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Exponential filtering, together with an improved version of the iterative Fourier-transform algorithm, is applied to
image reconstruction from one-dimensional infrared stellar speckle interferometry data. The performance of the
method is checked first by computer simulations with both noiseless and noisy data and then with a realistic
simulation of one-dimensional infrared stellar speckle interferometry. We have seen no problems with conver-
gence. The only problem that we found was an expected noisy appearance of the results when noisy data were
simulated. Finally, the method was applied to observational specklegrams of the infrared source IRC +10216, in
two standard photometric bands: K and M (2.2 and 5 m, respectively). The reconstruction in K of a north-south
scan clearly shows three components inside a circumstellar shell. On the other hand, in the M band only a wing on
the north side of the main component is resolvable.

1. INTRODUCTION

The problem of reconstructing an image from its power
spectrum appears in different fields of physics, such as x-ray
diffraction and high-resolution astronomy. Stellar speckle
interferometryl (SSI) is probably the most widely applied
high-resolution technique in astronomy, since it gives useful
results, mainly in resolving binary stars (see Ref. 2 for an
interesting review of this subject). The image-reconstruc-
tion problem appears here because SSI provides the power
spectrum IF(u)12 of the object intensity o(x) with respect to
the cutoff frequency of the telescope but at the cost of miss-
ing the phase 0(u) of the Fourier transform (FT) of o(x) (x
and u are vectors). Therefore the attempt to recover the
object intensity by an inverse FT of the power spectrum will
give the object intensity autocorrelation Q(x) instead of
o(x). The phase problem, which appears in reconstruction
of the object, consists of finding the phase 0(u) of F(u) by
knowing the modulus IF(u)I and some constraints on o(x),
usually its finite extent and that the intensity is a real non-
negative magnitude.

It has been shown3 4 that this general problem can be
unambiguously solved in two dimensions, except for a trivial
1800 rotation of the object. However, Walther5 had proved
the lack of uniqueness in the one-dimensional (1-D) phase
problem. In fact, he showed that there exist 2 N different
solutions that are compatible with the same data N being
approximately the number of effective sampling points of
IF(u)I]. Such ambiguity can be removed by using additional
information. One possible way to overcome this difficulty

(apart from techniques that prevent phase loss, such as the
Knox-Thompson 6 and the triple-correlation 7 methods) is to
take two different intensity measurements. In this way,
Walker8 9 has proposed exponential filtering as a method to
obtain a second intensity measurement compatible with
SSI. The exponential filter g(x) = exp(ax), when applied to
every short-exposure speckle image, gives, after a corre-
sponding second SSI procedure, an apodized version of the
power spectrum IF/(u)12 = IF(u) * G(u)I2, which constitutes
the second intensity measurement. Then the ambiguity of
the reconstruction (even the 180° uncertainty) can be totally
removed by using both power spectra, IF(u)12 and IF/(U)12.

In this paper we study the performance of exponential
filtering for application to image reconstruction from 1-D
infrared SSI data. First we describe a modified version of
the Walker9 algorithm (Section 2). In Sections 3 and 4 the
performance of this algorithm is checked with both noiseless
and noisy data, including a realistic computer simulation of
1-D infrared SSI. Finally (Section 5), the method is applied
to high-resolution observations of the source IRC + 10216 in
the K and M photometric bands (2.2 and 5gm, respectively);
good-quality reconstructions that show some new features of
this source are obtained.

2. EXPONENTIAL FILTERING AND MODIFIED
WALKER ALGORITHM

As we mentioned above, exponential filtering in SSI is a
method that yields two intensity measurements. This per-
mits us to avoid ambiguities in solving the subsequent phase
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problem. The SSI consists of recording a set of short-expo-
sure images, or frames, ik(x) of the object o(x). Each image
depends on the instantaneous atmospheric configuration

ik(x) = o(x) * pk(x), (1)

where pk(X) is the instantaneous point-spread function
(PSF) corresponding to the kth configuration of the atmo-
sphere (and telescope) and * means convolution. In conven-
tional imagery one averages the frames, getting (ik(x)), the
resulting image. In SSI, instead, one averages the power
spectra:

