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Abstract: An invertible discrete Zernike transform, DZT is proposed and 
implemented. Three types of non-redundant samplings, random, hybrid 
(perturbed deterministic) and deterministic (spiral) are shown to provide 
completeness of the resulting sampled Zernike polynomial expansion. When 
completeness is guaranteed, then we can obtain an orthonormal basis, and 
hence the inversion only requires transposition of the matrix formed by the 
basis vectors (modes). The discrete Zernike modes are given for different 
sampling patterns and number of samples. The DZT has been implemented 
showing better performance, numerical stability and robustness than the 
standard Zernike expansion in numerical simulations. Non-redundant 
(critical) sampling along with an invertible transformation can be useful in a 
wide variety of applications. 
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1. Introduction 

The Zernike polynomial (ZP) expansion is extremely useful in optics because ZPs form a 
complete orthogonal basis on a circle of unit radius. Since many optical instruments have a 
circular symmetry and circular pupil, ZP expansion can be used to describe any function at the 
pupil plane; in particular optical path differences (OPD), wavefront phase or wave aberration. 
Therefore, applications include computing and optimization (optical design) [1], optical 
testing [2], wavefront sensing [3–5], adaptive optics [6,7], wavefront shaping [8], 
interferometry [9–11], surface metrology (profilometry, topography) [12,13] or atmospheric 
optics [14] among others. The modal description provided by ZPs has been highly successful 
in all these fields of application. Nowadays Zernike polynomials are present in current 
technologies in ophthalmology, ground-based telescopes, free-space communications, etc. 

The modal representation of a function (wavefront, OPD, surface, etc.) over a circular 
pupil in terms of ZPs is: 
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nc  are the expansion coefficients; θρ,  are polar coordinates with origin at the pupil 

centre. Here 
pupRR=ρ  is a normalized radius, since the ZPs are orthogonal only within a 

circle of unit radius. ZPs are separable into radial and angular parts, and include a 
normalization factor N to guarantee orthonormality: 
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where the radial part is given by 
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the normalization coefficient is 

 
0

2( 1)

1

m

n

m

n
N

δ
+

=
+

  (4) 

and δm0 is the Kronecker delta function. The radial order n is integer positive, and the angular 
frequency m can only take on values -n, -n + 2, -n + 4, ... n. 
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Despite the importance of the basis of Zernike polynomials, they present several 
drawbacks in practical applications. This is a reason why different authors prefer to use other 
alternative basis functions (Fourier, splines, etc). A major problem is that in real applications 
one works with discrete (sampled) arrays of data rather than with continuous functions, and 
then Zernike polynomials do not form a complete basis on the sampled circle [5]. As an 
example, the RMS error is probably the most common metric used to determine the difference 
between two wavefronts or between a wavefront and some ideal reference. By orthonormality 

of ZPs, one can compute that RMS error either point by point (
iw ) or between coefficients 

(
m

nc ) of the Zernike expansion. However, with a discrete number of samples, one finds that 

these two metrics provide different results in general: 

 2 2

,

.
m

i n

i n m

w I c≠∑ ∑   (5) 

This is because sampled ZPs are neither complete nor orthogonal, and as a result the 
discrete expansion is not invertible. 

In the discrete case, Eq. (1) can be written as W = ZC, where Z is a matrix whose columns 
are sampled Zernike polynomials and W and C are column vectors corresponding to samples 

and coefficients of the wavefront respectively. The lack of completeness implies that Z
−−−−1

 does 
not exist and hence we cannot solve Eq. (1) to obtain the coefficients. The standard way to 
overcome this problem is to oversample the wavefront and estimate a number of coefficients J 
lower than the number of samples I (J < I). The coefficients are then estimated by least 
squares fit to the data. In matrix notation, this is equivalent to compute the Moore-Penrose 
pseudoinverse of Z. (Z is not square as it has more rows –samples- than columns –
coefficients-): 

 ( ) 1

.
T T

−
=C Z Z Z W
⌢

  (6) 

The tilde means estimated, since the wavefront expansion is approximated. This 
estimation is optimal under a least squares criterion (minimum RMS error), but may not be 
exact (due to mode coupling and aliasing [15–17]) and always requires a redundant sampling. 
Therefore, the estimation of the coefficients of the Zernike expansion is still an open problem, 
which has attracted the interest of many researchers. 

