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Phase retrieval from experimental far-field intensity data
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We demonstrate the reconstruction of real and positive objects from experimental far-field intensity measurements
by means of two phase-retrieval algorithms. Both the iterative Fourier transform and the simulated annealing
algorithms are used, and an analysis is made of the advantages and disadvantages of each of these procedures and
also of combinations of both methods. The objects tested either were binary or had many gray levels. We worked
with data with a considerable amount of experimental noise, and in addition we recognized the importance of taking
into account the nonrandom distortions produced by the detecting devices, which can critically bias the results
toward erroneous estimates of the objects. Noisy data, however, can create ambiguities in the reconstructions, and
hence additional information may be needed to overcome this disadvantage.

1. INTRODUCTION

Phase retrieval is an important problem in many areas of
physics, e.g. optics, x-ray diffraction, scattering, and astron-
omy. 1-"l

Recently a simulated annealing (SA) algorithm was pro-
posed'2 for phase retrieval from the power spectrum of a real
and positive object of finite support, as in the case of astro-
nomical images'3 -'8 and in diffractive optics for real ob-
jects.'9 '20 This method has been further improved and suc-
cessfully used in computer simulations of object reconstruc-
tion with different signal-to-noise ratios2 ' and also of
photon-limited stellar speckle interferometry.'8 The algo-
rithm is flexible and permits an easy introduction of addi-
tional constraints. Its performance is uniformly good.
However, it requires a rather lengthy computing time. In
some cases, it can be accelerated by first using the hybrid
input-output version of the iterative Fourier-transform
(IFT) algorithm.'8 ,2 1-23

In this paper we demonstrate the reconstruction of real
and positive objects from direct experimental measurements
of their power spectra by using the SA technique. The only
a priori constraints used are that the object be real and
positive. The object is reconstructed inside a square win-
dow having half the side of its autocorrelation. No addition-
al constraints, such as the shape of the support or symmetry
of the object, are imposed. Comparisons are also made with
the IFT algorithm, which we have also used directly in some
tests, and with combinations of both the SA and IFT meth-
ods. These combinations are used either to improve the
results of the IFT algorithm or to save computing time for
the SA algorithm in some cases.

Reconstructions of a diffuse complex object of known sup-
port from experimental far-field measurements by using the
IFT algorithm have been reported.24 Also, reconstructions
of real and positive objects with this algorithm have been
done both from laboratory simulations of stellar speckle
interferometry25 '26 and from measurements of backscattered
laser speckle intensity patterns2 7 made by using the imaging
correlography technique.28 2 9 While those references deal
with processing of specklegrams that yield the power spec-
trum of a real and positive image, we propose a rather differ-

ent and crude experiment, namely, the direct measurement
of the far-field diffraction pattern (power spectrum) of a real
and positive image. This experiment entails great difficulty
in the estimation of the power spectrum owing to the large
central peak in the diffraction pattern that is often present.
The consequence is an important amount of noise in the
data, which challenges the efficiency of phase-retrieval algo-
rithms. The experiment that we present shows the useful-
ness of these methods in situations in which only informa-
tion about the power spectrum of a real and positive object is
obtained. Of course, in experiments such as those per-
formed in Refs. 25-29, the algorithm proposed here can be
envisaged as an alternative procedure.

2. EXPERIMENTAL PROCEDURE

The determination of the object's power spectrum implies
knowledge of the object's autocorrelation. Two different
optical and digital processes have been used to get the auto-
correlation data. They depend on the kinds of test objects
to be used, that is, either we deal with binary objects whose
transmittance is either zero or one or we work with objects
with a transmittance having a large number of values, i.e.,
characterized by a large number of gray levels.

Binary Objects
The experimental setup is shown in Fig. 1. It is as follows:
a spatially filtered and collimated He-Ne laser beam (X =
0.633 Mim) illuminates the object, which is a binary mask
constructed by punching holes through a metallic plate.
The object is placed in the pupil plane of a lens of 1-m focal
length, which forms the Fourier transform of the object in
the back focal plane. The power spectrum is detected by a
TV camera, which is connected to a 8-bit frame grabber.
Digitization is made on a selected window of 128 X 128
pixels. The measured size of each pixel given by the cam-
era-plus-digitizer system is 17Mm X 17 ,um (with an estimat-
ed error smaller than 5%). However, the effective resolution
of the system is poor, so oversampling the images of the
power spectra is recommended. From the dimensions of the
window and the sampling spacing in the Fourier plane, and
taking into account both the focal length of the lens and the
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laser wavelength, we can calculate the size s of the pixel in
the object plane, i.e., s - 0.3 mm X 0.3 mm. The object is
included in a 9.6 mm X 9.6 mm square, i.e., its support is
inside a window of 32 X 32 pixels. The power spectrum is
sampled at twice the minimum rate (Nyquist rate) to avoid
aliasing.

