD+96],[GSG96]. See [Ros96], [Eri96], [ABJN97] for a survey on such methods. Witha few exceptions, mesh simpli�cation methods are unable to handle properlyobjects with complex topologies since topology preservation limits geometrysimpli�cation.1Edge-ipping does not reduces the face count but may improve the �tting.4



Other approaches are based on space-partitioning and clustering techniques in3D space, like [RB93], [RR96], [Red96], [GH97]. These methods allow topolog-ical changes and yield high compression ratios but the resulting simpli�ed rep-resentations are not valid B-Rep (they contain dangling parts or non-manifoldboundaries), so they cannot be used for solid simpli�cation.1.2.2 Operators over triangle meshesIn this section we compare local mesh operators, which are a key ingredient ofthe most populated family of surface simpli�cation methods and is also one ofthe key ingredients of our approach.Incremental methods are based on a set of local operators which either reducethe mesh complexity (reduction operators) or improve the �tting of the approx-imated mesh (�tting operators).
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fFigure 3: Reduction and �tting operators: a) vertex-removal, b) edge-collapse,c) vertex-clustering, d) face-removal, e) edge-ip and f) vertex-displacement.The following reduction operators have been proposed in the geometry simpli-�cation literature (see Figure 3):� vertex-removalThe vertex-removal operator take as parameter the vertex to be removed.The vertex and its t incident triangles are removed. The resulting holeis triangulated with t� 2 triangles. The only computed parameter is thenew incidence graph of the hole's triangulation. The operator reduces thenumber of faces by two, the number of edges by three and the number ofvertices by one. Except in degenerate cases which can be easily identi�edby inspection of the incidence graph, the vertex-removal operator preservesthe topology of the mesh. To avoid self-intersections, additional geometrictests are required. The selection of the vertex to be removed is commonlybased on a curvature estimation at the vertex. Vertices with low curvaturevalues are removed �rst. The vertex removal operator is used in [SZL92],[ea96], [SL96] and in most terrain simpli�cation methods.5



� edge-collapseThe edge-collapse operator takes as parameter the edge to be collapsed,or its equivalent, a pair of vertices sharing an edge. The two vertices arecollapsed in one vertex. As a result of this collapse, the triangles sharingthe edge degenerate in a segment and are removed. The only computedparameter is the new vertex position, which usually is that of one of thetwo old vertices, or a weighted average. The operator reduces the numberof faces by two, the number of edges by three and the number of verticesby one. Except in degenerate cases which can be easily identi�ed byinspection of the incidence graph, the edge-collapse operator preservesthe topology of the mesh. To avoid self-intersections, additional geometrictests are required. The selection of the edge to be removed is commonlybased on an estimation of the error in the Hausdor� distance [Gr�u67]sense. Usually, feasible edge-collapse operators are computed in a previousstep, and stored in priority queue ordered by error. The edge-collapseoperator is used in most of the state-of-the-art methods: [RR96], [Gue96],[AS96], [Hop96], [Hop97]. Due to its simplicity, the edge-collapse operatorhas been used successfully both in geometry simpli�cation (lossy) andgeometry compression (loss-less).� vertex-clusteringThe vertex-clustering of v vertices is conceptually equivalent to v � 1vertex-clustering operation involving just two vertices, so we will reviewonly this latter form. The vertex-clustering operator takes as parameterthe two vertices to be collapsed. When these vertices are connected alongan edge, this operation is an edge-collapse, but disconnected vertices arealso allowed to be collapsed. If the latter case, only the number of ver-tices is reduced; otherwise, the triangles sharing the edge degenerate ina segment and are removed. The only computed parameter is the newvertex position, which usually is that of one of the two old vertices, ora weighted average. If the vertices are connected by an edge, the oper-ator reduces the number of faces by two, the number of edges by threeand the number of vertices by one; otherwise only reduces the number ofvertices. Unlike previous reduction operators, the vertex-clustering doesnot preserve the topology of the mesh, and creates non-manifold meshes.To avoid self-intersections, additional geometric tests are required. In thesimpler methods, the selection of the vertices to be collapsed is based ongeometric proximity. Usually, several vertices are clustered at a time. Thevertex-clustering operator is used in [RB93], [RR96], [Red96], [GH97].� face-removalThe face-removal take as parameter the triangle T to be removed. Thistriangle and all its neighbors sharing one vertex with T are removed. Theresulting hole is triangulated with the help of a new vertex. The computedparameters are the coordinates of the new vertex, and the incidence graphof the triangulation. The operator reduces the number of faces by four,the number of edges by six and the number of vertices by two. Exceptin degenerate cases which can be identi�ed [Ham94], the face-removaloperator preserves the topology of the mesh. Due to the high number oftriangles involved, incremental methods using face-removal rapidly arrive6



to a mesh which cannot be further simpli�ed while maintaining its validity,whereas other simpler operators such as edge-collapse could be applied.The face removal operator is used in a few methods [Ham94].In addition to reduction operators, which modify the count of the geometric en-tities of the mesh, surface simpli�cation methods often rely on �tting operators:� edge-ipThe edge-ip operator take as parameter two adjacent triangles (or theirshared edge). The non-planar quadrilateral resulting of merging togetherboth triangles is triangulated using the opposite diagonal. There are nocomputed parameters. The edge-ip operator preserves the topology of themesh but not the incidence graph. To avoid self-intersections, additionalgeometric tests are required. The edge-ip is used for two purposes: a)to improve the �tting of the simpli�cation to the original surface, in non-at regions, and b) to create well-shaped triangles, in at-regions. Theedge-ip operator is used in [Hop96], [CCMS97], [BBCS96], to minimizethe error produced by another previous operator, such as edge-collapse.� vertex-displacementThe vertex-displacement operator take as parameter the vertex to bemoved. The only computed parameters are the new coordinates, usuallygiven as an o�set vector. The vertex-displacement operator preserves thetopology of the mesh and the incidence graph. To avoid self-intersections,additional geometric tests are required. The vertex-displacement is usedto locally improve the �tting of the simpli�cation to the original surface.Its relevance is due to the fact that the vertex displacement is closed inthe domain of valid triangle meshes (i.e. it preserves the validity); thisdoes not hold for arbitrary polyhedra, since vertex-displacement wouldproduce non-planar faces.For many authors, edge-collapse is the most suitable operator for face reduction.There are two reasons for that: its simplicity (only a�ecting two triangles at atime), allowing further simpli�cation when other operators cannot be applied,and its generality, in the sense that all topology-preserving reduction operatorscan be derived from a series of edge-collapses and edge-ips:� One vertex-removal can be replaced by an edge-collapse and several edge-ips.� The multiple vertex-clustering of n vertices can be replaced by n � 1vertex-clustering of two vertices, which in turn is a generalization of edge-collapse to arbitrary pairs of vertices. Since we are interested in keepingthe two-manifold property of the surface, only edge-collapses are suitable.� One face-removal can be replaced by two vertex removal, and hence bytwo edge-collapses and several edge-ips. Note that, in the face-removal weare considering, the triangulation is performed introducing a new vertex.Otherwise, three edge-collapses instead of two would be necessary.7



1.2.3 Previous work on simpli�cation using decomposition modelsDecomposition approaches [And98b] automatically guarantee both the topologysimpli�cation and the error bounds. These approaches use an intermediate spacedecomposition representation (usually a voxel or octree representation). Unlikeother approaches, topology is simpli�ed in a discretization process, instead ofbeing simpli�ed by means of operations over the brep.A simpli�cation method based on a decomposition model was introduced in[AAB95], where an algorithm for the special case of orthogonal polyhedra ispresented. The algorithm used a special kind of octree, the Maximal DivisionClassical Octree (MDCO) [BJN+88] as the intermediate model. This represen-tation scheme is discussed in Section 3.1. The input of the method [AAB95]is a closed polyhedron, which is discretized into an MDCO. For each terminalgrey node of the MDCO, the color of the eight vertices of the correspondingoctant is computed, resulting in black (inside the polyhedron) and white (out-side) points. There are 28 = 256 possible con�gurations of the vertex colors of aterminal node [LC87], [Sri81]. This con�gurations can be grouped by means ofsymmetries into 14 equivalence classes (see Figure 4). Terminal grey nodes canbe non-regular (all vertices black or all white) or regular. Regular nodes can beambiguous or non-ambiguous.After the vertex color computation, a reconstruction algorithm similar to March-ing Cubes (MC) [LC87] is applied in two stages: the �rst one computes thegeometric information of each vertex of the result by means of a look-up ta-ble indexed by the con�guration of the eight vertices of the terminal node; ina second stage the incidence graph is computed by grouping coplanar verticesinto loops and faces, following the algorithm presented in [Nav86]. Unlike MC,the resulting polyhedron is orthogonal and the faces are not limited to triangles.Furthermore, the ambiguity problem [GW94] can be easily solved by simply sub-dividing once more ambiguous terminal nodes and adopting a black or whiteproximity criterion.In order to guarantee an error bound in the sense of the Hausdor� distance, non-regular regions must be reconstructed separately. In addition to be restricted toorthogonal simpli�cations, due to the non-regular regions problem the methodpresented in [AAB95] usually tends to increase the number of shells.
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A �rst extension of [AAB95] for the case of general polyhedra was proposedin [AAB+96]. The algorithm has three major steps: discretization of the in-put model, generation of a multi-resolution of octrees by simply pruning thehigher octree level, and reconstruction of a polyhedron for each octree. The in-cidence graph reconstruction is based on a classi�cation of terminal grey nodesby planarity criteria and an iterative re�nement guided by the minimizationof an energy function involving coplanarity of vertices, linear separability andstabbing of nodes by the edges. The geometry reconstruction is based on anumerical programming problem minimizing the previous goal function. Unfor-tunately, the method presented in [AAB+96] is quite complicated and, due tothe non-regular regions problem, often increases the number of shells.A di�erent approach based on signal processing is presented in [HHK+95]. Thealgorithm has two steps. In the �rst one, the input polyhedron is sampled andlow-pass �ltered resulting on a 3D grid of scalar values. The density is computedusing the following integration restricted to the interior points:f(i; j; k) = Z Z Z h(x; y; z)dxdydz (1)where h(x; y; z) is a low-pass �lter such that the contribution of points is max-imum at the voxel's center and null at some �nite radius R:h(p) = (R� dist(p; c))=R: (2)In the second step the surface is extracted with the original Marching Cubes(MC) in [HHK+95] and an improved version in [aa96]. Unfortunately, the ap-proximation error is not bounded, and the resulting triangle mesh has manyredundant triangles due to the verbosity of MC. Furthermore, the simpli�ca-tion smoothes the object's surface and the user must provide an isodensity valuefor MC.1.2.4 Surface extraction and octree-to-boundary conversionThe surface extraction problem is closely related to the simpli�cation problem[And98b]. On one hand, most surface simpli�cation algorithms appeared as atool for reducing the verbosity of surface extraction problems such as MarchingCubes, which produces high density of triangles even in regions of low curva-ture. On the other hand, the simpli�cation methods based on decompositionmodels [AAB95], [AAB+96], [HHK+95], [aa96] must use some kind of surfaceextraction algorithm. The immediate consequence is that any low-verbosityconversion algorithm from a decomposition model to a boundary representa-tion can be used as the reconstruction step of a simpli�cation method basedon decomposition schemes. Several low-verbosity conversion algorithms haveappeared in the context of voxels and octrees.In [MSS94], an improved MC is presented. The method is based on a discretiza-tion of face orientations, resulting in many coplanar triangles that are mergedtogether in a post-process step.In [JAS95] a surface extraction method based on face octrees [Bru90] is pre-sented. The main contribution is that the generated faces are not restricted9



to lie inside a voxel. The algorithm has three main steps: construction of aGeometrically Deformed Model [MBL+91] using the minimization of an energyfunction, construction of the face octree and reconstruction of the polyhedron.Unfortunately, [JAS95] is unable to reconstruct the polyhedron inside some`thin' regions, and hence approximation error is not bounded.1.3 Problem StatementThe solid simpli�cation problem for general polyhedra can be stated as follows:given a general, two-manifold polyhedron P with nf (P ) faces, a multi-resolutionfamily of two-manifold polyhedra Pl, Pl�1, ... P0 approximating the initialobject P must be generated. We look for a simpli�cation algorithm ful�llingthe following requirements:� The approximation of the individual polyhedra Pk must be monotonicallydecreasing from the closest approximation Pl to the coarser one P0. Moreprecisely, a set of tolerances "l, "l�1, ..., "1 with "k < "k�1 must existsuch that some geometric distance between Pk and Pk�1 is bounded by"k. Several bound de�nitions will be discussed in Section 2.1.2.� The number of faces of the polyhedra Pk should be monotonically decreas-ing from the best approximation Pl to P0, that is nf (Pk�1) < nf (Pk).� Both the geometry and the topology {genus and number of shells{ of theinitial polyhedron P must be simpli�ed. For topology simpli�cation wemean the proper modi�cation of the genus and the number of shells inorder to achieve a high simpli�cation ratio. Note that topology simpli�-cation may suppose both the increment or decrement of genus and shells.Usually, P0 will be a genus-0 approximation to P .� Relevant features of P such as sharp edges must be kept as much aspossible during the simpli�cation sequence from Pl to P0.� Flat regions of the initial polyhedron P must be approximated by large,planar faces in Pk whenever possible.1.4 ContributionIn this work we introduce the Discretized Polyhedra Simpli�cation (DPS), aframework for polyhedra simpli�cation using space decomposition models. Sev-eral criteria for DPS methods are discussed, and two new algorithms, the DirectDPS and the Hybrid DPS are presented. These methods, which are based onan extension of the classical octree representation scheme, improve previousmethods presented in [AAB95] and [AAB+96].These new approaches generate error-bounded two-manifold approximations,and are capable of reducing the topological complexity. Furthermore, thesemethods are not restricted to triangular meshes, and the Direct DPS algorithmdeals and produces faces of arbitrary complexity (including holes). The DirectDPS has many applications in image acceleration, occlusion analysis, query10