(IIk(u)I2 ) = IF(u)12 (IPk(U)I2), (2)

where capital letters have been used for the FT's of ik and Pk-
Then, taking the average power spectrum of a point refer-
ence star, one can solve Eq. (2) to obtain the power spectrum
of the object, IF(u)12, with respect to the cutoff frequency of
the telescope This single intensity measurement does not
guarantee the uniqueness of the phase problem in the 1-D
case. One way to obtain a second intensity measurement
(optionally from the same short-exposure data) is by expo-
nential filtering.8 9 Exponential filtering consists in multi-
plying every frame ik(x) by an exponential filter g(x) =
exp(ax), with 0.5 < aL < 2 (Lx being the x length of the
images in pixels). In this way one obtains a second set of
speckle images and can repeat the SSI procedure to obtain
the second intensity measurement (an apodized version of
the power spectrum). Walker8 has shown that the exponen-
tial filter has the distributive property with respect to the
convolution, which allows us to write

i'k(X) = [o(X * Pk(X)]g(X) = [o(x)g(x)] * [Pk(X)g(X)] (3)

or, in another form, i'k(x) = o'(x) * p'V(X), where primes
mean filtered images. It follows that Eq. (2) also applies, in
the same way, to the filtered spectra:

(II(U)I 2) = IF(U)12( IP'k(U)12). (4)

As a consequence, the second intensity measurement is ob-
tained by solving Eq. (4). The exponential filter causes a
redistribution of the energy (mainly by introducing a sort of
anisotropy in the images). One way to obtain unambiguous
reconstruction is to use the two spectra F and IF/I as the
input data in algorithms such as that of Fienup 0 or simulat-
ed annealing," by introducing appropriate modifications.

Walker9 proposed the use of a modified version of the
Fienuplo error-reduction algorithm. The modification was
to change the input data at each iteration from the previous
one. In this way, F(u)I is the input for the odd iterations
(note that in this case there is no difference with respect to
the Fienup algorithm), whereas IF'(u)l is used in the even
iterations. After each iteration the current guess, o(x), is
transformed into o'(x), or vice versa, by multiplying or divid-
ing by the exponential filter, according to the type of data to
be used in the next iteration. The same basic scheme is
applicable to the incorporation of exponential filtering to
any iterative image-reconstruction algorithm.

Apart from the application of exponential filtering to 1-D
data, we have incorporated a new modification of the Walker
algorithm. It consists of the combined use of both versions
of the original Fienup algorithm: the error-reduction (ER)
version and the hybrid input-output (HIO) version. The

main difference between the two versions is in the method of
imposing the constraints. 0"2 In the ER algorithm, those
pixels used in the current guess that do not satisfy the con-
straints are forced to be zero. On the other hand, in the HIO
version those pixels are changed by a linear combination of
the input and output guesses (we have used the feedback
constant ,3 = 0.7). The constraints are imposed in both odd
(unfiltered data) and even (filtered data) iterations, in the
latter case after division by the exponential filter. We have
found a strong improvement in the convergence of the algo-
rithm when the combination of the two versions was used.
To compute the degree of convergence, we used the Fienup
cost function for the object domain' 3:

= >a E 1 /E Ijgk 2
1

where gkj is the kth object estimate (before imposition of the
constraints) in the pixel (i, j) and r is the set of pixels at
which g, j violates the object-domain constraints. After an
initial cycle of ER only, composed of 40-50 iterations, the
algorithm completes a few (1-4) hybrid cycles, each consist-
ing of 20-40 HIO iterations followed by 10 ER iterations.
This is usually sufficient for a good solution in the 1-D case.
However, several cycles can be required when the data are
noisy. The parameter a of the exponential filter has a great
influence on the convergence of the algorithm. Although we
have not found a unique optimum value, as the length of the
image Lx increases, the product aLx should be closer to 2, in
order to optimize the result. The algorithm was also tested
in two dimensions, resulting in the same behavior as that of
the Fienup algorithm, except that exponential filtering gave
the correct orientation of the object (reconstructions were
approximately equal to those shown in Ref. 11). All recon-
structions shown below could be obtained only by the com-
bined use of the ER and HIO versions of the algorithm,
whereas the original Walker algorithm stagnates in the great
majority of cases.

3. PERFORMANCE OF THE ONE-
DIMENSIONAL MODIFIED WALKER
ALGORITHM

In phase-retrieval or image-reconstruction problems it is
usual to check the performance of the algorithms and meth-
ods with known data before applying them to unknown
cases. This is the only way, in general, to be certain about
the behavior of the methods and the validity of the results.
In this section we check the performance of the modified 1-D
Walker algorithm with computer-simulated data of increas-
ing difficulty: first with noiseless data and then with in-
creasing amounts of noise added to the data.