The simple, low-cost RCA Model TC2000 closed-circuit
TV camera degrades the image during the detection process,
mainly in four different ways: random noise, additive bias,
nonlinearity, and nonconstant frequency response. The im-
portance of these effects is estimated, and a restoration
process is followed to attempt to minimize their influence.

The additive bias (nonzero intensity detected in a dark
frame) has a mean value of 30 in the 0-225 range of gray
levels of the 8-bit digital-to-analog converter of the frame
grabber. This bias is not spatially uniform over the entire
window but varies between 28 and 32. Then the actual
intensity range that can be detected decreases from the 8-bit
theoretical range from 0 to 255 to the range from 0 to -225.
The random noise is estimated by calculating (over 100
frames) the standard deviation of the measured intensity at
each pixel o(Iij) as a function of its mean value, Iij. We have
found that a does not actually depend on the intensity value
Iij of the particular pixel (i, j) and is thus a constant, a - 2.9.
Then, defining the signal-to-noise ratio (SNR) as usual,

SNR(hi) = I/o( 1i) = I/a,

we have a linear dependence of SNR on Iij, in this case
SNR(Iij) - 0.34 X Iij.

To reduce the noise we average ten frames of each power
spectrum recorded. We estimate the SNR, as before, over
100 frames, but now each of these frames is, in turn, the
average of ten frames. We have found that a- 0.9 and
SNR(I) - 1.1 X Iii. Then we substract the average of ten
dark frames to correct the bias; negative values of this aver-
aged power spectrum are set to zero, and positive ones below
a certain threshold are also set to zero. In this way we keep
the total energy constant.

An intensity calibration of the camera is made by taking a
curve (in this case a parabola) that is used for correction of
the nonlinearity. This type of nonlinear response of the
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camera tends to raise the low-intensity areas of the image
and to lower the high-intensity ones, thus magnifying the
background of the detected power spectrum. Although this
is not an especially disturbing effect, better results are ob-
tained if we correct it.

The frequency response is controlled by measuring, in two
orthogonal directions, the power spectrum of a row of holes
of 0.5-mm diameter with 0.5-mm separation. The autocor-
relation function of this test was evaluated. The modula-
tion transfer function (MTF) of the camera appeared to
multiply this function. This MTF was estimated by assum-
ing circular symmetry and corresponds to an effective reso-
lution of -24,Mm. Once the MTF was found, the correction
was made by applying the corresponding inverse filter.
This was done after cleaning the object autocorrelation by
establishing a threshold to set to zero those values of the
autocorrelation that are low and comparable with the noise.
We have found that this correction was necessary even
though the effect of frequency response (resolution) of the
camera had been attenuated by oversampling the power
spectra.

The resulting autocorrelations are contained in a window
of 63 X 63 pixels. Thus the object is bounded by a window of
32 X 32 pixels. No other a priori knowledge about the object
support is assumed. In addition, nonnegativity is also pre-
supposed.

Objects Characterized by a Large Number of Gray Levels
The object consists of a picture recorded in a photographic
film and is immersed in a liquid gate in order to compensate
for the phase effects due to variations in emulsion thickness.

With these types of object, the 256 intensity levels of the
frame grabber are not enough to describe the power spec-
trum, which in this case generally has a bright central peak
much more intense than the rest of the Fourier transform.
This is the main problem in detecting the power spectrum of
an object with many gray levels. It is necessary to use a filter
that eliminates the peak, in order to be able to detect some
intermediate frequency information. The high-frequency
information is unavoidably lost.