acceleration and acoustic modeling. The Hybrid DPS is also suitable to LOD-based visualization of complex assemblies.1.5 Organization of this documentIn section 2, the DPS framework is presented, and its relationship with surfaceextraction methods and other simpli�cation methods is discussed. In the nextsections, two di�erent DPS methods are presented and discussed. The Directapproach presented in section 3 is a complete parameterization of a DPS thatdoes not use the original BRep information once the decomposition model hasbeen generated, and thus it can be used as a surface extraction algorithm fromvolume datasets. In section 4, the Hybrid DPS approach is outlined, which isintended to exploit the advantages of classic surface simpli�cation methods andDPS methods by combining them in a region-based classi�cation.
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2 The Discretized Polyhedra Simpli�cation (DPS)framework2.1 The DPS frameworkThe DPS framework models a family of simpli�cation methods which have incommon the use of an intermediate space decomposition scheme to generate amulti-resolution family of solid representations. The DPS framework involves�ve components: a decomposition scheme, an error metric, and discretization,reconstruction and face reduction processes. The DPS pattern (Figures 5 and6) shows the integration of these components.
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is based on a new approach for error measurement, the in-metrics, i.e., based onthe points inside the solid. Symmetrically, out-metrics are based on the pointsoutside the solid. The following distances represent these three approaches: In-Hausdor� distance is the symmetric Hausdor� distance [Gr�u67] de�ned over thepoints inside the volume enclosed by the solids. A solid P 0 is said to approximateP within a bound " in the In-Hausdor� distance sense i�8p2P 9p02P 0 j dist(p; p0) < " and 8p02P 0 9p2P j dist(p; p0) < " : (3)The On-Hausdor� (resp. Out-Hausdor� ) is the symmetric Hausdor� distancede�ned over the points on the boundary (resp. outside the solid): A solid P 0 issaid to approximate P within a bound " in the On-Hausdor� distance sense i�8p2Surf(P ) 9p02Surf(P 0) j dist(p; p0) < " and8p02Surf(P 0) 9p2Surf(P ) j dist(p; p0) < " ; (4)where Surf(P ) stands for the boundary of P .A solid P 0 is said to approximate P within a bound " in the Out-Hausdor�distance sense i�8p 62P 9p0 62P 0 j dist(p; p0) < " and 8p0 62P 0 9p 62P j dist(p; p0) < " : (5)The In-Hausdor� is a good quanti�cation of the di�erence between two solidsand allows topology simpli�cation (especially shell reduction).Although On-metrics are the most used in surface simpli�cation, In-metricshave a clear advantage over the On-metrics: they allow topology simpli�cation(particularly shell reduction) in regions where two sheets of the polyhedronsurface are near one of each other, with independence of their area (see Figures1, 2). Since this circumstance is common in CAD models, specially in objectassemblies, In-metric based approaches may yield to higher compression ratios,and thus, it is a very good error metric for solid simpli�cation problems.Brep-based simpli�cation methods cannot properly handle In-metric bounds;only DPS methods o�er the appropriate framework for that criterion.2.1.3 DiscretizationThe discretization process is the conversion of the input solid P into a multi-resolution family of decomposition representations. The discretization proceedsthrough a space subdivision producing the more accurate model followed byiterative grouping of adjacent cells creating coarser representations. Groupingin the octree case is achieved by pruning of deepest level. Since irregular de-composition schemes are impractical for surface reconstruction purposes, fromnow on we will focus on regular decomposition schemes {either a voxelization oran octree. The notation Ok stands for a 2kx2kx2k division of the space. Everyintermediate representation Ok approximates P within an error bound "k insome metric distance.According to how the discretization is performed, DPS methods can be classi-�ed in top-down and bottom-up methods. In the top-down approach, the user13



provides a resolution parameter which de�nes the maximum resolution of thedecomposition. The discretization step is decomposed in two sub-steps. Thespace decomposition step produces only the more accurate member of the de-composition multi-resolution family. Coarser representations are obtained byiteratively grouping adjacent cells, and thus making intensive use of the coher-ence of the discretization of an object with di�erent resolutions. For instance,simpli�cation in octree space is as simple as removing the last subdivision level.The equivalent simpli�cation in voxel space is the grouping of eight neighborvoxels into a single, greater voxel. Note that in this approach, topology simpli-�cation is distributed between the space decomposition and the grouping steps.The pseudo-code for the top-down discretization step is shown below:function TopDownDiscretization(P : Polyhedron, L: int)OL:=space decomposition(P ,L)for k:=L� 1 to 1 step �1Ok:=group(Ok+1)endreturn O1::LendIn the bottom-up approach, the discretization step is performed by a step-wise re�nement of the previously calculated decomposition model. The �rstiteration generates a very coarse decomposition, e.g. a single cell, and the restof the multi-resolution members are obtained by iteratively re�ning the previousdecomposition. In the case of an octree, each discretization step subdivideseach terminal node once. This process continues until a user-de�ned maximumdepth is reached or, more likely, when the resolution increase does not allow aface reduction with respect to the original polyhedron P . The pseudo-code forthe discretization step in a bottom-up DPS is shown below:function BottomUpDiscretization(P : Polyhedron, L: int)O1:=one cell()for k:=2 to LOk:=re�ne(Ok�1, P)endreturn O1::LendTop-down DPS methods have the possibility of making a better use of thecoherence between successive simpli�cations; more precisely, certain parts of theboundary of the last generated polyhedron, Pk+1 can be used in the generationof the current one, Pk , and thus accelerating the algorithm and reducing thediscrepancy between consecutive representations.The main advantage of bottom-up DPS methods is that, when the re�nementstep is included inside the main loop, no user-de�ned parameters must be pro-vided; the simpli�ed representations are obtained from the coarsest one to the�nest until the face count di�erence with respect to the original polyhedronis not relevant, so it never produces representations with more faces than the14



original polyhedron that would be discarded.2.1.4 ReconstructionThe reconstruction process is the generation of a polyhedral representation PDkfor each member Ok of the multi-resolution family of decomposition models.Since classic decomposition schemes are approximate representations of poly-hedral solids, there exist many ways to interpret the underlying object, e.g.Marching Cubes [LC87]. Surface �tting algorithms and isosurface extractionalgorithms are candidates for the reconstruction step. Since the aim of the DPSmethod is to generate simpli�ed models, the conciseness of the reconstructionalgorithm is often the key ingredient for a good simpli�cation ratio. The re-construction must guarantee that the distance between PDk and P is bounded.This can be accomplished by using an octree as the decomposition model andcon�ning the boundary of PDk to particular cells of the octree.According to the input data of the reconstruction process, DPS methods can beclassi�ed into direct and hybrid methods. A DPS method is said to be direct ifthe only input necessary for its reconstruction step is the decomposition modelof the current iteration. The method is said to be hybrid if it uses both thedecomposition model and the polyhedron generated in the previous iteration(the original polyhedron in the case of the �rst iteration). Hybrid DPS meth-ods require a top-down approach, since the information provided by a coarserpolyhedron is not as useful for reconstruction purposes as the one provided by amore precise one. Hybrid DPS methods may exploit such pre-calculated geom-etry both to accelerate the execution and to increase the smoothness betweensuccessive approximations.2.1.5 Face ReductionThe face reduction is the incremental simpli�cation of each intermediate polyhe-dron PDk by topology-preserving operators. Avoiding application of topologyreduction operators over the B-Rep is the key for producing manifold bound-aries.Reduction operators may range from simple coplanar facets merging up to lossytechniques such as edge-collapsing, vertex removal and vertex clustering tech-niques. The resulting polyhedron Pk has fewer faces than PDk but the sametopology. The octree provides a bound of the surface which is exploited in theface reduction.Unlike other simpli�cation methods in which the geometry reduction is per-formed directly in the polyhedral representation domain, in a DPS methodgeometry simpli�cation is distributed in the discretization, reconstruction andface reduction steps.Furthermore, the topology of the generated polyhedra is independent of thatof the original polyhedron, and it is constructed regarding only the space de-composition model, so topology simpli�cation is achieved in a direct and robustway in the discretization step, instead of applying topology reduction operators15



Figure 6: DPS method 3D example. From left to right: original polyhedron,multi-resolution of octrees (some front grey nodes have been culled to keep blacknodes visible), reconstructed models and �nal multi-resolution.

Figure 7: DPS method 2D example. From left to right: original polyhedron,multi-resolution of spatial decompositions, reconstructed models and �nal multi-resolution.directly to the BRep representation, which frequently produce non-manifoldboundaries [GH97]. 16



2.2 Previous DPS methodsThe DPS framework is both a generalization of previous simpli�cation algo-rithms and an extension of isosurface extraction and surface �tting algorithms tothe solid simpli�cation �eld. The methods presented in [AAB95] and [AAB+96]follow the DPS pattern. In [AAB95] a method is presented which is intendedfor orthogonal surface simpli�cation. The decomposition scheme is a coloredMDCO. The metric used is the On-Hausdor�. The reconstruction step gener-ates an orthogonal solid. No further face reduction is applied.Its main contribution is the ability to create faces of arbitrary topology, evenwith holes. Unfortunately, the results are restricted to orthogonal solids andpresent the problem of the non-regular regions [And98b], i.e., regions composedby terminal grey nodes whose 8 vertices have the same color. These regionsmust be processed and reconstructed separately at the expense of increasingthe number of shells.In [AAB+96] an improved version is presented, producing arbitrarily orientedfaces, but still has the non-regular regions problem.The method presented in [HHK+95] is in fact a single-iteration DPS. The de-composition model is a voxel grid where the color of voxel's center (referredas volume bu�er) is calculated by applying a low-pass �lter over the object'svolume in its neighborhood. The reconstruction is performed with a correctedMC in the �rst version, and with an enhanced, less verbose MC in [aa96].
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3 The Direct DPS methodDirect DPS (Figure 6) is a solid simpli�cation method following the DPS pattern(Figure 5). A maximal division classical octree (Section 3.1) is used as the de-composition scheme; the approximation error is measured using the In-Hausdor�distance (the extension to support the Out-Hausdor� distance is straightfor-ward); the direct reconstruction is a region-based combination of an orthogonalreconstruction (Section 3.5) and an extended DMC (Section 3.6), and the facereduction is based on merging of adjacent faces (Section 3.8). In each iterationthe octree is pruned removing the last level (Figure 6).3.1 Maximal Division Classical OctreeSome DPS methods are based on the voxel representation [HHK+95], [aa96]whereas others [AAB95], [AAB+96] use hierarchical octree representations. Oc-tree representations can be seen as voxel representations with a hierarchy ontop of them. However, octree representations are more exible as they allowinformation being transmitted from the leaves to the parent nodes, as it will bediscussed in next sections.The Maximal Division Classical Octree [BJN+88], denoted as MDCO(P; l), isan octree representation of P , containing White (W), Black (B), Grey (G)and terminal grey (TG) nodes with all TG nodes belonging to the last levell. White nodes correspond to cubic regions completely outside P and Blacknodes correspond to cubic regions completely inside P . Grey nodes correspondto cubic regions containing part of the object boundary and therefore must besubdivided by bisecting each direction into eight octants. These octants arerepresented as the eight son nodes of the initial Grey node. Finally, TG nodesare Grey nodes at the deepest allowed level l of the tree and are not subdivided(see Figure 11 b).The boundary of P is completely contained in the set of TG nodes. From nowon we will refer to sets of nodes using calygraphic letters, i.e. B is the set of Bnodes, and so on.There are several ways to de�ne the cubic region C associated to an octree node.The usual de�nition leads to a disjoint decomposition of the space, where a cellof size l centered in cx; cy; cz includes the points de�ned by the three half-openedintervals given by the equationC = f(x; y; z) j x2 [cx � l; cx + l); y2 [cy � l; cy + l); z2 [cz � l; cz + l)g (6)where the closed endpoint of each interval if de�ned by convention. The borderof this cube is closed in a vertex, three edges and three faces. This de�nitionis used in octrees such as the Extended Octrees [Nav86], where entities suchas vertices must belong to a unique cube. Such an MDCO will be referred asDisjoint MDCO.Another way to de�ne the cube is as follows:C = f(x; y; z) j x2 [cx � l; cx + l]; y2 [cy � l; cy + l]; z2 [cz � l; cz + l]g; (7)18