A. Reconstructions from Noiseless Data
In this section we compute the apodized spectrum by direct-
ly multiplying the object by the exponential filter and then
compute the FT of the result. Objects with 32 to as many as
300 pixels were tested. Also, two different input guesses for
each object were used: constant and random pixels. In all
noiseless reconstructions the algorithm has shown a good
convergence within a single cycle, which lowers the cost
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Fig. 1. Exponential filtering 1-D reconstruction from noiseless
data (continuous curve). The original object (symbols) is 128-pixel-
wide, central row of a CCD image of the M51 galaxy (bias and
background have been subtracted).

function from an initial value of the order of 10-' to roughly
10-5 (4 orders of magnitude). It should be noted that such a
value of the final cost function is of the same order of magni-
tude as the computing errors of our fast-Fourier-transform
algorithm. In consequence, we can consider that a value
close to the absolute minimum of the cost function has been
found in all noiseless cases. Figure 1 shows the original 128-
pixel object (symbols) and its reconstruction (continuous
curve): a 1-D central row of a charge-coupled device (CCD)
image of the galaxy M51 (background and bias have been
removed here). The parameter of the exponential filter was
a = 0.015. The algorithm was composed of 50 ER, 20 HIO,
and 10 ER iterations. This used -10 sec of CPU time in a
Data General Eclipse MV10000 computer. The reconstruc-
tion shows no appreciable difference from the original. All
noiseless reconstructions showed the same results. This
means that in our tests we found no problems of convergence
or stagnation for object sizes up to 300 pixels. The algo-
rithm shows a uniform, good, and fast convergence indepen-
dently of the structure of the object or of the input guess.
This behavior is quite different from that observed in two-
dimensional (2-D) objects. In 2-D reconstructions the algo-
rithm presented stagnation problems in many cases. 2-D
results were mostly the same as those found by Nieto-
Vesperinas et al." with the Fienup algorithm. This fact is
certainly due to the number of trapping minima of the cost
function, which is roughly 2N (N being proportional to the
total number of pixels). Then, even for small 2-D objects
(32 X 32 pixels), the number of trapping minima is much
greater than for the 300-pixel 1-D object. The exponential
filtering and the modified Walker algorithm seem to guaran-
tee not only uniqueness but also convergence when applied
to noiseless 1-D object reconstruction.

B. Reconstructions from Noise Data
Once the performance of the method has been checked with
noiseless data, the next step is to add increasing amounts of
noise to the data. The noise is introduced by adding Gauss-
ian distributed random numbers, with zero mean, to each
pixel of both spectra (with and without apodization). Here
an average signal-to-noise-ratio (SNR) was used to compute
the standard deviation of the random numbers: the mean

SNR was defined as the average value, within all pixels, of
the spectrum divided by the standard deviation of the noise.
Then the exponential filtering was tested for decreasing
average SNR (SNR = 20, 10,5). Figure 2 shows reconstruc-
tions (continuous curves) of the object in Fig. 1 (dashed
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Fig. 2. Reconstructions (continuous curves) of the object of Fig. 1
with different amounts of noise added to the spectrum [here the
object (dashed curves) is the CCD row without background and bias
substraction]: (a) SNR = 20, (b) SNR = 10, (c) SNR = 5 (these
values are averaged over the whole spectrum).
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Table 1. Initial and Final Cost Functions for the
Different Noise Levels

SNR Initial Cost Function Final Cost Function

- 7.5 X 10-2 2.0 X 10-5
20 8.0 X 10-2 1.3 X 10-3

10 9.3 X 10-2 3.3 X 10-3

5 1.0 X 10-1 7.6x 10-3

curves; these are the CCD images of M51 without bias and
background subtraction) with these SNR values. Here the
algorithm was composed of the initial ER cycle followed by
three hybrid cycles, each with 50 HIO and 10 ER iterations
(two hybrid cycles were enough for the case SNR = 20).
Table 1 shows a comparison of the initial and final cost
functions of the reconstructions, including the noiseless case
(SNR = a). The last reconstruction (SNR = 5) has been
smoothed by a slightly low-pass filter to decrease the recon-
struction noise. This smoothing provides a better-appear-
ing image.

The three reconstructions show the major features of the
object, but, as the noise level increases, the low-intensity
structures are progressively embedded in noise. On the
other hand, when the SNR is halved, the value of the result-
ing cost function is roughly duplicated, as Table 1 shows.
Such an inverse proportionality suggests a sort of linear
transmission of the noise from the spectra to the recon-
structed image. This also suggests that the convergence of
the algorithm is not strongly affected by noise but that a
similar image quality could be obtained if one knew the
actual but noisy phase of the FT of the object.

4. IMAGE RECONSTRUCTION FROM
COMPUTER-SIMULATED ONE-DIMENSIONAL
INFRARED STELLAR SPECKLE
INTERFEROMETRY

In this section we study the performance of the method as
applied to infrared 1-D SSI by a realistic computer simula-
tion. The main difference between visible and infrared SSI
is that in the former the noise is Poissonian (correlated with
the signal), whereas in the infrared range the additive back-
ground noise is dominant.' 4 In the computer simulation,
the noise was not generated by a computer. Instead, actual
background measurements (see Section 5 below) were added
to the speckle images.