The experimental setup is shown in Fig. 2. The part of
the apparatus shown at the left is the same as that used with
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Fig. 1. Experimental setup for binary objects: L, laser; SF, spatial filter; CO, collimator; O object; LL, Fourier-transforming lens; FP, Fourier
plane; CA, camera; FG, frame grabber; MC, microcomputer.
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Fig. 2. Experimental setup for objects with several gray levels: L, laser; NF, neutral filter; SF, spatial filter; CO, collimator; 0, object; LL,
Fourier-transforming lens; FP, Fourier plane; L1, lens; P,, image plane of Li; F, filter on axis; L2, lens; P2 , image plane of L 2; CA, camera; FG,
frame grabber; MC, microcomputer.
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binary objects, but in this case lens Li, of 75-mm focal
length, forms an intermediate image of the spectrum in
plane P1, where a filter is placed on the optical axis. This
filter is a black (i.e., has a high neutral optical density) stop
of 2 50-ym diameter, constructed photographically and also
immersed in a liquid gate. This intermediate image allows
the size of the central spot of the spectrum to be fitted to that
of the filter. Then lens L2, of 75-mm focal length, makes a
second image of the object Fourier transform without the
central peak in plane P2 , where the camera is placed for
detection. The magnification of this image is chosen such
that it provides the desired size of the spectrum in the
detection plane. We grab this image in a first frame.

Then we make another image of the same spectrum, this
time removing the black stop filter. In this frame only a
bright peak is visible. This is done by placing appropriate
neutral-density filters in the laser beam to attenuate the
central peak of the spectrum, so that now this peak lies
inside the detectable dynamic range of the camera. By
grabbing this image in a second frame, and by knowing the
absorption rate of the neutral-density filter used, it is possi-
ble to reconstruct the whole power spectrum from the two
frames containing the central peak and the intermediate-
frequency intensity values, respectively.

A Sony Model AVC-D5CE charge-coupled device (CCD)
camera is used in this case. This camera produces no addi-
tive bias. However, a dark frame is also subtracted now
from each power spectrum recorded, in order to prevent the
detection of parasitic light. Random noise is estimated in
the same way as before: a- varying from -1.4 at the highest
intensity levels to -2.6 at low levels. The SNR then varies
from -0.7 X Iij to -0.4 X Iij. Because this SNR value is so
high, we considered it unnecessary to average frames.

The intensity response of the camera was tested, and,
although it is not perfectly linear, the CCD does not produce
so clear a bias as the vidicon camera does, thus raising the
background of the image. Thus we believe that it is not
necessary to correct the power-spectrum data for nonlinear
effects, and we show this in the results described below.

An estimation of the camera frequency response showed
us that it is not constant, as in the case of the TV camera.
However, a different procedure is now followed to minimize
this effect.

Oversampling of the power spectrum at several times the
Nyquist rate involves a larger window in the object plane
and therefore results in expanding the camera MTF over a
broader frame. Since, however, the size of the object auto-
correlation remains the same, and since it is located in the
central area of the window, this object autocorrelation func-
tion is multiplied by the central part of the camera MTF,
which, within this area, can be considered approximately
constant.

Nevertheless, handling such large windows could produce
time and memory computing problems. Nonetheless, we
can choose the magnification of the second image of the
spectrum such that it is oversampled by at least six times the
Nyquist rate, within a window of 512 X 512 pixels, and then
subsample it during the detection process with the aid of the
microcomputer, keeping overall a resultant oversampling of
twice the Nyquist rate, as in the case of binary objects.

This procedure has another advantage; the CCD camera
gives samples that are not equally spaced in the vertical and

horizontal directions. The sampling spacing is 14.5 and 10.5
Am (error smaller than 5%) in the horizontal and vertical
directions, respectively. To obtain a square sampling we
subsample the broad 512 X 512 power spectrum, keeping a
value for every three pixels in the horizontal direction and
every four pixels in the vertical direction. In this way we
obtain a frame with the power spectrum in a final window of
128 X 128 pixels, where the sampling is almost equally
spaced in both directions (-43.5 ,m in the horizontal direc-
tion and 42 Am in the vertical direction), and the effect of
camera frequency response is negligible.

To calculate the pixel size s in the object space, we must
now take into account the total magnification applied to the
original spectrum to obtain its second image (the resulting
size is approximate, since we do not know this magnification
exactly), the window dimensions and the pixel size in the
Fourier space (we put s - 42.5um X 42.5 um for this calcula-
tion), and also the laser wavelength and the focal length of
the Fourier-transforming lens. Our calculations indicate
that s - 0.2 mm X 0.2 mm, i.e., the object must be contained
in a square of 6.4 mm X 6.4 mm in order to have its support
inside a window of 32 X 32 pixels. The power spectrum is
then sampled at twice the Nyquist rate, as desired.

Fourier transforming this power spectrum, we obtain the
object autocorrelation function, which appears to be sur-
rounded by low negative and positive values all over the
window. We clean it by setting to zero all values from the
area where the function is everywhere positive. The final
autocorrelation results in a square of 63 X 63 pixels, and no
other a priori knowledge about its support is assumed.