Different studies have focused on alternative basis functions (Fourier, splines, etc [18].), 
estimation methods, or sampling patterns (random, optimized designs, etc [17,19].). In 
addition to these general problems, wavefront sensing (estimation from slope measurements 
[20]) is especially interesting in many applications: atmospheric turbulence measurements 
[21], optical testing [2], adaptive optics [6], ophthalmology [22], etc. In wavefront sensing, 
the coefficients are estimated from wavefront partial derivatives (ignoring constant factors): 

 ( ) 1
T

−
= Z Z ZC D D D M
⌢

  (7) 

where vector M contains the measurements (displacements along X and along Y of spots at 
the image of the sensor, which are proportional to wavefront slopes) and DZ is the matrix 
formed by the partial derivatives of the ZPs with respect to X and Y. Then, we have a matrix 
form similar to Eq. (6), but with the additional problem that the derivatives of ZPs do not form 
a basis even for continuous signals. This is somehow compensated by the fact that the 
dimensions of M (and columns of DZ) are 2I (double number of samples). 

In summary, the estimation of the coefficients of the Zernike expansion relies on 
redundancy (oversampling). Leaving wavefront sensing (Eq. (7) apart, and focusing on the 
more basic problem of inverting Eq. (1), to compute the coefficients of the Zernike expansion, 
our goal is to find an invertible discrete transform. When invertible, the discrete transform can 
be expressed as a square matrix (I = J), and that matrix must have an inverse. Furthermore, if 
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the basis vectors (matrix columns) are orthonormal, then the inverse transform (matrix) is 
equal to its transpose, which ensures numerical stability. For this purpose, we will depart from 
the Zernike polynomial basis on a continuous circle, and study the problem of completeness in 
the discrete case; in particular, the role of the sampling pattern. Then we find that determined 
types of non redundant sampling patterns do ensure completeness. Here we introduce the 
spiral pattern and compare it with random sampling grids. Once the problem of completeness 
is overcome, then it is straightforward to apply the Gram-Schmidt method to obtain an 
orthonormal basis over the sampled circular pupil. Then, we compute the discrete Zernike 
modes for different sampling patterns and number of samples. Finally, we implement the 
direct and inverse DZT (discrete Zernike transform) and evaluate its performance with some 
examples. 

2. Discrete Zernike transform 

For continuous signals, since ZPs form a complete orthonormal basis, we can solve Eq. (1) for 
the coefficients. Orthonormality implies that we can compute the coefficients as the 
projections (inner product) of the function W on each basis function: 

 ( ) ( )
1 2

0 0

, , .
m m

n nc W Z d d

π

ρ θ ρ θ ρ θ ρ= ∫ ∫   (8) 

In what follows, we study how to construct an orthonormal basis functions for the discrete 
case, so that we can apply a similar recipe to compute the coefficients, i.e. by simple 
transposition of the elements of the basis. 

In real applications, we will have a discrete (sampled) function 
j j

i i

j

W c Z=∑  ( ZCW =  in 

matrix notation), where we merged indexes n, m into a single index ( )( ) 22 mnnj ++=  

(starting with j = 0). For a given maximum order N of the polynomials, the total number of 
modes will be ( ) 231 ++= NNJ  . Let us investigate if there exist conditions where we can 

invert matrix Z and solve for WZC
1−= . A necessary condition is Z to be square, so that the 

number of coefficients equals the number of samples J = I. In what follows we will refer to 
this case as critical sampling. 

There are two common metrics to check whether a matrix can be inverted. The necessary 
condition is the rank ( ) JIRank ==Z . This guarantees that the matrix is not singular, and this 

is in fact the condition for completeness. In principle, this is a sufficient condition, but a 
further requirement is related to the real accuracy and numerical stability of the matrix 
inversion. A commonly used metric for numerical stability is the 2-norm condition number of 
the matrix; i.e. the ratio of the largest singular value of Z to the smallest [23]. When the 
condition number is near 1, the matrix is well-conditioned. In what follows we have used the 
inverse of the condition number which is always between 0 and 1. 