A. Computer Generation of Speckle Images
The method used in the generation of short-exposure images
has already been described' 5 (it was applied to the photon-
limited 2-D case). To generate 1-D speckle images we fol-
lowed the same method, with the sole difference of final
integration over the Y axis. In this way we can simulate the
integrating effect of a scanning slit, preserving the 2-D na-
ture of the image-formation process. The method basically
consists of two steps: First, a set of random numbers, with
negative exponential probability distribution, is modulated
by the FT of the Fried short-exposure modulation transfer
function' 6 (MTF). The resulting set is a speckle image of a
point source (PSF), with a sampling interval of 1 pixel/
speckle grain. Then the pupil phase is estimated by a few

iterations with the Gerchberg-Saxton algorithm.'7 Once
the pupil function is obtained, the speckle image can be
recomputed to obtain the desired sampling ratio (2 pixels/
speckle in what follows). Finally, short-exposure images of
an extended object are obtained by convolving the object
with each short-exposure PSF. The object was that of Fig.
1.

In this simulation we wanted to approximate as much as
possible the experimental conditions of our observations
(see Section 5 below). We have assumed imaging through a
1.5-m telescope and a wavelength of 2.2 Am, which yields a
theoretical resolution of roughly 0.3 arcsec. The seeing disk
is assumed to be 2 arcsec. The size (width to half-height) of
the resulting long-exposure PSF (the seeing disk) was 13
pixels. Both point and extended speckle images were com-
puted inside a window of 128 X 128 pixels. The final win-
dow was 128 X 1 pixels after integration over the Y axis. In
the infrared range, the background (additive) noise domi-
nates over the Poissonian photon noise.' 4 Thus we have
assumed only background noise. We used actual back-
ground observations of IRC +10216 as the additive back-
ground noise, rescaled to obtain the desired SNR in each
speckle image. The SNR is considered here the integrated
energy of the signal, over the 128 pixels of each speckle
image, divided by that of the background. We present sim-
ulations corresponding to two different values of the back-
ground noise: 2% and 5%, which are close to the values
found in our observations of IRC +10216. The noise was
added to both point and extended object speckle images.
Finally, 50 speckle images of each type were generated and
used in each simulation.

B. Stellar Speckle Interferometry Exponential Filtering
and Deconvolution
Once the speckle images were generated, SSI was carried out
by computing the average power spectra of both sets of PSF
and object images. Also, we computed the average power
spectrum of a set of background images, (Nk(u)12). Then
each speckle image, and also each background image, was
multiplied by the exponential filter g(x) = exp (ax), with a =
0.015 (Lx = 1.92), and the same procedure was repeated
with the filtered images.

Before deconvolving the image by the PSF, it is usual in
infrared SSI to substract the power spectrum of the back-
ground from the power spectrum of the signals. Since we
have assumed the presence of only background noise (infra-
red), in the 1-D case (Eq. 1) becomes

ik W = o(x) * pk(x) + nk(X)I (5a)

where nk(x) is the background noise. In terms of the aver-
age power spectra it can be written as

(IIk(U)I) = IF(u)I2(IPk(U)I2) + (INk(u)I'). (5b)

Here, the cross term (2 Re[F(u)Pk(u)Nk(u)I) has been ne-
glected. This term is likely to be close to zero since both
Pk(u) and Nk(u) oscillate randomly, taking positive and neg-
ative values. The average tends to be zero in the same way
that the long-exposure MTF is zero for high frequencies.
Anyway, Eq. (5b) is approximate and could fail in the pres-
ence of too much noise. To solve Eq. (5b), we applied a
Wiener filter. This filter is useful to deconvolve noisy sig-
nals, because it regularizes the deconvolution depending on
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the SNR at each frequency. The final expression for the
estimate of the modulus of the FT of the object, IF(u)I, by
Wiener filtering when the noise is additive,' 8"9 including the
background substraction, becomes

IF(u)I = [(IIk(U)J2) INk(U)]'1/2 [(IPk(U)J 2)]I"2
(Ipk(U)I2) + (Vk(U)I1)

(6)

where it has been assumed that the background noise of the
PSF images is negligible. In general, the background power
spectrum should also be substracted from (IPk(u)I2). Note
that the first term on the right-hand side of Eq. (6) is the
modulus of the FT of the image, corrected from background,
whereas the second term is the Wiener filter. In practice,
the power spectrum of the background (INk(u)12) is highly
irregular (noisy); thus it is useful to substitute for it a mono-
tonic function (e.g., a polynome or a theoretical model) by
some curve fitting (we used a four-order polynomial fit).
The SNR of the power spectrum in both cases was greater
than 1, being -1.7 at 75% of the cutoff frequency in the
noisiest case. On the other hand, it can also be convenient
to substitute for (Pk(u)12) a curve fitting of the data to the
MTF of a model such as that of Korff20 or Dainty.2 We
applied these fits and obtained better results in the deconvo-
lutions.