3. NUMERICAL PROCEDURE AND RESULTS
Figures 3(a) and 4(a) show two different binary test objects.
The corresponding measured power spectrum, averaged
over ten frames but without the other corrections described
above having been made, are shown in Figs. 3(b) and 4(b).
Note that the power spectrum of Fig. 3(b) is more thorough-
ly described with the intensity range available to the camera
than is the power spectrum of Fig. 4(b). On the other hand,
Figs. 3(c) and 4(c) show the autocorrelation functions con-
structed from the power spectra of Figs. 3(b) and 4(b), re-
spectively.

Both the IFT and the SA algorithms were run in a CCD
Cyber/855 computer to reconstruct the objects of Figs. 3(a)
and 4(a) from the power spectra of Figs. 3(b) and 4(b),
respectively. This was been done after the corrections de-
scribed in Section 3 were applied to the experimental record-
ings. The autocorrelation data used for SA, as well as the
power-spectrum data used for the IFT, are normalized to
unity. The starting guess is a random object constructed
from the halved autocorrelation, according to the descrip-
tion reported in Ref. 9; it is scaled so that its autocorrelation
is also normalized to unity. This saves time for the perform-
ance of the SA algorithm, since this guess has an F error [see
Ref. 15] that is not high, allowing us to start at a relatively
low temperature and then to avoid unnecessary cycles. The
F error is the quantity that is minimized by the SA algo-
rithm, and in the kth iteration it is defined as follows'2 :

1 2N-1 2N-1 -2 1/2
Fk = C EErijs

i=l j~i
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(a) (c)

(b) (d)

Fig. 3. (a) Binary object, (b) measured power spectrum, (c) auto-
correlation, (d) quenched IFT reconstruction.

where rij(k) are the residuals:
N N

rij() = Qij fmn(k)fm+iN,n+j-N (k)

m=1 n=1

1 < i < 2N- 1, I S j ' 2N- 1,

and C is the normalization constant:

C = (N 2 + 1)/2.

Qij is the value of the normalized autocorrelation data at
the pixel (i, j), fmn(k) is the value of the object estimate at the
pixel (m, n) in the kth iteration, and N is the linear dimen-
sion of the object (then C is the number of pixels of the
autocorrelation).

The IFT schedule consists of 7 cycles, each having 20
error-reduction plus 100 input-output iterations, ending
with 20 iterations of the error reduction (see Ref. 9). The
quantity that is minimized by this algorithm is the E error,
which in the kth iteration is defined as follows9 :

l jg,(k) 12

Ek= m,ne rZ gI,(k) 12

m,n

where g',n(k) is the value of the object estimate at the pixel
(m, n) after the kth iteration and r is the set of points at
which g',n(k) violates the constraints, which in our case are
the upper bound of support (32 X 32 pixels) and positivity.

For the object of Fig. 3(a) the IFT arrived at a satisfactory
result in 8 min of CPU time. The E error decreased from Eo
= 0.625 for the initial iteration to Ef = 0.136 for the last
iteration. The corresponding F error was Ff = 1.71 X 10-4.
No further decrease was attained by adding more iterations.
The SA yielded a similar reconstruction but required -40
min of CPU time. A quenched version (i.e., at temperature
T = 0) of the SA (see Ref. 15) applied to the IFT result
decreased the F error to F'f = 7.05 X 10-5 in 3 min of CPU
time. The resulting image is sharper and is shown in Fig.
3(d).

The object of Fig. 4(a) was reconstructed with the SA
method. The F error of the initial guess was Fo = 1.53 X
10-3; that for the final iteration was Ff = 1.97 X 10-4. The
temperature decay schedule used was Tn+l = 0.75 X T,-.'
The initial temperature was chosen to be To = 0.075, and the
F error stagnated at Tf = 5.7 X 10-7. The bound a (see Ref.
24) for the perturbation of each pixel intensity was kept
proportional to the current F error by means of the relation a
= 12 X F. A uniformly distributed random-number genera-
tor is used for pixel perturbation. The reconstruction is
shown in Fig. 4(f). The process required 90 min of CPU
time, but in -50 min an acceptable but less clear reconstruc-
tion can also be obtained. We were unable to obtain a
performance of the IFT similar to this result for this object.
The initial E error was Eo = 0.52, and the final one was Ef =
0.153, corresponding to Ff = 4.51 X 10-4, stagnating in an
estimate of the object with a worse visual appearance than

(a) (d)

(b) (e)

(c) (f)

Fig. 4. (a) Binary object, (b) measured power spectrum, (c) auto-
correlation, (d) IFT result, (e) quenched IFT result, (f) SA recon-
struction.
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that obtained with the SA reconstruction, as can be seen
from Fig. 4(d).