We have computed both the rank and condition number of matrix Z for different sampling 
patterns and number of samples. Some of these sampling patterns are depicted in Fig. 1. 
Square and hexagonal patterns are typical in Hartmann-Shack wavefront sensors, whereas 
hexapolar patterns are often used in optical design. All these sampling patterns yield singular 

Z matrices ( ( ) IRank <Z  and ( ) 0=ZDet ) as shown in Table 1. Perhaps, these types of 

regular patterns are not appropriate to sample Zernike polynomials. In polar coordinates these 
schemes are not so regular and highly redundant (both in ρ and θ). 

Different studies [15–17,19] have shown a strong influence of the sampling pattern on 
wavefront reconstruction from wavefront slopes. In particular, random patterns show better 
performance [17,19]. Perhaps, the subjacent effect has to do with the fact that random patterns 
are non redundant in ρ and θ (i.e. the values of coordinates are never repeated) which may 
help to avoid Z to be singular. Since all Zernike polynomials are different from 0, singularity 
of Z must come from redundancy between sampled basis functions. Then, let us suppose that 
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such redundancy in the Z matrix has to do with redundancy (repetition) of values of 
coordinates at the sampling points, and verify this idea through numerical simulation. 

For this purpose, we have implemented three cases with (i) pure random sampling; (ii) 
small random perturbations of regular sampling grids; and (iii) non-redundant deterministic 
sampling. 

2.1. Random and deterministic sampling patterns 

Random patterns (i) were generated as follows. Each sampling point is obtained by adding a 
random displacement to the coordinates of the previous sampling element. These 
displacements have a Gaussian distribution with zero mean and standard deviation equal to 
the diameter of the sampling element. Non-overlapping between samples and total inclusion 
of the sampling element into the measured pupil were imposed. Several masks were generated 
and compared in terms of the condition number of the Z matrix obtained for each of them, in 
order to choose the best realization. 

The perturbed regular sampling patterns (ii) were implemented by adding small random 
Cartesian displacements (

yx εε , ) to the sampling points of regular grids. These perturbations 

have a Gaussian distribution with zero mean, and their magnitude is determined by the 

standard deviation σ. We have performed simulations with perturbations ranging from 10
−8

 to 

10
−2

 in pupil radius units. 
Finally, we designed regular (deterministic) non redundant sampling patterns (iii). Regular 

sampling patterns are commonly obtained by convolution of the function to be sampled with a 

Dirac comb. Let us start with the angular coordinate. To sample the interval [0, 
maxθ ] with I 

equispaced samples, the interval will be ( )1max −= Iθδθ . We could apply a similar sampling 

to ρ. If the comb is 2D (2-dimensional) we obtain a pure polar sampling, which is redundant 
in both coordinates. A way to avoid redundancy is to apply 1D Dirac combs to both 

coordinates; or in other words to make ρ proportional to θ and set 
CNπθ 2max = . In this way 

we obtain a rolled 1D pattern, which is a spiral with NC cycles covering a circular area with 

radius
maxmax θρ ∝ . To completely avoid redundancy, we have to be careful with the 

periodicity of the angular variable, i.e. we need to guarantee that the number of samples per 
cycle δθπ2=NSPC  is non integer. The difference between polar and spiral patterns is that 

the former is a purely 2-dimensional whereas the spiral is obtained by rolling a 1D pattern. 
Despite their different nature both can adequately cover a circular domain. The linear spiral, 
however, has the problem that the density of samples per unit of area is high at the center and 
decreases towards the edge. One way to avoid that problem is to use an array of spirals to 
form an helical pattern [24]. Here, however, the goal was to avoid redundancy, and we 
implemented a sampling scheme based on a single Fermat or parabolic spiral, where the radial 

coordinate is proportional to the square root of θ ( ( ) maxθθθρ = ) to ensure that 1≤ρ . With 

the parabolic spiral we can keep the density of samples nearly constant when the angle is 
sampled uniformly. In a first approximation, this occurs when the number of cycles is 

proportional to the square root of the number of samples πINc ≈ . Usually Nc is chosen to 

be integer, but in some cases this could result in a redundant sampling. If that happens (see 

below) we add 1/2 cycle to break periodicity: Thus, we have two cases ( )πINc int=  or 