Equation (6) also applies for the exponential filtered im-
ages by substitution of F', I', P, and N', for F, I, P, and N,
respectively. Then, by applying Eq. (6) twice, we obtained
optimum (the Wiener filter is the optimum filter in a least-
squares sense) estimates of IF(u)I and IF'(u)I.

C. Reconstructions
The modified Walker algorithm was applied to obtain the
reconstructions shown in Figs. 3(a) and 3(b), corresponding
to 2% and 5%, respectively, of background noise. The recon-
structions were achieved by the same procedure described in
Subsection 3.B. Two hybrid cycles were applied to the 2%
background noise simulation, whereas three cycles were
needed to obtain the result with 5% noise. The final cost
functions were 4.2 X 10-3 and 6 X 10-3, respectively. The
reconstructions show two effects, when compared with the
original, that increase with the amount of noise: First, there
is a slight resolution loss because of the Wiener filter. The
reconstructions are smoothed because the filter decreases
the high frequencies as the noise increases. On the other
hand, the second effect is that the low-level intensity fea-
tures are embedded in noise. This effect is similar to that
found in the reconstructions described in Subsection 3.B
(see Fig. 2), but now even the noise is smoothed by the
Wiener filter. However, our main conclusion is that the
method studied above is able to yield good results with some
limitations imposed by the amount of noise. It follows from
our simulation results that whenever the SNR of the power
spectrum is greater than 1 for all frequencies, a reasonably
good reconstruction may be expected. We have mentioned
that our aim was to simulate experimental conditions in a
realistic way. In fact, data such as the background noise
level, the number of speckle images, the seeing, and the
telescope diameter of this simulation are inspired by, and in
consequence are close to, the experimental data presented in
Section 5.
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Fig. 3. Reconstructions from computer-simulated infrared SSI
(results are shown by continuous curves; the object is shown by
dashed curves): (a) background noise of 2% (in each specklegram),
(b) background noise of 5%.

5. RECONSTRUCTION OF THE SOURCE
IRC +10216

IRC +10216 is the brightest extrasolar source in the 5-,um
band. Since it is also an extended object, it constitutes an
excellent test for near-infrared high-resolution imaging.
Although its geometry is not well known today, there is some
agreement that it seems to be a normal-luminosity carbon
star surrounded by a circumstellar shell. Several high-reso-
lution 1-D infrared observations have been reported (see, for
instance, Refs. 21-23). Also, 1-D object reconstructions of
IRC +10216 by the Knox-Thompson method have been
reported by Dyck et al.2

4 Their reconstructions, in the 2.2-
,um band, show a clear departure from the circular symmetry
in the north-south direction, with an extended wing on the
north side. On the contrary, their results at 10.3 ,um were
clearly symmetric. They explained these results by assum-
ing a bipolar model including a circumstellar shell and an
extended opaque equatorial disk.

A. Experimental Data and Methods
In what follows, we present results of observation of IRC
+10216 in two near-infrared wavelengths, corresponding to
the K (2.2 ,um) and M (4.94,gm) photometric bands. Obser-
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vations were made with the 1.5-m Carlos SAnchez Magro
Telescope at the Observatorio del Teide (Canary Islands) on
March 6 and 7, 1984.25 Specklegrams were obtained by an
InSb single detector placed behind a scanning slit (30 ,m
wide, corresponding to 0.3-arcsec angular resolution).
Specklegrams of u UMa and a Ori were also obtained as
references for the K and M bands, respectively. The scans
were made in the north-south and east-west directions.
Also, background scans were taken with both K and M fil-
ters.