However, by quenching this estimate during 3 min of CPU
time, we obtain a cleaner image, which can be seen in Fig.
4(e). This result has the general features of that for the IFT
but has a cost function of Ff = 1.61 X 10-4. This cost
function is of the same order of, and even lower than, that of
the SA result (remember that this value was 1.97 X 10-4).

The results are two different possible solutions compatible
with the same amount of noise in the data. Even with the
SA algorithm, and using other schedules or other recorded
power spectra as initial data, we have obtained other results
with cost functions comparable with that of the result of Fig.
4(f) but having different structure. Therefore the criterion
that we have chosen with which to assess the SA result as the
best one in this case is merely subjective, because we know
the visual appearance of the true object. Had we ignored
this true object, as one must always do in real cases, some
additional a priori information or some criterion of choice
would be needed to eliminate this or other possible ambigu-
ities. This example confirms, therefore, the possible occur-
rence of nonuniqueness in phase retrieval in two dimensions
from noisy power-spectrum data in real cases (as pointed out
previouslyl2 l14'2 3). This corresponds to the possibility of
approximate factorization of the autocorrelation polynomi-
al3 ,

4
,8,1

0 when there is some uncertainty interval in its coeffi-
cients.3 0

These two examples show, therefore, that while the IFT
may be preferable from the point of view of speed, the SA,
either alone or combined with the IFT, is a useful alternative
when the IFT stagnates.

A test object with many gray levels is shown in Fig. 5(a).
Here the square root of the intensity distribution, as detect-
ed by the camera, is taken to show the amplitude distribu-
tion of the object. Its corresponding power spectrum, con-
structed from the two frames containing the low- and inter-
mediate-frequency measured data as described in Section 3,
is shown in Fig. 5(c). It is shown in logarithmic scale to
compress the intensity range to 255 levels, and its size is
magnified by a factor of 1.2 with respect to the other power
spectra shown in order to make its structure visible. There
is an appreciable loss of high-frequency information in these
data. The autocorrelation function constructed from this
power spectrum is shown in Fig. 5(d).

The result reconstructed from these data with the IFT
method is shown in Fig.5(e). The initial E error is Eo = 0.27,
and the final E and F errors are Ef = 0.086 and Ff = 2.37 X
10-4, respectively. The general features of the object are
clearly visible in this result; the intensities of the maxima are
quite inaccurate, however. Quenching the IFT solution did
not improve the reconstruction in this case. On the con-
trary, the result obtained has a visual appearance that is
worse than that of the input, even though the F error drops.
This is because the cost function, which depends on the
noisy input data, is a measure of the agreement of the solu-
tion with these data, but it is not a criterion of the agreement
of these data with the ideal noise-free data corresponding to
the true object.

A single run of the SA, starting with a random guess with
an F error of 8.11 X 104 at To = 0.008 and ending at TI = 3.5
X 10-7, gives a reconstruction with an F error of 2.73 X 10-5

and takes -75 min of CPU time; the result can be seen in Fig.

(a) (d)

(b) (e)

(c) (f)
Fig. 5. (a) Object with several gray levels, (b) filtered object, (c)
power spectrum constructed from the two measured frames con-
taining the low- and intermediate-frequency data (shown in loga-
rithmic scale), (d) autocorrelation, (e) IFT reconstruction, (f) SA
reconstruction.

5(f). The pixel perturbation bound (see Ref. 24) used was a
= 18 X F. It shows a loss of resolution due to the loss of high-
frequency information on the power-spectrum data. We
have simulated this loss of resolution by applying to the
object [Fig. 5(a)] a filter that sets to zero all values of the
object's Fourier transform corresponding to the values of the
power spectrum that are below the minimum intensity level
detected by the camera. The object filtered is shown in Fig.
5(b) for comparison with the reconstructions.

To obtain a result similar to that of the SA algorithm by
introducing the IFT solution as input guess, it is necessary to
start at quite a high temperature. But then the computing
time is not much shorter than that needed for a single run of
the SA. Although for this object there is not so a severe
problem of ambiguity as in the case of the object of Fig. 4(a),
some differences exist in the several solutions obtained with
different combinations of the two algorithms, all of them
compatible with the input data.