( ) 5.0int += πINc
; where “int” means nearest integer. In terms of the number of cycles 

( )12 −= INcπδθ . By definition, the radial coordinate ρ is never repeated, and with the 

additional condition that the sampling is not periodic in π2  (i.e. the number of samples per 

cycle is not integer, ( ) iNINSPC c ≠−== 12 δθπ ), then we avoid any redundancy in both 

radial and angular coordinates. The two examples implemented here correspond to orders N = 
7 and N = 12 and represent the two possible cases of Nc. In the first case we have J = I = 36; 
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then Nc = 3, 5386.0=δθ  radians and NSPC = 11.667. Since this is not an integer number, 

the sampling is non redundant. In the second example, N = 12 and I = J = 91. If we choose an 

integer value Nc = 5, 349.0=δθ  but then we will have NSPC = 18 and the sampling would be 

periodic in θ; i.e. redundant. We can avoid that redundancy by adding 0.5 cycles so that  

Nc = 5.5, then 384.0=δθ  radians and NSPC = 16.36. 

In some applications [25] it may be convenient to avoid the origin, starting the spiral with 

an initial sample at kδθθ =1
 with k >>1 (in particular for k = ∞ the initial point will be at the 

origin). Finally, the last sample of the spiral has to strictly meet the condition ρΙ < 1 to avoid 
partial occlusion of the marginal samples by the pupil. One possible criterion is to keep the 
area covered by this last sample equal to the average. As an approximation, here we impose 
the radial distance of the last sample to the pupil edge to be equal to half the width of the last 

cycle: ( )NSPCIII −−=− ρρρ 211 ; solving for 
NSPCII −+= ρρ 3132 ; and in terms of  

Nc: ( ) ccI NN 13132 −+=ρ . (In the examples 
36=Iρ  = 0.9388 for I = 36 and  

91=Iρ  = 0.9682 respectively.) Now, the sampling grid is fully determined by 

( )δθδθθ 1−+= iki
 with i = 1, 2,...I and 

IiIi θθρρ = . Therefore, given a maximum 

order N of Zernike polynomials, we want as many samples as Zernike modes, 

( ) 231 ++== NNJI  ; then assign a number of cycles (first option Nc integer when NSPC is 

non integer; or add 0.5 to avoid periodicity if NSPC integer). Finally choose a value for k to 
have the spiral sampling completely determined. 

Figure 1 shows some of the sampling patterns analyzed for N = 12, I = 91, hexagonal, 
hexapolar, random and spiral (square and perturbed regular patterns are not included.) 

2.2. Completeness of sampled Zernike polynomials 

Table 1 shows the rank of Z obtained for the different sampling patterns analyzed and for 
different number of samples. First of all, only random and spiral patterns permit to set an 
arbitrary number of samples which provides total flexibility to match the number of samples 
to any (maximum) order N of Zernike polynomials. This is the reason why some rows in 
Table 1 are incomplete. The 2D regular patterns considered here are centered at the origin (i.e. 
they include the central sample) and they can only match determined orders, except for the 
case N = 7 (I = 36), where we had to remove the central sample, otherwise we had 37 
samples. The Table shows that random spiral and perturbed patterns (except for perturbed 
hexapolar) provide maximum rank (completeness), whereas regular 2D patterns yield lower 
ranks. Among them, square and hexagonal seem equivalent, but the hexapolar shows the 
lowest value for 36 samples. 