i.e., by means of three closed intervals. This de�nition leads to a non-disjointdecomposition, and we will show that it yields to a more exible representationof the object's boundary since TG nodes with underlying connected regions are6-connected. Such an MDCO will be referred as quasi-disjoint MDCO. Due toits convenient connectivity properties, the Direct MDCO DPS method is basedon a this kind of MDCO.One of the interesting properties of the MDCO scheme is presented in the fol-lowing theorem:Theorem 3.1 In a MDCO, a B node is never 26-adjacent to a W node.Proof: In a MDCO, the intersection of two 26-adjacent nodes is not empty(they share at least a vertex, edge or face). If a B node were 26-adjacent to aW node, this non-empty shared region would be, at the same time, completelyin and out the polyhedron, so this circumstance can never occur.3.2 Discretization: Border and Interior TG nodesThe discretization consists of the construction of the MDCO from a boundaryrepresentation. This is a well known problem based on a simultaneous spacesubdivision and clipping of the boundary of the polyhedron; the implementationdetails are given in Section 3.9.3. Depending on the selected error criterion, TGnodes can be further classi�ed into border and interior nodes, as follows (seeFigure 11 b, e, h):De�nition A TG node is a border TG node (BTGW ) if at least one of its26-neighbor nodes is a W node.De�nition A TG node is an interior TG node (ITGW ) if none of its 26-neighbor nodes is a W node.The corresponding de�nitions for BTGB and ITGB are obtained by simplyexchanging the role of B and W nodes:De�nition A TG node is a BTGB node if at least one of its 26-neighbor nodesis a B node.De�nition A TG node is a BTGB node if none of its 26-neighbor nodes is aB node.An important property that will be relevant for the reconstruction algorithmis that, given a polyhedron P , only BTGW (resp. BTGB) nodes are relevantfor the generation of an approximating polyhedron Pk ful�lling the In (resp.Out) Hausdor� distances with respect to P , respectively. In other words, byde�nition of the MDCO, the boundary of P spreads into border and interiorTG nodes, but the boundary of Pk only needs to traverse the BTG nodes.The TG nodes of a MDCO have the following connectivity property:Theorem 3.2 Given a one-shell polyhedron, let BT G be the set of BTGW nodesand IT G the set of ITGW nodes of its MDCO representation. Then, BT G hasa unique 6-connected component. 19



Proof: The MDCO can be viewed as a (6,26) 3D digital picture P whose blackpoints are de�ned by the center of the B and TG nodes of the MDCO. Theborder points of the (6,26) digital picture are the black points that are 26-adjacent to one or more white points, so the border points of P correspondexactly to the BTGW nodes (the black points derived from B and ITGW nodesare not 26-adjacent to any other white point). Since the border of a blackcomponent with respect to a white component in a (6,26) digital picture is6-connected [KR89], the set BTGW nodes is 6-connected.Note that previous theorem is not valid for BTGB nodes, and that the MDCOyields to a quasi-disjoint decomposition.Corollary 3.2.1 Each maximally 26-connected subset of the set B [ IT GW isenclosed inside a 6-connected subset of BT GW nodes.Proof: The 26-neighbors of B and ITGW nodes cannot be W by Theorem 3.1and de�nition of ITGW nodes.3.3 Error controlThe three error metrics for general DPS methods are suitable for the DirectDPS. In fact, as we will show in Section 3.5.2, the associated algorithms havea full symmetric structure, and the implementation of the reconstruction andface reduction steps for one of such criteria can be trivially extended to gen-erate polyhedra ful�lling the other two criteria. From now on the discussionis centered on the In-Hausdor� distance, which is a good solid simpli�cationerror metric, and the symmetric de�nitions of the algorithm steps for the othercriteria are speci�ed when required.In order to generate a polyhedron PD from an MDCO O we de�ne a set ofconditions of PD with respect to O in order to guarantee some distance bound.This set of conditions is called a feasibility, F .Here we de�ne several feasibilities, each of them leading to di�erents solids:De�nition Feasibility is said to be homogeneous if it includes at least thefollowing two rules: (a) cubic regions associated to the B nodes of O are com-pletely inside PD and (b) cubic regions associated to W nodes are completelyoutside PD.The following three feasibilities are useful as In, Out and On-metrics criteria,respectively:De�nition The Solid Overow Feasibility SOF is an homogeneous feasibilitythat also includes these two rules: (a) cubic regions associated to the BTGWnodes contain a part of the boundary of P and (b) cubic regions associated tothe ITGW nodes contain a part of the solid.It is called `Solid Overow' because, in some way, TG nodes are treated as Bnodes and thus all TG nodes contain at least a part of the solid.De�nition The Solid Underow Feasibility SUF is an homogeneous feasibilitythat includes these two rules: (a) cubic regions associated to the BTGB nodes20



contain a part of the boundary of P and (b) cubic regions associated to the ITGBnodes contain a part of the `background'.It is called `Solid Underow' because, in some way, TG nodes are treated as Wnodes and thus all TG nodes contain at least a part of the background.Note that both the Overow and Underow feasibilities are weak in a the sensethat ITG nodes are not required to be completely inside/outside the solid thoughthey can be. The immediate advantage of this de�nition against the strong ver-sion (requiring ITGW nodes to lie completely inside the solid) is that the originalpolyhedron P satis�es the proposed feasibilities. This situation is illustrated inFigure 8.
Figure 8: The three reconstructions on the right all satisfy the OOS feasibility,whereas only the two on the right would satisfy a strong OOS feasibility. Inthis case, the optimal reconstruction is the original polyhedron, and a strongfeasibility enforcement will increase the number of faces.De�nition The Solid Balance Feasibility SBF is an homogeneous feasibilitythat includes this rule: cubic regions associated to the TG nodes contain a partof the boundary, thus all TG nodes contain a part of the solid and a part of thebackground.De�nition Given a MDCO O and a feasibility F , a polyhedral object P is saidto be F � feasible with respect to O i� P ful�lls all the conditions of F .A polyhedron P is said to be In-Feasible (resp. Out-Feasible) with respect to aMDCO i� P ful�lls all the conditions of the SOF (resp. SUF) feasibility.De�nition A feasibility F is said to be compatible i� for any valid MDCO O,there exists a polyhedral object PD so that it is F � feasible with respect to O,i.e., 8P 9P 0 j P is F-feasible with respect to MDCO(P ).Now, we show what feasibility should be used to guarantee each of the errorbounds proposed in Section 2.1.2.Lemma 3.2.1 If Pi is In � feasible with respect to MDCO(P; l) then Pi sat-is�es the In-Hausdor� distance with respect to P , where " is p32l , i.e. the lengthof the main diagonal of a terminal node of MDCO(P; l).Proof: In order to satisfy the In-Hausdor� bound with respect to P , Pi mustverify these requirements: (a) for every point Q in P there exists a point Rin Pi such that dist(Q;R) < ", and (b) for every point Q in Pi there exists21



a point R in P such that dist(Q;R) < ". Since Pi is In � feasible, B nodesof MDCO(P; l) are inside Pi; W nodes of MDCO(P; l) are outside Pi, BTGWnodes contain both in and out points of Pi, and ITGW nodes contain in pointsof Pi. Every point of P belongs to a B, BTGW or ITGW node of MDCO(P; l),and thus there exists a point of Pi such that its distance is at most the maindiagonal of a terminal node of MDCO(P; l). Symmetrically, every point of Pibelongs to a B, BTGW or ITGW node, and thus there exists a point of P suchthat its distance is at most ", so Pi ful�lls both conditions.Symmetrically:Lemma 3.2.2 If Pi is Out � feasible with respect to MDCO(P; l) then Pisatis�es the Out-Hausdor� bound with respect to P , where " is de�ned as inLemma 3.2.1.The proof is symmetric to that of the Lemma 3.2.1.Lemma 3.2.3 If Pi is SBF � feasible with respect to MDCO(P; l) then Pisatis�es the On-Hausdor� bound with respect to P , where " is de�ned as inLemma 3.2.1.Proof: Pi's boundary traverses exactly the same set of nodes traversed by P(the TG nodes), and thus the Hausdor� distance is at most ".3.4 Parameterization of Orthogonal ReconstructionsIn this section a parameterized discrete interpolation between the white and theblack boundaries is discussed. The parameterization is based on the concept ofdiscrete o�sets.The White Surface WS(O) is the cuberille surface that separatesW nodes fromthe rest of nodes. Symmetrically, the black surface BS(O) separates B nodesfrom the rest. The following theorem shows the symmetry in the generation ofboth boundaries:Theorem 3.3 WS(O) = BS (O)Proof: WS (O) = faces shared by BTGW and W nodes of O = faces shared byBTGB and B nodes of O = BS (O). The middle equality is consequence of theblack and white role exchange produced by the complement operation.De�nition et � be a fraction of the unit. �0-o�set(WS) is de�ned as WS; fori � 1 �i-o�set(WS) is the result of covering �i�1-o�set(WS) with sub-nodes ofsize �L that lie inside a TG node and are 26-adjacent to �i�1-o�set(WS).Symmetrically, we can de�ne the �-o�sets of BS. The � parameter represents thethickness of the o�set relative to the length L of TG nodes e.g. � = 1=4 meansthat the thickness of the o�set is a quarter of the length of TG nodes. Discreteo�sets can be described using the Minkowski addition operator: the volumeenclosed by �i-o�set(WS) is B [ (T G � (W � O�i)) and the volume enclosed22



by �i-o�set(BS) is B [ (T G \ (B � O�i)), where `�' is the Minkowski additionoperator [Mat95] and On is a cube of length 2Ln centered at the origin, L beingthe length of TG nodes.Note that for some integer m, �m-o�set(WS)=BS and symmetrically, for someinteger n, �n-o�set(BS)=WS. The �-o�sets from the WS and the BS are shownin Figure 9.We can equally weight the contribution of the WS and the BS to obtain a moresymmetric parameterization, introducing the constrained o�sets:De�nition et � be a fraction of the unit. �0-constrained o�set(WS) is de�ned asWS; for i � 1 �i-constrained o�set(WS) is the result of covering �i�1-o�set(WS)with sub-nodes of size �L that lie inside a TG node, are 26-adjacent to �i�1-o�set(WS) and lie outside �i-o�set(BS).The symmetrically we de�ne the i�-constrained o�set of the BS.The i�-constrained o�set(WS) and i�-constrained o�set(BS) are shown in Figure9. Note that there exists some j such as beyond j the constrained o�set is notmodi�ed, i.e. i�-constrained o�set(WS)=j�-constrained o�set(WS) for i � j.Similarly we can de�ne a limit value for the constrained o�sets of the BS.The constrained o�sets de�ne a sequence of parameterized reconstructions start-ing atWS and ending at BS, each of them with � increments: WS=0�-co�set(WS),1�-co�set(WS), ..., j�-co�set(WS), o�-co�set(BS), (o � 1)�-co�set(BS), ..., 0�-co�set(BS)=BS.This sequence is show in Figure 9.
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Figure 9: Parameterized reconstruction based on discrete o�sets: a) Originalpolyhedron and its MDCO; b) WS and i1=4-o�sets of WS; c) BS and i1=4-o�setsof BS; d) WS and i1=4-co�sets of WS; e) BS and i1=4-co�sets of BS.23



Symmetrically, negative o�sets can be de�ned from the WS, providing the nec-essary framework for creating representations completely bounding the inputsolid.3.5 The Orthogonal ReconstructionHere we propose a Direct reconstruction which is based on node neighborhoodinformation and which creates a two-manifold, orthogonal solid whose faces havearbitrary complexity and may have holes. This method is an improvement of theorthogonal reconstruction method presented in [AAB95]. Particularly, our pro-posal does not have the non-regular regions problem discussed in Section 1.2.3,which leads to disconnected regions even when the corresponding regions wereconnected in the original polyhedron, and which must be treated separately;our reconstruction method using the In-Hausdor� bound never increases thenumber of connected components of the solid.The main theoretical concepts involved in the reconstruction step are presentedbelow (see Figure 11 c, i):3.5.1 De�nition of the orthogonal solidsDe�nition iven a MDCO O, the associated Orthogonal Overow SolidOOS(O)is de�ned as the solid enclosed by 1=31-o�set(WS).De�nition iven a MDCO O, the associated Orthogonal Underow SolidOUS(O) is de�ned as the solid enclosed by 1=31-o�set(BS).3.5.2 Construction of the orthogonal solidsDe�nition The octant associated to a TG node can be partitioned, by meansof 3 pairs of orthogonal planes, in 27 equal-sized sub-cubes, called small cubes.See Figure 10.
Figure 10: A BTG node with its 27 small cubes.De�nition A small cube is said to be black if it is not 26-adjacent to a W node,i.e., its distance to the white boundary is greater than l=3, being l the length ofTG nodes.De�nition A small cube is said to be white if it is 26-adjacent to a W node,i.e., its distance to the black boundary is less than l=3, being l the length of TGnodes. 24