Fast SA (FSA) versions3 ' of the reconstruction method
were also attempted successfully, but no net advantage, ei-
ther in performance or in computing time, was observed.
These versions use a Cauchy random-number generator and
permit the acceleration of the temperature decay without
trapping of the F error into local minima. However, in our
case the computing time used by the algorithm depends both
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on the temperature schedule and on the number of cycles per
constant temperature. We ran the FSA with the schedule
Tn+i = 0.5 X Tn, obtaining results similar to those when the
conventional SA was used; however, this does not save com-
puting time since it takes longer to reach equilibrium at each
temperature step.

Signal recovery of the object of Fig. 4(a), although the
object has a binary intensity distribution, seems to be more
difficult than for any of the other three objects presented in
this paper. This could be because most of the correspond-
ing measured power spectrum has a poorer SNR than the
power spectra of Figs. 3(b) and 5(c).

In fact, to compare the SNR of these three power spectra
we normalize to unity the intensity of each of them, obtain-
ing the following expressions for the SNR of the 128 X 128
power spectra shown in Figs. 3(b), 4(b), and 5(c):

Power spectrum 3: SNR3(1j 3) , 241.1 X Iij3 [Fig. 3(b)],

Power spectrum 4: SNR 4( 1j4) - 241.8 X Ij4 [Fig. 4(b)],

Power spectrum 5: SNR5(Ijj5 ) 915.7 X Ij5 [Fig. 5(c)],

1<i<128, 1<j<128,
where SNRk is the SNR in the power spectrum k and Iijk is
the corresponding normalized intensity detected at pixel (i,
j) of this power spectrum. In this calculation we have ne-
glected the nonlinear response of the camera, and for power
spectrum 5 we have considered the SNR in the zone corre-
sponding to intermediate frequencies, assuming a constant
and equal to 0.55. As we can see, power spectrum 4 has the
lowest SNR. Furthermore, the range of intermediate fre-
quencies of a spectrum carries most of the information about
the structure of the object. Therefore, although SNR3 and
SNR4 are quite similar, we can note from Figs. 3(b) and 4(b)
that, at the most meaningful frequencies, the intensity de-
tected is lower in the power spectrum of Fig 4(b) than in the
power spectrum of Fig. 3(b), i.e., the SNR is considerably
lower.

There are other sources of error in the data, such as coher-
ent noise in the optical system, the remaining nonrandom
effects of the cameras, and errors in calibration. For the
object in Fig.5 it is possible that there are small phases in the
object that are due to imperfections in the liquid gate; in
addition, errors in constructing the power spectrum of Fig.
5(c) from the two frames detected as indicated above may be
present (indeed, this operation must be done carefully). The
coherent noise is greater in this power spectrum owing to the
higher number of optical elements used in this case (see the
experimental setup of Fig. 2). However, the procedure fol-
lowed to get power spectrum 5 from two measured frames
permits the detection of high-intensity signals in the range

'of intermediate frequencies. It is because of this fact that
this spectrum has the highest SNR. Moreover, the high-
quality performance of the CCD camera, which eliminates
the necessity for correcting the measured data, also im-
proves the final accuracy of the autocorrelation and power-
spectrum data used for phase retrieval. The results ob-
tained seem to prove that the procedures followed are good
enough to eliminate severe bias in the reconstructions and
also that the two phase-retrieval methods used are robust
enough to work successfully with noisy experimental data.
Noisy data, however, can give rise to ambiguities in the

reconstructions compatible with these data, and thus some
additional a priori information may be necessary.

4. CONCLUSIONS

We have studied the performance of both the SA and the
IFT methods of phase retrieval from experimental far-field
intensity data, corresponding to positive and real objects of
finite support. The hybrid input-output version of the IFT
algorithm gives an acceptable although sometimes not high-
ly accurate estimation of the object. If the method stag-
nates, then it may be used as a starting guess for the SA
method, which can then refine the result. This saves com-
puting time; the SA algorithm alone can be run without the
help of the IFT and arrive at a similar reconstruction, but
this is more time consuming, although it permits more flexi-
bility.