The 50 best specklegrams of each set were selected for
computation of the average power spectra of the images,
with and without an exponential filter. We applied the
same procedure as that used with the simulation described
in Section 4 to obtain the final estimate of the object spectra
and reconstructions. The sole difference is that here the
MTF, (Pk(u)IJ2)'/2, was corrected from the scanning slit by
dividing it by the MTF of the slit. On the other hand, the
MTF for each band was fitted to the Korff20 and Dainty2
models. In this way, a 1.8-arcseqc seeing disk was obtained in
K (ro = 25.2 cm). In the M band, the fitting gave a seeing
disk of 2.86 arcsec. The diffraction cutoff frequencies of the
1.5-m telescope are 3.22 cycles/arcsec (0.32-arcsec resolu-
tion) in K and 1.47 cycles/arcsec (0.68-arcsec) in M. In Figs.
4-11 the spatial frequency will appear normalized with re-
spect to the corresponding cutoff frequency. On the other
hand, the average spectra were greater than zero within a
window of 100 pixels in K and 120 in M. In that case the
maximum number of resolvable pixels of the object would be
50 and 60, respectively, by the sampling theorem (the effec-
tive number of resolvable pixels in M is, in fact, fewer than
30 because of oversampling). As a consequence, the param-
eter of the exponential filter was set to a = 0.03. Figure 4(a)
shows the experimental speckle MTF in the K band (contin-
uous curve) compared with the result of the Korff fitting
(symbols). The MTF corresponding to the M filter is shown
in Fig. 4(b). In the latter case, the symbols show the fitting
to the Dainty model (this model is simpler than Korffs, but
at the cost of a worse fit to the experimental data). Figure 5
shows a polynomial fitting of the ratio of the average power
spectra of the background scans versus the signal scans for
both K and M filters. This ratio is useful for estimating the
influence of the background noise. Also, we applied these
fittings to the background subtraction and deconvolution
instead of directly using the noisy background average pow-
er spectrum. This procedure improved the quality of the
results.

The north-south reconstructions are shown in Fig. 7 for
the K band and in Fig. 8 for M. The reconstruction of Fig. 7
could be obtained even with a fast version of the algorithm:
10 ER iterations plus two cycles, each one composed of 5
HIO followed by 2 ER algorithms. This is surely due to the

0

-1

-2

-3

-4

-5

0

-2

-3

-4

-5

NIAMLIZM3 SPATIAL FRECLENCY

(a)

0.5

NOMALIZED SPATIAL FRECLENCY

(b)
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B. Results
The east-west scans were not resolvable by our telescope in
either the K or the M band, i.e., the power spectra could not
be distinguished from those of the reference sources in that
direction. In consequence, we did not try the reconstruc-
tions. The north-south scans, on the contrary, clearly show
structure after deconvolution. Figures 6(a) and 6(b) show
the estimated power spectra of IRC +10216 in the K and M
photometric bands, respectively, after background substrac-
tion and Wiener deconvolution [Eq. (6)]. Because the
source is so bright, the SNR of the spectra at 75% of the
cutoff frequency is roughly 10 in K and 4 in M. These values
are even better than those of the computer simulation given
in Section 4. In consequence, good-quality reconstructions
are expected.
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Fig. 5. Polynomial fitting of the ratio of the average power spectra
of the background-versus-signal specklegrams. K and M are repre-
sented without and with symbols, respectively (logarithmic scale).
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Fig. 6. Resulting estimate of the power spectra, corresponding to
(a) the K and (b) the M bands, after Wiener filtering deconvolution
and background substraction (logarithmic scale).

small number of pixels, 50, of the object and makes the
convergence much better and easier than with the 128-pixel
object of the computer simulation. The final cost function
was approximately 10-4, which is more than an order of
magnitude better than those given in Section 4. The recon-
struction (Fig. 7) shows three unresolvable components,
with the peaks placed at 1.5, 2.3, and 2.9 arcsec from the
origin of coordinates (north side), which have increasing
luminosity. These components seem to emerge from a cir-
cumstellar extended shell, more than 4 arcsec wide. Al-
though the central component is placed close to the center of
the shell, there is no symmetry, since the three components
have different luminosities. These results seem to be in
agreement with those of Dyck et al.,23 who needed a three-
Gaussians model to fit their spectrum.

Figure 8 shows the reconstruction of IRC +10216 made
with the M photometric filter. In this case the final cost
function was 5 X 10-4. This value is somewhat worse than
that we obtained in K, mainly due to the smaller value of the
SNR (however, the cost function is better than those of
Section 4). The M reconstruction shows a main unresolva-
ble component having a wing on the north side. This result
has the same shape and orientation, but double the width, as
that found by Dyck et al.24 in the K band after reconstruc-
tion by the Knox-Thompson method.

C. Discussion
Our results seem, to some extent, to be compatible with
those of some previous authors.23"24 However, some discrep-
ancies exist among published data, mainly with respect to
the number of components. On the other hand, there is
evidence suggesting that this source is variable, which could
explain such discrepancies. In consequence, we concentrate
here on analyzing the compatibility of our two reconstruc-
tions, K and M, with respect to each other and with shift-
and-add results obtained with the same data.