Regarding condition numbers, for I = 36, regular 2D patterns give values between 0 

(hexapolar) and 10
−18

 (square and hexagonal) and much higher (3x10
−4

) for random and spiral 
patterns. The effect of random perturbations on matrix conditioning is shown in Fig. 2. For 
hexagonal and square patterns, conditioning improves with the magnitude of perturbation, 

reaching values similar to random and spiral patterns for perturbations between 10
−3

 and 10
−2

. 
The hexapolar sampling improves but never reaches acceptable values, which suggests that it 
is not suitable for modal analysis. The spiral is basically unaffected, except for large 
perturbations, for which the pattern becomes nearly random. We want to remark that 

perturbations with standard deviations above 10
−5

 seem enough to obtain conditioning levels 

(10
−7

) enough in theory to invert Z. These levels of perturbation are 4 orders of magnitude 
lower than sample coordinates, which are negligible in practice. 
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R91 S91

H91 HP91

 

Fig. 1. Examples of sampling patterns with 91 points providing singular (hexagonal and 
hexapolar, upper panels) and invertible (random and spiral, lower panels) (Z). 

Condition numbers of the order of 10
−4

 obtained for random and spiral patterns for I = 36 

permit us to compute Z
−−−−1

 with a reasonable accuracy. However, as the number of samples 
increases, the conditioning gets worse. For example, in the case of I = 91 samples, spiral and 

random patterns yield condition numbers of the order of 10
−8

. This means that numerical 
instability will increase and accuracy in the inversion of Z will decrease with I. 

Table 1. Rank of matrix Z for different sampling schemes (rows) and number of samples 
(columns). Square (Sq), Hexagonal (H) 

 Square Hexagonal Hexapolar Perturbed Random Spiral 

I = 36 (n = 7) 34 34 30 36 36 36 
I = 45 (n = 8) 39 - - 45 (Sq) 45 45 
I = 66 (n = 10) - - - - 66 66 
I = 91 (n = 12) - 87 88 91 (H) 91 91 
I = 120 (n = 14) 112 - - 120 (Sq) 120 120 

In summary, the completeness of sampled Zernike polynomial basis is strongly dependent 
on sampling pattern. The above results support the relationship between redundancy, low 
efficiency of sampling and lack of completeness. Taking into account the symmetry of ZPs 
where radial and angular parts are separable, polar (or hexapolar) sampling schemes are 
expected to have the highest redundancy in the Z matrix, which is confirmed by the lower 
values both in rank and condition number of Z. Non-polar sampling (square, hexagonal) has 
an intermediate level of redundancy, which can be improved by introducing small 
perturbations to the regular sampling grid. On the other hand either fully random or spiral 
patterns seem to guarantee completeness. The later has the advantage of being deterministic 
and regular. Nevertheless, completeness does not ensure an accurate inversion in practice. In 
fact for real applications where I is of the order or 10

2
 or higher, the matrix inversion will be 

instable numerically. 
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Fig. 2. Inverse of condition number of matrix (Z) .versus standard deviation of random 
perturbations of the coordinates of the sampling grid, for different sampling schemes with I = 
36: Square, hexagonal, hexapolar and spiral. 

2.3. Orthogonalization 

We have seen that there are three ways at least (random, deterministic and perturbed regular) 
to obtain sampling patterns providing complete basis of discrete Zernike polynomials (with I 

= J). However, the condition number Z is low so that the estimation of Z
−−−−1

 could be instable 
numerically and noisy, getting worse as the number of samples increases. Only a complete 
and orthogonal basis would warrant an adequate modal representation of the signal. The 
orthogonalization of sampled ZPs was proposed and successfully implemented before as an 
alternative wavefront estimation method [26,27], but only for standard (incomplete) sampling 
schemes. This means that the inversion is applied to a subspace of dimension 

( ) IRankJ <= Z . Since the initial rank of Z was lower than the number of samples, then the 

resulting number of orthogonal basis functions was lower than the number of samples; hence 
the resulting DZT transform was not complete and the initial samples cannot be exactly 
recovered from the coefficients. Here, we apply the same Gram-Schmidt orthogonalization 
procedure, but the difference is that now we first ensure that ( ) JIRank ==Z , where J is the 

number of orthogonal basis functions; i.e. discrete Zernike models. 
In the Gram-Schmidt orthogonalization process, the initial matrix Z is decomposed into a 

product [23]: 