Now we de�ne the OOS and OUS in terms of small cubes and other nodes ofthe MDCO:De�nition Given a MDCO O, the associated Orthogonal Overow Solid OOS(O)can be computed as the closed union of the cubic regions associated to (a) Bnodes, (b) ITGW nodes and (c) the black small cubes of BTGW nodes.De�nition Given a MDCO O, the associated Orthogonal Underow SolidOUS(O) can be computed as the closed union of the cubic regions associated to(a) B nodes and (b) the white small cubes of BTGB nodes.Although On-metrics are not as useful as In-metrics, in order to be exhaustivewe include the Orthogonal Balanced Solid in our discussion: the OBS(O) isthe solid generated by the algorithm presented in [AAB95] using the white-proximity criterion.A simple 2D example illustrating these concepts is shown in Figure 11.3.5.3 Properties of OOS and OUS solidsFollowing we list some properties related to the OOS and OUS:Symmetry of OOS and OUSThe following theorem justi�es the parallel treatment of the In- and Out- volumeversions in our discussion, since the implementation of the Direct MDCO for anyof them can be trivially adapted to generate polyhedra for the other criterion,by simply inverting the B and W nodes of the MDCO:Theorem 3.4 OOS(MDCO(P; l)) = OUS(MDCO(P; l))Proof: The proof is similar to that of the symmetry of WS with respect to BS.Corollary 3.4.1 OUS(MDCO(P; l)) = OOS(MDCO(P; l))Containing relationshipsThe following theorem establishes the containing relationship between the vol-ume of each orthogonal solid:Theorem 3.5 B � OUS(MDCO(P; l)) � OBS(MDCO(P; l)) � OOS(MDCO(P; l)) �B [ T GObviously, B � P � B [ T G.Geometric propertiesThe boundary of each type of orthogonal solid is con�ned to di�erent sets ofTG nodes. Bound(X) denotes the boundary of solid X .25
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Figure 11: (a) An initial 2D polyhedron with two shells; (b) MDCO with TGnodes shaded; (c) WS and BS; (d) the OBS (e) octree with B, W, BTGW nodes(light) and ITGW nodes (dark); (f) idem with BoundW highlighted; (g) theOOS (h) octree with B, W, BTGB nodes (dark) and ITGB nodes (light); (i)idem with BoundB highlighted; (j) the OUS.Theorem 3.6 Nodes(Bound(OOS(O))) = BT GW (O)Theorem 3.7 Nodes(Bound(OUS(O))) = BT GB(O)Theorem 3.8 Nodes(Bound(OBS(O))) = T G(O)Proof: It comes directly by de�nition of OOS, OUS and OBS.Corollary 3.8.1 The area of Bound(OOS(O)) and Bound(OUS(O)) are lowerthan that of Bound(OBS(O)). 26



The following theorem is fundamental because it bounds the discrepancies be-tween proposed solids:Corollary 3.8.2 Nodes(Bound(OOS(O) xor OUS(O))) = IT GW [ IT GB �T GThat is, the nodes containing the symmetric di�erence are restricted to a preciseset of ITG nodes. In fact, the non-regular nodes referenced in [AAB95] are asubset of IT GW [ IT GB .Since we are interested in solid simpli�cation, the Direct MDCO uses a OOSreconstruction. The OOS and OUS have a very interesting property which isthe basis of the further face reduction:Theorem 3.9 All OOS vertices have degree three or six.Figure 12 shows the only �ve possible vertex con�gurations of an OOS, whichare resumed in the table below:
V1 V2 V3V2

____
V1Figure 12: The �ve vertex con�gurations of an OOS. From left to right: V 1,V 1, V 2, V 2 and V 3.Vertex Type Degree Edge Con�guration (X=convex, V=concave)V 1 3 X, X, XV 1 3 V, V, VV 2 3 X, V, XV 2 3 V, X, VV3 6 X, V, X, V, X, VNote that the �rst two con�gurations are the complement one of each other,and the same applies for the second couple of vertex con�gurations.Minimum Degree TransformationAs noted above, all OOS vertices have degree three except the V 3 vertex, whichhas degree six. However, the V 3 vertex can be easily splited into two vertices,resulting in a V 2 and a V 2 pair, as shown in Figure 13, where the new V 2 vertexhas been moved along one of the concave edges of V 3.De�nition minimum degree solid is a polyhedral solid whose vertices havedegree three (i.e. three incident faces).If all the V 3 vertices of the OOS are splited, the resulting solid is a minimumdegree solid (see Figure 14). There are three basic properties of minimum degreesolids which will be key ingredients in the face reduction step (see Figure 14):27
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������������������Figure 13: Splitting of a V 3 vertex into a V 2 and a V 2.Theorem 3.10 Given a minimum degree solid P , if two faces f1 and f2 of Pare incident to the same vertex, then f1 and f2 must be adjacents, i.e. theyshare a common edge.Theorem 3.11 Given a two-manifold minimum degree solid P , if two faces f1and f2 of P are adjacent to a common edge (v1,v2), then there exists exactlytwo faces fv1 and fv2 in P such that both are adjacent to both f1 and f2, fv1incides to v1 and fv2 incides to v2.Theorem 3.12 The dual graph of a minimum degree solid is the graph of atriangulation.Properties of the boundary of OOSThe following series of properties are concerned on distance bounds betweendi�erent parts of the boundary of the OOS, and provide the basis for simpli�edself-intersection tests which are required after reduction operations (see Figure15 a, b):Theorem 3.13 Given two 6-adjacent BTGW nodes sharing a node face f , theboundary of the OOS stabs both nodes, and the interior of the OOS stabs f .Proof: The boundary of the OOS stabs all BTGW nodes by de�nition. Theshared face f does not belong to the BoundW , and hence al least two smallcubes on both sides of f must be black.As a result of the previous theorem, several orthogonal structures cannot appearin an OOS (see Figure 15 c).Theorem 3.14 Given a face f of the OOS, the nearest face in the directionof the normal vector of f is at least at 53 l and the nearest face in the oppositedirection is at least at 13 l, l being the edge's length of BTG nodes.Corollary 3.14.1 Given a face f of the OOS, for all concave sequence feigof edges of f , dist(ei; ej) >= 53 l provided that with ji � jj > 1. For convexsequences, dist(ei; ej) >= 13 l for ji� jj > 1.See Figure 15 d-h for examples of valid and invalid OOS.28
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Figure 14: Minimum degree solids. Top: The four vertex con�gurations ofminimum degree solids (faces do not need to be orthogonal). Middle: a) Avertex of degree greater than three, which do not satisfy Theorems 3.10{ 3.12;b) The same vertex with its dual model; c) The dual model of a non-minimumdegree solid is not a triangle mesh. Bottom: d) An orthogonal example ofminimum degree solid; e) A non-orthogonal example of minimum degree solid.Ensuring error boundsTheorem 3.15 OOS(O) is In-feasible with respect to O.Theorem 3.16 OUS(O) is Out-feasible with respect to O i� O contains at leasta B node.Theorem 3.17 OBS(O) is On-feasible with respect to O.Corollary 3.17.1 OOF , OUF and OBF are compatible.Note: The OUS of some MDCO may be a null, i.e. volume 0, solid whencard(B) = 0.3.6 Discretized Unambiguous Marching CubesSome simpli�cation methods based on MC [LC87] use vertex colors to extract apolyhedral surface from a 3D picture. Our approach uses the 26-neighborhoodof TG nodes instead of vertex colors. Meanwhile, vertex color information can29



1
-
3

l

5
-
3

l

e

ba c

d f

g hFigure 15: Geometric properties of OOS: a) 6-adjacent BTG nodes, with smallcubes in dotted lines; b) minimum number of black small cubes in two 6-adjacentBTG nodes; c) impossible structure in an OOS; d) the OOS surface in thenormal direction of a face is at least at 53 l distance, and in the opposite direction,at least at 13 l; e) and f) impossible OOS; g) another example of valid face foran OOS; h) another example of invalid face for an OOS.be derived from the MDCO such that the reconstruction of the resulting 3Ddigital picture is topologically equivalent to an OOS:Theorem 3.18 Given a MDCO O, there exists a 3D digital picture P suchthat the extraction of an isosurface from P is non-ambiguous and generates asurface S topologically equivalent to OOS(O) enclosing an In-feasible volume,provided that the extraction guarantees that all stabbed edges, and only them,are intersected by S.Proof: T he proof is based on a constructive method to obtain the 3D digitalpicture P from the MDCO O, called induced grid. The grid points of P arede�ned as the corners of the octants resulting by subdiving once the terminalnodes of O. A grid point v of P is white if v has contact with a W node of O;otherwise it is black. If neighbor grid points of P are arranged into voxels, asusual in isosurface extraction, the only possible con�gurations are the planar,non-ambiguous classes [And98a], so extraction methods such as MC generate aclosed surface. It is straightforward to see that this surface S is topologicallyequivalent to OOS(O), and that limits an In-feasible solid.The DMC [MSS94] is an extension of MC based on a discretization of the planesin 13 di�erent orientations, so coplanar triangles can be merged forming largefaces. Given a MDCO O, the Unambiguous Discretized Marching Cubes solid,30



UDMC, is de�ned as the polyhedron generated by the DMC algorithm from thegrid induced by O. The UDMC only uses the non-ambiguous, planar classesof DMC and creates In-feasible, valid solids. The only possible con�gurationsof voxels in P are those numbered 1, 1, 2, 2, 5, 5, 8 and 9 in Figure 4 (plusrotations and symmetries).
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Figure 16: Orthogonal reconstruction vs. Marching Cubes reconstructions: a)MDCO with B, W, BGT and ITG nodes; b) non-ambiguous 3D digital pictureobtained by subdivision; c) reconstruction obtained by MC-like from picture b;d) orthogonal reconstruction from the MDCO; e) ambiguous 3D digital pictureobtained by identifying grid points with center of MDCO nodes; f) and g) twopossible reconstructions from picture e.An example of the digital picture de�ned above is shown in Figure 16, where sev-eral reconstructions are compared: the orthogonal reconstruction OOS obtainedfrom the MDCO, a MC-like reconstruction from the non-ambiguous digital pic-ture constructed by the method presented above, and the two possible inter-pretations obtained with a MC-like reconstruction from the ambiguous digitalpicture obtained by simply generating the grid points from the center of MDCOterminal nodes.3.7 Direct SolidDirect DPS uses a mixed reconstruction combining the OOS and the UDMCin a shell-basis producing the Direct Solid. Reconstruction selections takes intoaccount the �nal number of vertices, which can be computed by inspection of theoctree and its induced digital picture, respectively. The Direct Solid keeps themain properties of OOS and UDMC: it is two-manifold and In-feasible. Regionscoming from the OOS have the minimum degree property.31



3.8 Face reductionThe direct solid obtained after the reconstruction step has a simpler topologybut many planar regions have an staircase-like reconstruction, so further sim-pli�cation should be done. The basis of the face reduction step is based on thelow degree of the OOS vertices and the application of a very simple reductionoperator which always reduces the face count and never increases the degree ofthe vertices.3.8.1 Mesh Simpli�cation in the Dual ModelAs stated above, one of the properties of the OOS is that it can be easilyconverted to a minimum degree solid by splitting all its V 3 vertices. The interestfor a 3-degree solid comes from Theorem 3.12: the dual model [Man88] of aminimum degree solid is a triangular mesh. Thus we can take pro�t of theextense literature on mesh simpli�cation, specially the di�erent operators overtriangle meshes, in order to �nd a suitable operator for the face reduction ofminimum degree solids.Most of the surface simpli�cation methods deal with triangulated surfaces be-cause of the simplicity of its incidence relations [And98b]. The �rst outcomeof this fact is that reduction operators become simpler. For instance, we canmodify the coordinates of a vertex in a triangle mesh without producing anon-planar face, fact that does not hold on non-triangular models. The dualequivalent of vertex displacements is the modi�cation of face orientations. Sinceall the vertices of a minimum degree solid have degree three, the positions ofthe vertices of the modi�ed face can be calculated by intersecting their threeincident planes. Note that three non-parallel planes always intersect at a point,but the intersection of more than three non-parallel planes is usually empty.Figure 17 shows the topology-preserving mesh operators discussed in the Sec-tion 1.2.2 and their e�ect in the dual model. Note that the vertex-clustering isnot included because it does not preserve topology. A very important propertyis that, since all mesh operators are closed (the result is still a triangle mesh),their duals preserve the degree of vertices. The description of the duals of themesh operators follows:� face-mergeThe face merge is the dual of the vertex-removal and the edge-collapseoperators. The face merge takes as input parameters the two adjacentfaces to be merged. Both faces are replaced by a single face, losing theshared edge and its shared vertices. The only computed parameter is theplane for the new face, which in fact determines the position of its verticesby intersecting its incident faces. The operator reduces the number of facesby one, the number of edges by three and the number of vertices by two.Except in degenerate cases which can be easily identi�ed by inspection ofthe incidence graph, the face-merge operator preserves the topology of themesh. To avoid self-intersections, additional geometric tests are required.The face-merge has been extensively used with coplanar faces in surfacesimpli�cation literature [KCHN91], [MSS94].32