A superposition of K and M reconstructions is shown in
Fig. 9. The two results appear to be compatible, since the M
reconstruction could roughly be interpreted as a low-pass-
filtered version of the K reconstruction. The main differ-
ence, apart from different resolutions (a factor of 2, approxi-
mately), which is clear at first sight, is an important relative
luminosity loss of the circumstellar shell: in 5 um as op-
posed to 2.2 m. However, a plausible explanation could be
that there is an important relative increment of the luminos-
ity of the central components in 5,gm, while the circumstel-
lar shell does not experience the same increment. Other
features of the source, such as the spatial distribution, orien-
tation, and size, are the same in both K and M reconstruc-
tions, except for double resolution in the former.
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Fig. 7. Reconstruction of a north-south scan of IRC +10216 in the
K photometric band. It shows three components inside a circum-
stellar shell.
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Fig. 8. Reconstruction in the M band. Here, the structure consists
of a main component with a wing on the north side.
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Fig. 9. Comparison of K and M (symbols) reconstructions. There
are two main differences: in M the resolution is approximately
twice as bad, and the circumstellar shell has a lesser relative intensi-
ty.
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Fig. 10. Comparison for the K band of the result obtained with
(symbols) shift-and-add and (curve without symbols) a low-pass-
filtered version of the reconstruction.
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Fig. 11. Shift-and-add (symbols) in M compared with the expo-
nential filtering reconstruction (here the reconstruction has been
represented without low-pass filtering).

The second step in testing our results was to compare the
reconstructions with shift-and-add results of the same data.
This method was carried out by shifting the specklegrams in
order to place the brightest speckle grain (in fact, the bright-
est pixel) in the central pixel. Once all the specklegrams are
recentered, they are averaged to obtain the image. Figures
10 and 11 show for K and M, respectively, a comparison
between the shift-and-add result (symbols) and the recon-
struction (continuous curves). In Fig. 10, corresponding to
K, the reconstruction has been convolved with a low-pass
filter. The low pass is used here to equalize resolutions,
since the shift-and-add method gives an intermediate reso-
lution between speckle interferometry and direct imaging,
depending on the ratio of the telescope diameter to the Fried
parameter. The M reconstruction appears in Fig. 11 with-
out filtering, since the resolution is similar in this case. The
two comparisons, K and M, show opposite behavior for the
north side wing. In K, shift-and-add gives a wing more
pronounced than that of the low-pass reconstruction. In M,
the contrary occurs. In the second case, there are differ-
ences in both north and south sides (see Fig. 11). At the
north side, the shift-and-add wing is almost undistinguish-
able, whereas at the south side the intensity decay is much
smoother. However, the application of a slight low-pass
filter to the M reconstruction permitted a much better coin-
cidence with shift-and-add. (By looking at the low-pass
version of the K reconstruction shown in Fig. 10, one can
deduce that both the north side wing and the south side
steep decay will be smoothed by the low-pass filter, leading
to coincidence with the shift-and-add result of Fig.11.) The
remaining disagreement between the shift-and-add and re-
construction results consists in the different relative intensi-
ties of the north side wing in K (Fig. 10). However, that
could also be explained in terms of a relative intensity loss of
the main peak caused by the shift-and-add method. In fact,
this kind of minor discrepancy in the appearance of the
shift-and-add results and low-pass reconstructions should
be attributed to the different shapes of the PSF's resulting
from the two methods when the Wiener filtering that was
applied before the reconstructions is taken into account.

6. SUMMARY

We have presented different results of 1-D image recon-
struction by exponential filtering. This has been done in
three steps. First, an improved version of the Walker algo-
rithm was proposed, based on the combination of the two
versions (ER and HIO) of the Fienup algorithm. The sec-
ond step was to show the good performance of this method
when it was applied to the 1-D case. We found that expo-
nential filtering, with the improved algorithm, was always
able to give the correct reconstruction in all noiseless cases
(we tested objects as much as 300 pixels wide). Then the
method was tested, first with increasing amounts of random
noise added to the spectra and then with a realistic computer
simulation of 1-D infrared speckle interferometry. In both
cases we could see the great influence of noise, whose main
effect was the appearance of noise in the reconstruction
rather than convergence problems.

Finally, the method was applied to reconstruct I-D scans
of the source IRC +10216 in two near-infrared photometric
bands, K (2.2 lim) and M (5 ,m). The north-south recon-
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struction in the K band clearly shows three components,
which are surrounded by a circumstellar shell. In M, howev-
er, the shell had relatively less intensity, and only a wing on
the north side of the main component was detected, because
of less resolution. A low-pass version of these results was
compared with shift-and-add scans obtained from the same
data, showing that both are compatible.

ACKNOWLEDGMENTS

The authors thank J. J. Fuensalida, who provided us the
experimental data (specklegrams) and M. Nieto-Vesperinas
for his useful suggestions. This research has been support-
ed by the Comisi6n Interministerial de Ciencia y Techno-
logia and the Instituto de Astrofisica de Canarias.