For binary objects, a quenched version of the SA algo-
rithm applied to the IFT output can yield quite a good result
in a few minutes of CPU time. When the IFT estimate is
near a local minimum of the cost function, we have always
observed that the SA algorithm used with a random starting
guess is able to arrive at a good reconstruction in less than 90
min of CPU time. For the object with several gray levels
with which we have worked, an acceptable estimate is found
with the IFT. A better result is obtained with the SA algo-
rithm starting with a random guess; however this involves 75
min of CPU time. The last solution is more accurate than the
annealed IFT result when one compares the result with the
object. However, in practical situations there is no objective
criterion for choosing the SA solution as the best estimate of
the object, since the agreement with the measured data is
good and is similar in both of them. This is also true for the
SA and the quenched IFT results obtained as estimators of
the second binary object tested. For this particular object,
the structural difference between the two results is great;
therefore each reconstruction corresponds to a different so-
lution of the phase-retrieval problem, and these solutions
are equally compatible with the measured data. In all cases,
the low intensity levels are not accurately reconstructed with
either the IFT or the SA algorithm; these errors are unavoid-
able since they are determined by the errors in the autocor-
relation or, equivalently, in the power-spectrum data.

A more sophisticated digital processing of the power-spec-
trum data before using the phase-retrieval algorithms (e.g.,
the Wiener filter used in Refs. 27-29) could certainly im-
prove the final result, whose agreement with the correspond-
ing object would be limited by the SNR in the measure-
ments. We have also noted the importance of taking into
account the nonrandom effects of the detection device in the
intensity data. We realize that in the measurements done,
and for the application in which we are interested, the most
critical effect is the camera frequency response. Oversam-
pling the power spectrum at several times the Nyquist rate
reduces this effect. When it is not possible to do this, an
estimation of the camera MTF and a consequent correction
of the data may be needed. The results achieved, however,
are satisfactory if one bears in mind the rather poor SNR as
well as other important sources of error in the detected
power spectra; thus the efficiency of the two algorithms is
shown.

As we have seen, there is no general rule that can be given
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for reconstruction processes. From our observations we
conclude that there is no automatic procedure, either. The
best recommendation is to use both the IFT and the SA
algorithms as described above, analyzing the decay of both
the E and the F errors, until a consistent result is found from
the different attempts. Nonetheless we believe that, in
some cases, when different trials produce clearly different
reconstructions with similar errors, some additional a priori
information will be needed, apart from the power-spectrum
data (the solutions can be so different from each other that
averaging them would be meaningless). This necessity has
nothing to do with the convergence and performance of the
algorithms but rather is related to the possible inherent non-
uniqueness of the solution compatible with the noisy auto-
correlation (or power spectrum). A greater guarantee of
uniqueness could be obtained if there were only a small error
in the autocorrelation data.

ACKNOWLEDGMENTS

This research was supported by the Comision Interminister-
ial de Ciencia y Tecnologia of Spain under grant pbO278. M.
J. P6rez-Ilzarbe acknowledges a grant from Ministerio de
Educaci6n y Ciencia.

REFERENCES

1. A. Walther, "The question of phase retrieval in optics," Opt.
Acta 10, 41-49 (1963).

2. R. H. T. Bates, "Fourier phase problems are uniquely solvable
in more than one dimension. I: Underlying theory," Optik 61,
247-262 (1982); K. L. Garden and R. H. T. Bates, "Fourier
phase problems are uniquely solvable in more than one dimen-
sion. II: One-dimensional considerations," Optik 62, 131-142
(1982); W. R. Fright and R. H. T. Bates, "Fourier phase prob-
lems are uniquely solvable in more than one dimension. III:
Computational examples for two dimensions," Optik 62, 219-
230 (1982).

3. Yu. M. Bruck and L. G. Sodin, "On the ambiguity of the image
reconstruction problem," Opt. Commun. 30, 304-308 (1979).

4. M. A. Fiddy, B. J. Brames, and J. C. Dainty, "Enforcing ir-
reducibility for phase retrieval in two dimensions," Opt. Lett. 8,
96-98 (1983).

5. A. Levi and H. Stark, "Image restoration by the method of
generalized projections with application to restoration from
magnitude," J. Opt. Soc. Am. A 1, 932-943 (1984).

6. P. L. Van Hove, M. H. Hayes, J. S. Lim, and A. V. Oppenheim,
"Signal reconstruction from Fourier transform magnitude,"
IEEE Trans. Acoust. Speech Signal Process. ASSP-31, 1286-
1293 (1983).

7. K. Chalasinska-Macukov and H. H. Arsenault, "Fast iterative
solution to exact equations for the two-dimensional phase-re-
trieval problem," J. Opt. Soc. Am. A 2,46-50 (1985).

8. M. Nieto-Vesperinas and J. C. Dainty, "Testing for uniqueness
of phase recovery in two dimensions," Opt. Commun. 52, 94-98
(1984).