� vertex-removal (multiple face-merge)The multiple face-merge is the dual of the face-removal, and it can bereplaced by a sequence of two face-merge. The multiple face-merge takesas input parameters the vertex to be removed (or, equivalently, the threefaces to be merged). The three faces are replaced by a single face, losingtheir shared edges and their shared vertex. The only computed parameteris the new plane, which in fact determines the position of its vertices byintersecting its incident faces. The operator reduces the number of facesby two, the number of edges by six and the number of vertices by four.Except in degenerate cases which can be easily identi�ed by inspectionof the incidence graph, the multiple face-merge operator preserves thetopology of the mesh. To avoid self-intersections, additional geometrictests are required.� cycle ipThe cycle ip is the dual of the edge-ip. The cycle ip takes as inputparameters the edge to be ipped. Given the cycle of four faces de�nedby the edge, the edge is removed and a new edge is introduced so thatthe pair of adjacent faces is the opposite pair (see Figure 17 d). The areno computed parameters. The operator preserves the number of faces,edges and vertices. To avoid self-intersections, additional geometric testsare required.� face-adjustmentThe face-adjustment is the dual of the vertex-displacement. It takes asparameter the face to be adjusted. The only computed parameter is thenew plane equation. As a result of the modi�cation of the support plane,the vertices of the face must be recalculated by intersecting its incidentfaces. Any of the parameters of the plane (A;B;C;D) can be changed.Note that this vertex re-calculation can be done only in a minimum-degreesolid; if more than three faces incide on a vertex, their intersection will beprobably null.The question that arises now is which of these mesh operators is more suitablefor reducing the face count of our non-triangular polyhedron. We are looking fora reduction operator � having these properties: a) � must preserve the topologyb) � must be easy to implement; c) the iterative application of � must reduce theface count as much as possible; and d) � must modify a low number of faces ata time, since each re-oriented face can intersect a non-BTG node and invalidatethe operation.We have realized that the face-merge, which is the dual of the most pop-ular mesh simpli�cation operators, vertex-removal and edge-collapse [RR96],[Gue96], [AS96], [Hop96], [Hop97], ful�lls the previous criteria and can be easilyimplemented on minimum degree solids. The face-merge operator (see Figure18) replaces two faces sharing an edge with a single face. In the operation, thenumber of faces and edges are decreased by one, and the number of vertices isdecreased by two. The edge-collapse operator preserves the mesh topology, andso does its dual, and it does not modify the degree of the involved vertices.33
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eFigure 17: Dual operators. First column: triangle mesh and dual model beforeoperator; second column: triangle mesh and dual model after operator; thirdand fourth column: example of the dual operator in a minimum degree solid.a) vertex removal, b) edge-collapse, c) face-removal, d) edge-ip and e) vertex-displacement.
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��Figure 18: Edge-collapse and its dual, face merge.The face-removal is equivalent to two face-merge operators so it does not addreduction power; however the face-removal involves three faces at a time, andhence it decreases the chances for a valid replacement, so we do not use directlythis operator in our face reduction step.The dual of the edge-ip does not reduce the face count, but can improve the�tting of the solid being simpli�ed with respect to the OOS. However, in thecontext of our DPS method, a closer �tting to the OOS does not imply a closer�tting to the original polyhedron, and using the cycle-ip to improve the �tting34



with respect to the original solid is both complicated and ine�cient. Hence, thecycle-ip operator is not considered in our face reduction. However, the otherincidence-preserving operator, the face-adjustment, can be used in conjunctionwith the face-merge to �nd out a new plane generating a feasible polyhedron.3.8.2 Face reduction based on face-merge operatorThe face reduction step consists in the iterative application of the face-mergeoperator, starting from the direct solid and preserving both the minimum degreeand the In-feasibility of the polyhedron being simpli�ed. This operation isrepeated until no more faces can be merged without violating the In-feasibility.Thus the resulting polyhedron, which has a 2-manifold boundary topologicallyequivalent to the direct solid but with fewer faces, satis�es the In-Hausdor�bound within an " equal to the length of the main diagonal of the TG nodes ofthe MDCO.The face reduction algorithm is outlined below:procedure FaceReduction(P : Polyhedron)while there faces to be merged do(f1,f2):=select two faces(P )(a,b,c,d):=compute new plane(P ,f1,f2)if feasible then merge faces(P ,f1,f2,a,b,c,d)endThe face-merge operator, which is graphically shown in Figure 18, take as pa-rameter the pair of faces being merged. From now on the following notation willbe used (see Figure 19). The faces being merged are referred as f1 and f2. Lete be the common edge, and v1 and v2 its extreme vertices. Let V be the set ofvertices of f1 and f2, excluding v1 and v2. Let f3 be the third face containing v1(it is unique since all vertices have degree 3) and f4 is the third face containingv2. Let F be the set of faces inciding in some vertex of V , excluding f1 and f2.
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Figure 19: Face merge notation.First step: selection of facesThis function selects a pair of neighbor faces to be merged. At this stage, thereare a few quick tests that can prune some face pairs which would not create afeasible solid. Given a pair of faces f1, f2, the following conditions are checked:35



adj (f1; f2) (8)nvert(f1) + nvert(f2) � 7 (9)nvert(f3) � 4 andnvert(f4) � 4 (10)L3 62 Nodes(f1) [Nodes(f2) (11)O2 62 Nodes(f1) [Nodes(f2) (12)Conditions 8{10 are inherent incidence constraints to the face merge operatorin order to preserve validity. Equation 8 says that f1 and f2 must share exactlyone edge. Equation 9 guarantees that the new face will have at least threevertices (seven minus two times the two vertices that are removed). Equation10 guarantees that faces f3 and f4 will have at least three vertices.Conditions 11 and 12 are necessary but not su�cient for a successful face mergewhich are explained below. A subset S of TG nodes is linearly separable i�there exists a plane intersecting the interior of all nodes in S. If such a planedoes not exist, it is impossible to create a face stabbing all nodes in S, andhence the faces inside S cannot be merged together maintaining the feasibilityof the solid.The L3 and O2 are two common linearly non-separable con�gurations (see Fig-ure 20). If a set of TG nodes contains one of such con�gurations, then it islinearly non-separable. Since both Nodes(f1) and Nodes(f2) must be linearlyseparable, any linearly non-separable subset ofNodes(f1)[Nodes(f2) must con-tain at least one node inNodes(f1)\Nodes(f2), which is a superset ofNodes(e).Hence, the presence of L3 and O2 con�gurations in Nodes(f1)[Nodes(f2) canbe determined walking along Nodes(f1) \Nodes(f2) nodes (Equations 11 and12).
b da cFigure 20: Linearly non-separable regions: a) L3; b) O2; c) linearly non-separable set containing an L3 subset; d) linearly non-separable set containingan O2 subset.Second step: computing the new planeThe new plane of f will determine not only the orientation and position ofthe new face, but also the coordinates of all vertices in V . There are severalstrategies to compute the new plane, which are shown in Figure 21. Eachstrategy is based in one of these point sets:36
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g hFigure 21: Computing new plane for a face-merge. On the left: 2D examples;on the right, the same examples in 3D. a) faces to be merged; b) Nodes(f1) [Nodes(f2); c) points in V ; d) plane calculated by regression of V points; e)middle point of stabbed edges; f) plane calculated by regression of middle pointof stabbed edges; g) positive and negative points; h) maximal points of convexhull of negative points and minimal points of convex hull of positive points;since both convex hulls do not intersect, positive and negative points are linearlyseparable.� Polyhedron vertices in VAs de�ned above, V is the set of vertices of f1 and f2, excluding v1 andv2, and hence they provide a good starting point for the estimation of thenew plane.� Middle point of stabbed edgesStabbed edges are edges of nodes in Nodes(f1) [ Nodes(f2) such thattheir four incident nodes belong to Nodes(f1) [Nodes(f2), so they mustbe stabbed by the new plane and hence they can be used to compute thenew plane.� Positive and Negative pointsPositive points are corners of the stabbed edges in Nodes(f1)[Nodes(f2)such that they are outside the polyhedron being simpli�ed. Symmetrically,37



negative points are the corners inside the polyhedron. In order to befeasible, to plane of the new face must separate the positive from thenegative points. That is the well know problem of separability of two setsof points, in this case on a grid. One well-known result in this �eld isshown in the following theorem [SW70].Theorem 3.19 Two sets of points are linearly separable i� their convex hullsdo not intersect.Both the set of vertices in V and the middle points of stabbed edges admit anaverage plane or a regression approximation. The last strategy, based on sepa-rability of positive and negative points, uses a linear programming method. Theseparability approach is the only one that always returns a separating plane ifsuch a plane exists. The computation of the separability plane is a linear pro-gramming programming problem involving four unknowns (those of the equationof the plane) and at most n linear constraints, n being the number of positiveand negative points. The number of constraints can be greatly reduced by pre-computing and storing the convex hulls of the positive and negative points.This separating plane can be computed in optimal O(n) time using the linearprogramming technique presented in [Meg83].None of the previous strategies for the new plane computation, including the sep-arability approach, guarantees a feasible replacement, since although the planemay stab all nodes, the nodes intersected by the actual face after computing itsedges might be di�erent to Nodes(f1) [ Nodes(f2). However, it is possible torepresent these additional conditions as a set of linear constraints. There arefour unknowns corresponding to the four coe�cients of the plane, (A,B,C,D).To guarantee that the plane separates the positive and negative points, theremust be a restriction with the formxiA+ yiB + ziC +D � 0 (13)for each positive point (xi,yi,zi) and a restrictionxiA+ yiB + ziC +D � 0 (14)for each negative point. To guarantee that the edges of f are contained in edgenodes, there must permutations of:(�B0y0 � C 0z0 �D0)A+ (A0y0)B + (A0z0)C +A0D � 0 (15)where (A0,B0,C 0,D0) is the equation of the plane of an adjacent face f 0 and(x0,y0,z0) is the origin of a node in Nodes(f) \Nodes(f 0). To guarantee thatthe vertices of f lie in the same nodes than the vertices of f1 and f2, there mustbe permutations of:(x0vx�x0�xminvx)A+(x0vy�x0�xminvy)B+(x0vz�x0�xminvz)C�D � 0(16)where for each edge containing a vertex in V , (x0,y0,z0) is a point of the supportline of the edge, (vx; vy; vz) is a vector in the direction of that line and xmin is thex-coordinate of the origin of the node containing the vertex at the intersection38



of f with that edge. Similarly, we can de�ne restrictions for xmax, ymin, ymax,zmin, zmax. This linear programming problem can be solved in optimum O(n)time [PM85] using method proposed in [Meg83]. Unfortunately, the number ofconstraints is O(n) where n is the number of nodes in Nodes(f).We have found that computing the normal vector of the plane as the average ofpoints in V and computing D with a linear programming method is quite fastand generates very good results, and hence this is the approach adopted in ourimplementation.Third step: checking feasibilityBefore committing the operation, several simple tests should be performed inorder to guarantee the OOS-feasibility preservation.The edges of the new face are generated by merging the ciclycally ordered ver-tices in V . The coordinates of vertices in V are calculated by intersecting itsthree incident faces. If these planes do not intersect in a point, or if the inter-section point does not belong to a TG node, the face merge is not feasible.In order to guarantee that the new solid is In-feasible, the face merge must ful�llthese two conditions: a) Nodes(f1) [Nodes(f2) = Nodes(f), i.e. the new faceis contained and intersects exactly the same set of nodes than the merged faces,and b) the resulting solid has a non-sel�ntersecting boundary, i.e., the faces inF [ ffg {those whose vertices have changed{ do not intersect other faces inNodes(f).The former condition can be easily checked by a rasterization of f , but there isno need to evaluate it when any of the following conditions is true: a) the planeof f has been computed by the linear programming approach described in theprevious section; b) the distance of the new plane to the vertices v1 and v2 isgreater than ".The latter condition can be checked looking for self-intersections of f with theothers faces. Note that, although more faces have also changed their geometry(those in F ), their vertices still lie in the original plane, so any self-intersectionof a face in F must be caused by their modi�ed edges, which also belong to f , sotesting self-intersection for f is su�cient. Only the faces intersecting Nodes(f)can intersect f , so the self-intersection test simply looks for intersections betweenedges in Nodes(f) and f .Fourth step: merging facesThe incidence changes of a face merge in the BRep model are described below:� The faces f1 and f2 are removed.� The edge e is removed. Since the boundary is two-manifold, each edge isshared by exactly two faces.� The vertices v1 and v2 are deleted, since they have degree three beforeoperator's application. 39



� A new face f is introduced, whose plane was calculated in the previousstep. Its edges and vertices are computed as described in the previoussections.� The faces f3 and f4 lose one vertex.Note that the vertex coordinates recalculation exploits the minimum degreeproperty of the solid. The V 3 split operation is performed only when needed,i.e., when one or more vertices in V [ fv1; v2g are V 3.A more complicated face-merge is shown in Figure 22 which, depending on theunderlying TG node size, would not be feasible.
Figure 22: Top left: polyhedron before face-merge of stabbed faces; bottom left:una�ected vertices (black circle), vertices to be recalculated (white) and verticesto be removed (cross); right: polyhedron after face-merge.The step by step simpli�cation of an OOS including V 1, V 2 and V 3 verticesinto a tetrahedron is shown in Figure 23. In Figure 24, a single face is derivedfrom a collection of V 3 vertices.
Figure 23: Face-merge Simpli�cation of a OOS with V 1, V 2 and V 3 verticesinto a tetrahedron.