REFERENCES

1. A. Labeyrie, "Attainment of diffraction limited resolution in
large telescopes by Fourier analyzing speckle patterns in a star
image," Astron. Astrophys. 6, 85-87 (1970).

2. J. C. Dainty, "Stellar speckle interferometry," in Laser Speckle
and Related Phenomena, 2nd ed., J. C. Dainty, ed. (Springer-
Verlag, Berlin, 1984), pp. 255-320.

3. Y. M. Bruck and L. G. Sodin, "On the ambiguity of the image
reconstruction problem," Opt. Commun. 30, 304-308 (1979).

4. M. H. Hayes and J. M. McClellan, "Reducible polynomials in
more than one variable," Proc. IEEE 70, 197-198 (1982).

5. A. Walther, "The question of phase retrieval in optics," Opt.
Acta 10, 41-49 (1963).

6. K. T. Knox and B. J. Thompson, "Recovery of images from
atmospherically degraded short-exposure photographs," As-
trophys. J. Lett. 193, L45-L48 (1974).

7. A. W. Lohmann, G. P. Weigelt, and B. Wirnitzer, "Speckle
masking in astronomy: triple correlation theory and applica-
tions," Appl. Opt. 22, 4028-4037 (1983).

8. J. G. Walker, "The phase retrieval problem: a solution based
on zero location by exponential apodization," Opt. Acta 28,735-
738 (1981).

9. J. G. Walker, "Computer simulation of a method for object
reconstruction from stellar speckle interferometry data," Appl.
Opt. 21, 3132-3137 (1982).

10. J. R. Fienup, "Reconstruction of an object from the modulus of
its Fourier transform," Opt. Lett. 3, 27-29 (1978).

11. M. Nieto-Vesperinas, R. Navarro, and F. J. Fuentes, "Perform-
ance of a simulated-annealing algorithm for phase retrieval," J.
Opt. Soc. Am. A 5, 30-38 (1988).

12. J. R. Fienup, "Phase retrieval algorithms: a comparison,"
Appl. Opt. 21, 2758-2769 (1982).

13. J. C. Dainty and J. R. Fienup, "Phase retrieval and image recon-
struction for astronomy," in Image Recovery: Theory and Ap-
plication, H. Stark, ed. (Academic, New York, 1987) pp. 231-
275.

14. F. Sibille, A. Chelli, and P. Lena, "Infrared speckle interferome-
try," Astron. Astrophys. 79, 315-328 (1979).

15. R. Navarro, F. J. Fuentes, and M. Nieto-Vesperinas, "Simulat-
ed annealing image reconstruction in photon-limited stellar
speckle interferometry," Astron. Astrophys. 208, 374-380
(1989).

16. D. L. Fried, "Limiting resolution looking down through the
atmosphere," J. Opt. Soc. Am. 56, 1380-1384 (1966).

17. R. W. Gerchberg and W. 0. Saxton, "A practical algorithm for
the determination of phase from image and diffraction plane
pictures," Optik 35, 237-246 (1972).

18. J. W. Brault and 0. R. White, "The analysis and restoration of
astronomical data via the fast Fourier transform," Astron. As-
trophys. 13, 169-189 (1971).

19. W. K. Pratt, Digital Image Processing (Wiley, New York, 1978).
20. D. Korff, "Analysis of a method for obtaining near-diffraction-

limited information in the presence of atmospheric turbulence,"
J. Opt. Soc. Am. 63, 971-980 (1973).

21. M. J. Selby, R. Wade, and C. Sanchez Magro, "Speckle interfer-
ometry in the near-infrared," Mon. Not. R. Astron. Soc. 187,
533-566 (1979).

22. J. M. Mariotti, A. Chelli, R. Foy, P. Lena, F. Sibille, and G.
Tchountonov, "Infrared speckle imaging: improvement of the
method: results on Miras and protostars," Astron. Astrophys.
120, 237-248 (1983).

23. H. M. Dyck, B. Zuckerman, Ch. Leinert, and S. Beckwith,
"Near-infrared speckle interferometry of evolved stars and bi-
polar nebulae," Astrophys. J. 287, 801-813 (1984).

24. H. M. Dyck, B. Zuckerman, R. R. Howell, and S. Beckwith,
"Measurements of the circumstellar shell geometry in IRC
+10216," Publ. Astron. Soc. Pac. 99, 99-106 (1987).

25. J. J. Fuensalida, "Alta resoluci6n espacial en el infrarrojo cer-
cano," Ph.D. dissertation (University of La Laguna, Tenerife,
Spain, June, 1986).

Navarro et al.