9. J. R. Fienup, "Phase retrieval algorithms: a comparison,"
Appl. Opt. 21, 2758-2769 (1982).

10. J. L. C. Sanz, T. S. Huang, and F. Cukierman, "Stability of
unique Fourier-transform phase reconstruction," J. Opt. Soc.
Am. 73, 1442-1445 (1983).

11. M. Nieto-Vesperinas, "Dispersion relations in two dimensions:
applications to the phase problem," Optik 56, 377-384 (1980).

12. M. Nieto-Vesperinas and J. A. Mendez, "Phase retrieval by
Monte Carlo methods," Opt. Commun. 59, 249-254 (1986).

13. J. C. Dainty, "Stellar speckle interferometry," in Laser Speckle
and Related Phenomena, 2nd ed., J. C. Dainty, ed. (Springer-
Verlag, Berlin, 1984).

14. J. C. Dainty and J. R. Fienup, "Phase retrieval and image recon-
struction for astronomy," in Image Recovery: Theory and Ap-
plication, H. Stark, ed. (Academic, New York 1986).

15. G. R. Ayers, M. J. Northcott and J. C. Dainty, "Knox-Thomp-
son and triple-correlation imaging through atmospheric turbu-
lence," J. Opt. Soc. Am. A 5, 963-985 (1988).

16. J. R. Fienup, "Space object imaging through the turbulent at-
mosphere," Opt. Eng. 18, 529-534 (1979).

17. G. J. M. Aitken and R. Johnson, "Phase-gradient reconstruction
from photon-limited stellar speckle images," Appl. Opt. 26,
4246-4249 (1987).

18. R. Navarro, F. J. Fuentes, and M. Nieto-Vesperinas, "Simulat-
ed annealing image reconstructed in photon-limited stellar
speckle interferometry," Astron. Astrophys. 208, 374-380
(1989).

19. E. Wolf, "Three-dimensional structure determination of semi-
transparent objects from holographic data," Opt. Commun. 1,
153-156 (1969).

20. G. Ross, M. A. Fiddy, and M. Nieto-Vesperinas, "The inverse
scattering problem in structural determinations," in Inverse
Scattering Problems in Optics, H. P. Baltes, ed., Vol. 20 of
Topics in Current Physics (Springer-Verlag, Berlin, 1980), pp.
15-71.

21. M. Nieto-Vesperinas, R. Navarro, and F. J. Fuentes, "Perform-
ance of a simulated annealing algorithm for phase retrieval," J.
Opt. Soc. Am. A 5, 30-38 (1988).

22. J. R. Fienup, "Reconstruction of an object from the modulus of
its Fourier transform," Opt. Lett. 3, 27-29 (1978).

23. J. R. Fienup and C. C. Wackerman, "Phase retrieval stagnation
problems and solutions," J. Opt. Soc. Am. A 3, 1897-1907
(1986).

24. J. N. Cederquist, J. R. Fienup, J. C. Marron, and R. G. Paxman,
"Phase retrieval from experimental far-field speckle data," Opt.
Lett. 13, 619-621 (1988).

25. R. H. T. Bates, W. R. Fright, and W. A. Norton, "Phase retrieval
is successful in the optical as well as the computational labora-
tory," in Indirect Imaging, J. A. Roberts, ed. (Cambridge U.
Press, Cambridge, 1983).

26. M. C. Won, D. Mnyama, and R. H. T. Bates, "Improving initial
phase estimates for phase retrieval algorithms," Opt. Acta 32,
377-396 (1985).

27. P. S. Idell, J. D. Conglewski, and D. G. Voelz, "Image synthesis
from nonimaged laser-speckle patterns: experimental verifica-
tion," Opt. Lett. 14, 154-156 (1989).

28. P. S. Idell, J. R. Fienup, and S. Goodman, "Image synthesis
from nonimaged laser-speckle patterns," Opt. Lett. 12,858-860
(1987).

29. J. R. Fienup and P. S. Idell, "Imaging correlography with sparse
array of detectors," Opt. Eng. 27, 778-784 (1988).

30. M. Nieto-Vesperinas and J. C. Dainty, "Phase recovery for two-
dimensional digital objects by polynomial factorization," Opt.
Commun. 58, 83-88 (1986).

31. H. Szu and R. Hartley, "Fast simulated annealing," Phys. Lett.
A 122, 157-162 (1987).

Perez-Ilzarbe et al.