Figure 24: Simpli�cation of a large V3 region.
40



3.8.3 Extended SOF-feasibilityThe Direct DPS uses the octree mainly for two purposes: in the reconstructionstep, the octree provides the �nal topology of the simpli�ed solid and an initialgeometric description; in the face reduction step, the octree is used as a bound ofthe simpli�ed solid to guarantee the error bound measured with the In-Hausdor�metric. The SOF feasibility, de�ned in Section 3.3, forces each new face tointersect exactly the same set of nodes intersected by the faces being merged,and guarantees that each polyhedron of the multi-resolution family ful�lls theIn-Hausdor� bound within " = p32l , l being the depth of the octree. In thissection we will show that this feasibility is too much restrictive, in the sensethat it keeps many pairs of faces from being merged even when there exists areplacing face inside a tolerance p32l . We will show that the SOF feasibility canbe easily and e�ciently relaxed to allow most of such face merges, and thusincreasing the face reduction, at the only expense of a little increment of thetolerance.The main idea is to adapt the shape of the octree-bound in order to approximatebetter the bound induced by the Hausdor� distance around the original faces.In the SOF-feasibility, the octree bound corresponding to a pair of faces f1,f2 is the orthogonal region composed by the set of nodes intersected by thefaces, Nodes(f1)[Nodes(f2). Figure 25 a-d compares the octree bound of oneand two faces, with respect to their respective Hausdor� bounds. Although themaximum error of the new face with respect to the original ones is the samewithin both bounds, the octree bound is clearly more restrictive: the two facesof Figure 25 c cannot be merged ful�lling the octree bound while they can bemerged using the Hausdor� bound.Unlike the Hausdor� bound, the octree bound is not symmetric with respect tothe involved faces and, with the exception of orthogonal coplanar faces, it is notuniform. As stated before, a necessary condition for a succesfull face merge isthat the convex hulls of the positive and negative points do not intersect. Letdmin be the minimum distance between both convex hulls. Two faces f1, f2 arecandidates to be merged i� dmin of their octree bound is not zero. Figure 25e, h shows the upper and lower convex hulls of one and two faces, respectively.In the former case, dmin is positive, so the positive and negative points arelinearly separable (e.g. by the original face), but note that this distance is farless than the maximum error. This restriction in the freedom of modifyingthe new face becomes crucial when the new plane separate both point setsbut the actual face do not intersect exactly Nodes(f1) [Nodes(f2) due to theintersection of adjacent faces, and because dmin approaches very rapidly to zeroas the resolution increases (Figure 25 k)|a few discrete face orientations areexceptions, such as orthogonal faces. In the latter case, Figure 25 h, dmin iszero so the two faces will not be merged, although there are many replacingfaces inside the Hausdor� bound.The Extended SOF feasibility, XOF, is a relaxation of the SOF-Feasibility thatovercomes most of its problems at the expense of a little tolerance increment,allowing higher simpli�cation rates. Given two faces f1 and f2 being replacedby f , the condition of feasibility Nodes(f1) [ Nodes(f2) = Nodes(f) of theoriginal feasibility is replaced in the extended feasibility by the following rules.41
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h iFigure 25: Extended feasibility: a) octree-bound of a face; b) Hausdor� boundof a face; c) octree-bound of two faces; d) Hausdor� bound of two faces; e) upperand lower convex hull of positive and negative points; f) extended octree bound;g) octree-bound with nodes �fty percent larger; h) octree-bound of two faceswith dmin = 0; i) extended octree-bound with dmin = "; j) the octree-boundwith nodes �fty percent larger still has dmin = 0; k) dmin rapidly approacheszero as resolution or face size increase.Let Nold be Nodes(f1)[Nodes(f2), and let Nnew be Nodes(f). If Nnew = Noldthen the face is feasible. If not, the following further tests are made. Let Dnewthe set di�erence Nnew � Nold, and symmetrically, let Dold the set di�erenceNold � Nnew. For each node n in Dnew, n must have a 6-adjacent in Nold;otherwise the merge is not feasible. Furthermore, n is divided once resultingeight son nodes. For each son s intersected by f , let Adjn be the three 6-adjacentnodes of s that lie outside n. If n is B, all nodes in Adjn must belong to B[Nold.If n is W, all nodes in Adjn must belong toW[Nold. In both cases, at least onenode in Adjn must belong to Nold; otherwise the merge is not feasible. Finally,for each node in Dold, there must exist a 26-adjacent son s in Dnew intersectedby f .The extended octree-bound is shown in Figure 25 f. Note that dmin, which wasnear zero in the octree bound, now is greater than ". Now, the two faces ofFigure 25 c can be merged (Figure 25 i).The extended feasibility captures the most important advantages of the OOS-feasibility: a) it guarantees a tight bound of the error, which is 1:5" instead of", i.e., 3p32l+1 ; and b) each B and W node in Dnew is used exclusively by a singlesheet of the surface. This guarantees that the old test for self-intersections is still42



valid in the extended feasibility approach. The extended feasibility has theseextra properties not found in the OOS-feasibility: a) the shape of the extendedoctree-bound is closer to the Hausdor� bound than the original octree-bound(Figure 25 b, f); b) the extended octree-bound is more symmetric than theoriginal octree-bound; c) in most cases dmin of the extended octree-bound isfar greater than dmin of the original octree-bound. The main outcome of theextended feasibility is that it increases the number of face merge operations andhence alows the generation of more compact simpli�cations.Although the maximum error is incremented a half, it is important to notice thatthe extended octree-bound is very di�erent to the octree-bound correspondingto nodes 50% bigger ( Figure 25 g, j). Note that increasing the size of the nodesalways increases the maximum error but does not necessarily increase dmin, asit is shown in Figure 25 j, where two faces cannot be merged using the 50%bigger octree-bound but can be merged using the extended octree-bound.The extended feasibility improves the �tting to the Hausdor� bound by sub-dividing some nodes once more. Subdividing more times can improve this �t-ting, but we prefer only one subdivision because: a) it guarantees that no self-intersections appear inside B and N nodes, since each node is used exclusivelyby a connected sheet of the surface; b) it is more e�cient; since f intersectsthe B/W node, the classi�cation of its center with respect the support planeof f can be used to know which octants are intersected by f ; c) the relativeincrement of dmin achieved with further subdivisions is very small.3.9 The Direct DPS algorithm implementationIn this section, the implementation of the algorithm for the Direct MDCO DPSbased on the In-volume criterion is presented. It uses a special data structurethat links the boundary representation of a polyhedron with the set of TG nodesin its MDCO representation: the TGMap.3.9.1 The TGMAP Data StructureA TGMap is a data structure involving the set of TG nodes of an MDCOtogether with the BRep of a polyhedron. More precisely, a TGMap is a vector<Brep; MDCO; LNodes; LFaces> where:BRep is the boundary representation of a polyhedron. It contains the relationsF ! V plus the relation V ! F i.e., the incident faces to a vertex. Thecomplexity of the polyhedron is unrestricted. It may have many shells, arbitrarygenus and faces with holes of arbitrary complexity.MDCO is the quasi-disjoint MDCO representation of the polyhedron.LNodes and LFaces are mappings between the BRep and the MDCO. LNodescontains, for every face of the BRep, a list of (pointers to) the TG nodes tra-versed by that face. LFaces contains, for each TG node, a list of (pointers to)the faces of the BRep traversing that node.43



3.9.2 Implementation OverviewThe algorithm is graphically presented in Figure 26.
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Figure 26: General simpli�cation algorithm. TGMk contains the relationsLNodes and LFacesThe algorithm of each iteration is graphically presented in Figure 27, whereTGM includes the relations LNodes and LFaces.
TGM k

D

Pk
D

TGM
k-1

Pk-1

Prunning

D
ir

ec
t r

ec
on

st
ru

ct
io

n

O
k-1

Ok TGM k Pk

Face reduction

O
pt

io
na

l M
er

ge

Figure 27: Loop iterationThe �rst polyhedron of the output multi-resolution family is the initial polyhe-dron P . Then the MDCO representation of P , Ok, is generated by the Gen-erateTGMap function. The relations LNodes and LFaces are obtained as asub-product of the octree construction process in the GenerateTGMap func-tion.After the �rst Ok has been obtained, the algorithm enters in a loop where ineach iteration a new polyhedron Pk�1 is constructed from the MDCO Ok andthe relations LNodes and LFaces. At the end of each iteration, the resultingoctree Ok�1 is obtained by a pruning process applied to Ok, being k the depthof the octree. The last used octree O1 (O0 is created but not used) produces avery simple, genus 0 polyhedron P0. 44



3.9.3 The GenerateTGMap functionThe GenerateTGMap function obtains the MDCO representation of the initialpolyhedron P . The MDCO generation from a BRep is a well known problemand is based on a simultaneous space subdivision and clipping of the boundaryof P [BJN+88]. See [CH88] for a revision of other methods of octree constructionfrom BRep schemes. This function is called only once since the rest of MDCOare all obtained from the �rst one by means of a pruning process, following atop-down DPS approach.Although only BTG nodes will contain a part of the boundary of the recon-structed polyhedron, the MDCO stores the four types of nodes (B,W,G andTG) since they will be required for the DirectReconstruction function.The TGMap is obtained as a subproduct of the MDCO construction. TheLFaces mapping is easily obtained since in the subdivision process, the geome-try (faces, edges and vertices) inside a node is known, and this information isinherited by the descendents.The other component of the TGMap, LNodes, is obtained associating a list ofnodes to every face of P . At the beginning of the MDCO construction, theMDCO has a single grey node which is included in all the lists. In the recursivesubdivision process, the node lists of all faces associated to every son node areupdated adding all the son nodes traversed by the face and removing the parentnode.The TG nodes are obtained by an algorithm very similar to the construction of apolyhedron from an Extended Octree [Nav86]; the rest of terminal nodes (B/Wsegmentation) are generated by a seed algorithm starting from nodes that areknown to be W, instead of using a less robust point-inside-solid classi�cation.3.9.4 The Prune functionThe Prune procedure performs a one-level pruning operation on the currentMDCO. Let k the deepest level of the MDCO. The nodes involved in the pruningoperation are these from levels k and k � 1. Nodes from level k are removedand grey nodes from level k � 1 become TG nodes. As a result of the pruningoperation, the size of TG nodes is doubled in each direction and the resultingnumber of TG nodes is the number of terminal nodes of level k divided by eight.3.9.5 The DirectReconstruction functionThe function DirectReconstruction uses a simple and direct method to obtainthe OOS from Ok, which will be the �rst approximation PDk of the �nal polyhe-dron. The algorithm �rst calculates the set of BTG nodes from the set of TGnodes by examining the 26-neighbor nodes. The geometry inside each BTG isobtained with the help of a look-up table, similar to that of [AAB95] but indexedby 26-neighborhood con�guration instead of vertex colors con�gurations. First,BTG con�gurations that contain orthogonal vertices are identi�ed, and the setof �nal vertices is calculated, including vertex coordinates, plane equations of45



#levels #f Direct #t mesh decim. max. error9 178 (360 t) 406 0.3%8 122 (248 t) 294 0.6%7 86 (176 t) 217 1.2%6 64 (132 t) 161 2.1%5 56 (116 t) 80 4.5%4 34 ( 68 t) 59 6.1%Table 2: Number of faces returned by Direct DPS (second column) and meshdecimation (third column) on model A of Figure 28its three/six incident faces and convex/concave edge con�gurations, which areobtained from the look-up table. After all vertices have been extracted, they arecombined to form large, orthogonal faces with the domino-matching algorithmpresented in [Nav86], and hence it does not contain adjacent and coplanar faces,so there is no need of a compactation post-process. The TGMap TGMDk, whichis associated to PDk, is also obtained by the DirectReconstruction function. Fordetails on the UDMC reconstruction, see [MSS94].3.10 Results and DiscussionWe tested Direct DPS on several test models. Model A is a genus 2 CADmechanical piece with 1,366 faces (Figure 28). Results of model A have beencompared with the results of a free implementation of mesh decimation. To drawthe comparison we had to triangulate both model A (2,728 triangles) and themodel returned by Direct DPS. We have selected the tool described in [CS96] forcomputing the resulting approximation error on the outputs of both methods.The comparison is shown on Table 3.10. Figures 38-47 show the results of eachmethod compared to the original model, where approximation error is shownby color mapping.Taking the number of triangles as the basis for the comparison, Since the modelhas a very simple topology, Direct DPS produced less triangles than mesh dec-imation in accurate approximations but more triangles in coarse ones.Regarding the number of faces, Direct DPS always produced less faces thanmesh decimation (faces of arbitrary complexity). Mesh decimation producedself-intersections specially in coarse levels, while Direct DPS always preservedvalidity. Mesh decimation did not simplify topology while Direct DPS reducedthe genus. Since Direct DPS faces were Delaunay-triangulated after simpli�ca-tion, resulting triangles had better aspect ratio.Model B is a building with many nearby shells involving 4,866 faces. Resultswith several octree depths are shown on Table 3.10. Model B shows the powerof Direct DPS on topologically very complex models, resulting in high reductionrates.Model C and D, a slot machine and a dart with 1,279 and 2,032 triangles resp.have been simpli�ed using Direct DPS and mesh decimation (Figures 30 and 31).46



Figure 28: From left to right: input solid polyhedron, multi-resolution of octrees(front grey nodes have been culled to keep black nodes visible), reconstructedsolids and �nal multi-resolutionIn all cases, the fact that the original polyhedron is not used beyond discretiza-tion carries many advantages: the running times of reconstruction and facereduction do not depend on the complexity of the original polyhedron, so cheap47



#levels #f Direct #v Direct max. errorOriginal 4,866 4,134 N/A7 140 248 1.2%6 84 146 2.1%5 61 100 4.4%Table 3: Number of faces and vertices returned by Direct DPS (third column)on model B of Figure 29
Figure 29: From left to right: original building (4,866 faces), detail, and simpli-�cations with 140, 84 and 61 faces.
Figure 30: From left to right: original slot machine (1,279 triangles), DirectDPS result (37 faces) and mesh decimation output (210 triangles).
Figure 31: From left to right: original dart (2,032 triangles), Direct DPS result(34 faces) and mesh decimation output (48 triangles).simpli�cations are cheap to compute (e.g. 3D thumbnails generation); DirectDPS is not restricted to BReps and it can simplify any model which can be con-verted to an octree; �nally, it is not a�ected by degeneracies of the input surface,and produces two-manifold solids even with non-manifold inputs so Direct DPScan be viewed as a lossy conversion from non-manifolds to manifolds.Compared to mesh simpli�cation, Direct DPS minimizes the number of planes48



by using arbitrary faces, so it is especially suitable for BSP-based applications.In occlusion analysis, Direct DPS provides a fast and sound way of computingbig occluders from a complex scene, specially in reverberation path calculation,used in acoustic modeling, where signi�cant high tolerances can be used.Before the OOS construction, if TG are converted to B and W nodes 26-adjacentto new B are converted to TG, then OOS is a bounding volume of the inputsolid. Symmetrically, if TG become W and 26-adjacent B become TG, thenOOS will be completely contained in the input solid (Figures 32-34. Due to itsability to produce bounding or bounded approximations, it is also suitable forreal-time acceleration of collision detection.
Figure 32: Original object (shaded on the left) and bounding simpli�cation with47 faces (wire on the left, shaded on the right).
Figure 33: Original object (shaded on the left) and bounding simpli�cation with38 faces (wire on the left, shaded on the right).
Figure 34: Original object (shaded on the left) and bounding simpli�cation with21 faces (wire on the left, shaded on the right).Meanwhile, the Direct DPS method has several limitations. The cost of theDirect DPS method depends on the maximum subdivision level of the MDCO,49



which in real world applications is determined by the error tolerance. For verysmall error tolerances (less than 0:05%), a surface simpli�cation method is prob-ably better, since not much topology changes would be expected and the runningtimes of most surface simpli�cation methods decrease with the tolerance 2.Regarded as a surface simpli�cation method, the fact that the Direct MDCODPS is unable to use information of the original polyhedron in the reconstruc-tion step carries some drawbacks. The use of the original (or previously gen-erated) polyhedron in the face reduction step would enable the preservation ofthe orientation of important faces, which is a major topic in rendering-orientedsimpli�cations to avoid the visual artifacts produced by the shading of slightlydi�erent planes. The Direct DPS method does not provide any support to pho-tometry attributes. More precisely, it does not provide a suitable frameworkfor identifying and keeping unsimpli�ed faces with very di�erent values of pho-tometry attributes. The extension outlined in the next section overcomes theselimitations.

2However, the running times of some incremental simpli�cation methods are quite inde-pendent of the tolerance since the pre-computation of a queue prioritizing the entities to becollapsed dominates the overall cost. 50



4 The Hybrid MDCO DPS method4.1 IntroductionAs stated in the previous section, the Direct MDCO method is suitable for thoseapplications where surface appearance, such as curvature and color information,does not need to be preserved. Examples of these applications are found invisibility analysis, collision detection and global illumination. However, oneof the most important applications of multi-resolution models, the LOD-basedvisualization [HG94], [MS95], [FS93], requires the overall surface appearance tobe preserved in the simpli�ed models.In this section we introduce the Hybrid MDCO DPS, which is another memberof the family of simpli�cation methods modeled by the DPS framework. TheHybrid MDCO DPS is a visualization oriented extension of the Direct MDCODPS in the sense that it provides mechanisms for surface appearance preserva-tion.4.2 Visualization-oriented simpli�cationMulti-resolution models for visualization applications must ful�ll the followingextra requirements:� Normal preservationThe overall orientation of faces must be preserved, since on-screen color inmost lighting models depends on the surface normal. Radiosity models,which store �nal color information in a per-vertex basis, are an exceptionto these rule. In this case, the simpli�ed representations must preservethe per-vertex or per-corner color information. A method for surface ap-pearance simpli�cation which do not require the preservation of overallorientation of faces is presented in [COM98]. The method is based on aparameterization of the triangulated surface and the storage of surface ap-pearance attributes in normal and color maps. Although it achieves veryrealistic approximations of complex shapes and provides a bound in theresulting image error, normal maps are still available only in prototypedhardware [OL98], and texture maps increase rasterization cost and candecrease overall performance if the graphics subsystem is raster-limited.� Color preservationThe other surface appearance attributes, such as color and texture pa-rameters, must be preserved. When these parameters come on a per-facebasis, faces with di�erent values for such attributes can be merged to-gether only if the impact on the �nal image is acceptable. Only a fewof the existing surface simpli�cation methods deal with such appearanceattributes [CPD+96], [Hop97].� Coherence between consecutive representationsIn addition to the increasing bound on the appearance error between theoriginal representation and each approximation, there should be a �xed,51



user-de�ned bound on the appearance error between two consecutive rep-resentations. This requirement is very important to limit the impact ofthe image artifacts caused by the real-time switching between consecu-tive representations. Some surface simpli�cation methods allow a smoothtransition between two consecutive LOD representations [RB93], [Tur92],[HHK+95], [aa95], [DLW94] but the cost of computation of the interme-diate representations, which must be done in visualization time, often ex-ceeds the speed-up of the LOD-based visualization. Some high-end API'sprovide a mechanism to reduce these artifacts. In [Eck97] an image-spacesmooth transition is achieved by a weighted blending of both represen-tations in a small interval around the switch point. The previous tech-niques are not mutually exclusive, and both object-space and image-spacesmoothing techniques should be used together to reduce the perception ofthese image artifacts.Note that the solid simpli�cation metrics, such as the In-metrics introducedalong with the DPS framework, are still valid for visualization purposes. As itwas shown in Figure 2, distances based on points on the surface unnecessarilylimit face reduction and yield to pour results on objects with complex topology.A key di�erence with respect to all-purpose solid simpli�cation is that visual-ization oriented applications are less concerned in maintaining large, complexfaces whenever possible, since polyhedra are in general triangulated for visual-ization purposes, and triangle meshes are e�ciently handled by most API's andgraphics subsystems [Ros96].4.3 Combining surface and solid simpli�cation strategiesOne of the most important results of the comparative of the Direct MDCO DPSagainst surface simpli�cation methods is that the former is more suitable whenthe object's topology is very complex or the tolerance value is high, due to itspowerful capability of simplifying the object's topology maintaining its validity.With very small tolerances, or when the objects have a simple topology, surfacesimpli�cation methods will su�ce.Since the union of the optimum domain of each approach covers the wholepolyhedra domain, we could �gure out a smart scene simpli�cation algorithmwhich requests one representative of each family for the simpli�cation of eachobject, founding this decision on its topological complexity with respect to theuser-de�ned tolerance. As we will show later, the Hybrid MDCO approach is, infact, an adaptive version of this smart algorithm, but operating in a region-basedbasis instead of in a object-based one, where regions correspond to subsets ofthe BTGW nodes of the MDCO, and hence it is suitable for the whole domainof polyhedra.4.4 Features of the Hybrid DPS MethodAs MDCO-based approaches, both the Direct MDCO and the Hybrid MDCOmethods share the decomposition scheme de�nition and interpretation, the full-52



closed MDCO. They di�er basically in the reconstruction step: the former usesa direct approach, i.e. all the information for the reconstruction step is ob-tained from the MDCO alone, and the latter uses a hybrid approach, i.e. thereconstruction is based on the MDCO but directed by the polyhedron generatedin the previous iteration. Since face orientation information is lost in the de-composition scheme, no Direct reconstruction method is capable of appearancepreservation.As an extension of the Direct MDCO, the Hybrid method inherits most of itsadvantages (generation of error-bounded, low genus, two-manifold solids) butsolves most of its limitations: unlike the Direct MDCO, the Hybrid MDCOmakes the most of the algorithm's coherence between iterations, resulting inboth a speed-up of the running times and a bounded transition between con-secutive LOD's, and supports appearance preservation.4.5 The Hybrid MDCO DPS algorithmThe key ingredient of the Hybrid MDCO DPS is the application of a surfacesimpli�cation algorithm to the object's surface inside some regions and the ap-plication of a solid simpli�cation inside the rest of regions, basing this decisionon local topology changes (by local we mean inside a set of BTGW nodes).By virtue of this process, the boundary of the generated simpli�cation involvespatches from two di�erent sources, the surface of the previous generated polyhe-dron, and that of the orthogonal reconstruction, OOS. This approach is outlinedin Figure 35.Due to its bias towards visualization, and unlike the Direct MDCO DPS, theHybrid MDCO triangulates all faces of the original polyhedron and producesonly triangle meshes, which are fully supported by most surface simpli�cationstrategies.The top-level Hybrid MDCO algorithm is identical to that of the Direct MDCO,except for the fact that the faces of the original polyhedron have been triangu-lated, such as in [RB93]. The only di�erent function is the reconstruction step,whose algorithm follows. Note that Ok+1 and Pk+1 are the MDCO model andthe mesh of the previous iteration, respectively.function HybridReconstruction(Ok , Ok+1: MDCO; Pk+1: TMesh)< BestOrtho, BestInput >:=classify BTG nodes(Ok, Ok+1)divide regions(BestOrtho, BestInput)OrthoPatches:=direct reconstruction(Ok, BestOrtho)InputPatches:=import surface(Pk+1, BestInput)Pk:=merge(BestOrtho, OrthoPatches, InputPatches)surface simpli�cation(Pk)returnPkendThe BTG nodes of the current MDCO Ok are classi�ed into two categories. The�rst category is called best ortho, and contains all the BTG nodes with topologychanges of the previous polyhedron Pk+1 with respect to the OOS corresponding53
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Figure 35: Hybrid reconstruction Overview: a) original solid; b) Ok+1; c) Pk+1;d) Ok; e) Pk+1 (same as c) but viewed inside nodes of a higher level; shadednodes correspond to nodes with topology changes; f) the surface inside nodeswith topology changes is reconstructed with the Ok; g) the surface inside nodeswithout topology changes is reconstructed with the Pk+1; h) the previous sur-faces are merged in a polyhedron topologically equivalent to Ok but geometri-cally closer to Pk+1; i) resulting polyhedron after surface simpli�cation.to its one-lower level MDCO, Ok . The second category is called best input, andcontains the rest of BTG nodes, i.e., nodes whose interior surface cannot betopologically simpli�ed and therefore a surface simpli�cation of the surface ofthe previous iteration polyhedron is preferred.Once BTG nodes are classi�ed, each subset is partitioned in 6-connected regions.The surface inside best ortho regions is reconstructed by clipping the orthogonalreconstruction of the BTG nodes of that region, producing the ortho patches.Similarly, the surface inside best input regions is reconstructed by clipping thesurface of the previous generated polyhedron, producing the input patches. Atthis stage, topology reduction has been done (on best ortho regions), but the54



surface is invalid since it has discontinuities in the union of the ortho and inputpatches.The next step is the merge of input-patches and ortho-patches, in order toensure the surface continuity between nodes. The merge creates new trianglesand generates a two-manifold, feasible boundary; it may contain more faces thanthe original, but a simpler topology.The last step is the incremental surface simpli�cation method, which performsa topology-preserving face reduction. Each of these steps is described in depthin the following subsections.4.6 Classifying the BTG nodesThe classi�cation of the BTG nodes takes into account topology, geometry andphotometry properties. In order to explain how these elements are used, thefollowing de�nitions must be introduced:De�nition In a given iteration i, i being the depth of the MDCO, the Input-surface(i) is Pi+1, i.e., the polyhedron generated in the previous iteration (theprevious LOD to that being generated).Figure 35 c) shows the input-surface for a given level. Note that in the �rstiteration, Input-surface(l) is the original polyhedron P .De�nition In a given iteration i, i being the depth of the MDCO, the Ortho-surface(i) is OOS(MDCO(P; i)), i.e., the orthogonal reconstruction correspond-ing to the MDCO with depth i.Figure 35 b) shows the ortho-surface for a given level. Note that, in the DirectMDCO DPS, the result of the reconstruction process at iteration i is simplyOrtho � surface(i).De�nition Given a BTG node n, the Input-surface(i, n) is the Input-surface(i)clipped to the cubic region associated to n.De�nition Given a BTG node n, the Ortho-surface(i, n) is the Ortho-surface(i)clipped to the cubic region associated to n.De�nition Let k be the current iteration depth. A BTGW node n ofMDCO(P; k)is classi�ed as best-input only if the following conditions are satis�ed: a) Input-surface(k, n) and Ortho-surface(k, n) have the same number of sheets, and b)every sheet of Input-surface(k, n) intersects the same faces of n than the corre-sponding sheet of Ortho-surface(k, n). Otherwise, the node is best-ortho.Figure 35 d) and e) show the classi�cation of BTG nodes in best-input andbest-ortho nodes. Note that when a node is classi�ed as best-input, the topol-ogy of the input-surface is the same as that of the ortho-surface. In otherwords, replacing Input-surface(k, n) with Ortho-surface(k, n) will not simplifythe topology and will increase both the number of staircase-like set of faces andthe surface appearance error. The best-input nodes are so called because it ismore convenient to reconstruct the surface inside them using the input-surfaceinstead of the ortho-surface.BTG nodes n of MDCO(P; k) not satisfying the conditions of best-input nodes55



are classi�ed as best-ortho, so called because it is more convenient to reconstructthe surface inside them using the ortho-surface instead of the input-surface.The following theorem is fundamental in the classi�cation algorithm:Theorem 4.1 If the face reduction step of the Hybrid DPS method preservesboth the topology and the SOF feasibility of the mesh, then for every BTG noden of MDCO(P; k), Input-surface(k, n) and Ortho-surface(k-1, n) have the samenumber of sheets and intersect the same set faces of n.The face reduction step we will use in the Hybrid MDCO DPS satis�es bothconditions, and hence the classi�cation of BTG nodes can be done by comparingOrtho-surface(k, n) with Ortho-surface(k-1, n). Since the complete geometryof both OOS can be completely reconstructed from a look-up table indexedby node neighborhood con�gurations, the classi�cation of BTG nodes do notinvolve any explicit geometric test at all.Both the number of best-ortho and the number of best-brep nodes can be zerofor some input polyhedra (although not at the same time). In the former case,the Hybrid MDCO is reduced to a surface simpli�cation algorithm, with noorthogonal reconstruction at all; on the latter case, it is a triangulated versionof the Direct MDCO reconstruction.4.7 Partitioning the BTG nodesOnce the BTG nodes have been classi�ed in best-input and best-ortho nodes,each category must be partitioned into 6-connected components.Then, some best-input nodes are converted into best-ortho until the partitionsatis�es these two conditions: a) if a best-ortho node n in level i has a best-ortho 26-neighbor m and ortho-surface(i, n) intersects the shared vertex, edgeor face, then both n and m belong to the same region, and b) if a best-inputnode n has a best-input 26-neighbor m and input-surface(i, n) intersects theshared vertex, edge or face, then both n and m belong to the same region. Theresulting regions are 6-connected, and two di�erent best-input regions are not26-adjacent unless there is not any surface crossing the common boundary. Thesame holds for two best-ortho regions. This transformation guarantees that C0continuity between patches must be enforced only in shared faces of a best-inputand a best-ortho region.4.8 Extracting the patchesThe input-patches are extracted from the surface of the previous iteration poly-hedron. There is a brep-patch for each 6-connected best-input region. Thepatch is calculated by collecting all triangles of Pk+1 completely inside the re-gion, and clipping to the region's boundary those triangles partially inside theregion. The resulting patches involve one or more sheets of the Input-surface,Pk+1. Since Pk+1 is triangulated and the clipping region is orthogonal and withinteger coordinates, this clipping is a simple case of the general polygon clippingproblem. 56



The ortho-patches are extracted in a similar way, but using the Ortho-surfaceinstead of the Input-surface. The resulting patches involve one or more or-thogonal sheets of the Ortho-surface. Note that, although input-patches aretriangular meshes, ortho-patches involve faces of arbitrary number of contours.They will be triangulated in the merge step.Vertices of both the Ortho-patches and the Input-patches have a ag calledborder indicating whether they also belong to the ortho-surface (input-surface)or they appeared as a result of the clipping to the region's boundary.4.9 The merge stepThe merge process modi�es the ortho patches so that the resulting surface hasC0 continuity along the faces shared by a best-input and a best-ortho region.There are �ve types of continuity between nodes: a) between nodes of a best-input region, b) between nodes of a best-ortho region, c) between nodes ofdi�erent best-input regions, d) between nodes of di�erent best-ortho regions,and e) between a best-input and a best-ortho node.The �rst two still hold since the input and the ortho patches are C0. The secondpair can be ignored, since di�erent best-input regions are not 26-adjacent unlessthere is not any surface crossing the common boundary, and the same holds forbest-ortho regions. Thus the continuity must we ensured only in stabbed nodefaces shared by a best-input node and a best-ortho node.The merge consists in a constrained triangulation of the ortho-patches by con-necting the borders of the input-patches maintaining the ortho-patch incidence;the geometry of the surface inside best-input regions is preserved:procedure Merge(BestOrtho, OrthoPatches, InputPatches)foreach patch in OrthoPatches domapping(patch, InputPatches)foreach face f in patch doforeach contour c in face doreplace border vertices(c, patch)endtriangulate(f)endendendThe mapping function M maps each border vertex of the input-patch with atleast one border vertex of the ortho-patch. Each border vertex of the input-patch has an order number ord(vi) which is obtained by cyclically visiting eachedge-connected contour of border vertices of the input-patch.The mapping must ful�ll the following requirements: a) each border vertex ofthe input-patch is mapped to at least one border vertex of the ortho-patch;b) each border vertex of the ortho-patch is referenced by an edge-connectedsequence of at least one border vertex of the input-patch; and c) for each pairof border vertices vi; vj of an edge-connected contour of the input-patch, if57



ord(vi) < ord(vj ) then ord(M(vi)) < ord(M(vj )).The mapping can be implemented by simultaneous traversal of the border ver-tices of both the input-patch and the ortho-patch, where the current elementis advanced in one of the two lists depending on geometric proximity and themapping restrictions.In the next step, each border vertex of the ortho-patch is replaced by the orderedsequence of edge-connected border vertices of the input patch given by themapping. This replacement is done in a per-contour basis to guarantee thefeasibility of the resulting surface.The result is a non-planar face, topologically equivalent to the original ortho-patch, but including only the non-border vertices of the ortho-patch and theborder vertices of the input-patch. Finally, the non-planar face is triangulated.This process is illustrated on �gure 36.
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Figure 36: Merge of patches: a) the input-surface; b) the ortho-surface; c)input-patch; d) ortho-patch; e) non-planar contour including border verticesof the input-patch and non-border vertices of the ortho-patch; f) triangulatedpatch; g) resulting surface after merge; h) resulting surface after edge-collapses.The result of the merge process is a triangle mesh topologically equivalent tothe Ortho-surface, but geometrically closer to the Input-surface. In most casesits topology is simpler than that of the Input-surface.4.10 Patch simpli�cationFinally, the merged surface is object to a face reduction step. The surface sim-pli�cation must ful�ll the following requirements: a) the simpli�ed surface musttraverse exactly the same set of nodes, and b) the topology must be preserved.58



The proposed Hybrid framework is not limited to a particular surface simpli�-cation method, and di�erent methods can be used to produce di�erent results(though some incremental methods are more suitable since can be easily ex-tended to support the above restrictions).There are two important properties which simplify the surface simpli�cation. Onone hand, the octree provides a suitable bound for the application of reductionoperators, so only appearance-preserving criteria must be added to the surfacesimpli�cation algorithm. On the other hand, unlike most incremental methods,the use of a queue prioritizing the operators does not make sense since all feasiblereductions should be applied. We have selected the edge-collapse due to itssimplicity and generality.4.11 DiscussionThe Hybrid MDCO method solves most of the pitfalls of the Direct MDCO whileinheriting many of its advantages. Making a better use of coherence betweeniterations, it can reduce the disparity between LOD's, and provides a frameworkin which the collapse of faces with very di�erent photometry attributes canbe easily avoided. When simplifying simple objects with accurate tolerances,hybrid's behavior is more suitable.
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5 Concluding Remarks and Future WorkIn this report a framework for polyhedral solid simpli�cation has been presented.Instances of this framework are simpli�cation methods capable of modifying thetopology of the solid while guaranteeing an interior-points error bound.Both the Direct MDCO produces valid, two-manifold objects, even when theinput is non-manifold. Unlike most of the current simpli�cation methods, whichare restricted to triangular meshes, the presented algorithms can deal and alsoproduce faces with arbitrary geometry and topology, independently of the inputsurface subdivision.Although other surface simpli�cation methods might produce better-lookingapproximations of topologically simple objects from the point of view of LOD-based rendering, DPS methods are more suitable for LOD-based applicationswhere surface appearance preservation is not as much important as topologyreduction, such as collision detection, occlusion analysis and acoustic modeling[ea98].Compared to triangular meshes, the unconstrained planar-faces boundary rep-resentation is a more concise representation of polyhedral objects, which is suit-able in most of the applications listed above; real-time visualization is the onlyexception since many APIs and hardware subsystems are optimized for trianglemeshes and triangle strips.Future work includes the analysis of di�erent variants of the face-merge operator,such as allowing the merge of faces sharing more than one edge (loop creation).We have shown that moving one face at a time we cannot achieve optimal results.Figure 37 shows a simple object that cannot be obtained from the OOS withoutmoving two faces simultaneously, so future work also includes the study of aniterative face-merge version, which tries to move two or more faces at the sametime. Shortcuts for the iterative application of face-merge operations should bestudied (see �gure 37).
a b cFigure 37: a) Original object b) OOS with two faces being merged c) a simplerOOS-feasible solid cannot be produced without simultaneously modifying thethird face.Regarding to the Hybrid MDCO, several surface simpli�cation options should bestudied, and an improved merge of ortho and brep patches should be developed.
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Figure 38: Test polyhedron (1366 faces) and output of Direct DPS (34 faces)using depth 4. Maximum error is 4.2%

Figure 39: Test polyhedron and output of a typical mesh decimation (59 trian-gles). Maximum error is 4.9%
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Figure 40: Test polyhedron and output of Direct DPS (56 faces) using depth 5.Maximum error is 3.1%

Figure 41: Test polyhedron and output of a typical mesh decimation (80 trian-gles). Maximum error is 3.5%
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Figure 42: Test polyhedron and output of Direct DPS (64 faces) using depth 6.Maximum error is 1.5%

Figure 43: Test polyhedron and output of a typical mesh decimation (161 tri-angles). Maximum error is 1.6%
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Figure 44: Test polyhedron and output of Direct DPS (86 faces) using depth 7.Maximum error is 0.9%

Figure 45: Test polyhedron and output of a typical mesh decimation (217 tri-angles). Maximum error is 0.9%
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Figure 46: Test polyhedron and output of Direct DPS (178 faces) using depth9. Maximum error is 0.2%

Figure 47: Test polyhedron and output of a typical mesh decimation (406 tri-angles). Maximum error is 0.2%
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