 =Z QR ,  (9) 

where Q is the matrix formed with the new orthonormal basis vectors and ZQR
T=  is an 

upper triangular matrix passing from the Q to the Z basis. The importance of an orthonormal 
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basis is that it guarantees that T
QQ =−1 so that the inversion is easy and exact (optimum 

condition number = 1). Now we can express both the Q direct and inverse transform (the 
Discrete Zernike Transform). Nevertheless, we want to remark that the DZT will depend not 
only on the number of samples I, but also on the sampling scheme. For each sampling scheme 
s we will have a different Z matrix and hence a different basis change operator R and 
sampling-distinctive direct Q and inverse Q

T
 discrete Zernike transforms DZTs: 

 ( )j j j

i i

j

DZT c W c Q= =∑  and ( )1
.

j j

i i i

i

DZT W c W Q
− = =∑   (10) 

3. Modes of the DZT 

Let us analyze the resulting orthonormal basis functions; i.e. columns of the Q matrix. Zernike 
modes are highly significant in optics since each mode corresponds to a type of aberration: 
piston (n = 0, m = 0), tilt (n = 1, m =  ± 1), defocus (n = 2, m = 0), and so on. Each mode 
corresponds to a Zernike polynomial defined on a continuous circle of unit radius. Sampled 
polynomials do not form an orthogonal basis anymore, but if we apply a complete critical 
sampling scheme s, we can find a new orthonormal basis. The modes or basis functions for 
that particular sampling are the columns of matrix Q. These are linear combinations of the 
sampled Zernike polynomials, but these linear combinations may differ substantially from the 
originals, mainly for the higher orders. Figures 3and 4 compare the modes of the orthonormal 

DZT for random, R, perturbed hexagonal (with perturbation σ = 10
−3

) H and spiral, S, 

sampling patterns. The three upper rows correspond to 36 (n ≤ 7) samples, and the lower rows 

to 91 (n ≤ 12) samples. The bottom row (∞ number of samples) shows the continuous Zernike 
polynomials. (For the case H36 the central sample was removed, otherwise we would have 37 

sampling points). Only modes with non-negative angular frequency (m ≥ 0) are shown up to 
radial order n = 7. 

If we compare the discrete and continuous (bottom row) modes we can see clear 
differences. Many times we observe change of polarity (sign reversals) of different modes, 

depending on the sampling pattern and number of samples. Tilt 1

1Q , for instance, shows a sign 

reversal for random and spiral patterns for the low sampling rate (36), but for 91 samples we 
obtain the opposite case (no reversals except for the hexagonal one). In general, similarities 
between discrete and continuous modes increase with the number of samples as expected. The 
differences tend to increase with the order of polynomials. This is patent for the highest order 
modes n = 7 in the upper rows. 

In conclusion, the continuous Zernike polynomial expansion is not well suited in practical 
applications, since one has to deal with sampled signals or measurements. For discrete signals 
it is possible to find the modes (basis vectors), but they are specific for each sampling pattern 
and sampling rate. If the sampling pattern is complete, then we can obtain an invertible 
transform with the same number of modes than samples. For incomplete sampling, it is 
possible to find a subspace and the modes Q of that subspace, but then J < I and the inverse 
transform is ill-conditioned. 

4. Computer simulation and results 

We implemented a computer simulation to test these theoretical results. We used an ocular 
wavefront aberration pattern taken from the data set previously used in another study [28]. We 
focused on the case of I = 91 samples and tested for the different patterns. Different conditions 
were implemented with 91 and 182 wavefront modes (non cero coefficients), both with 
different levels of noise (0. 1%, 3% and 5%) added to the samples. The metric used was 
always RMS values (Eq. (5) or RMS differences (errors). 
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Fig. 3. Modes of the DZT, m

nQ (only m ≥ 0 are shown), for different sampling schemes: 

random (R), perturbed hexagonal (H) and spiral (S). The three upper rows correspond to I = 36 

samples and the three lower rows to I = 91. Bottom row represents the continuous (I = ∞) 
Zernike modes. 

First of all, we confirmed the inequality of Eq. (5). Even for the noise-free case and with 
equal number of modes and samples (91), the difference between the left and right sides of 
Eq. (5) is about 7.5%-10.7% depending on the sampling pattern. As expected, the direct 
computation on the sampled wavefront yields lower RMS values (underestimation). The 
lowest and highest biases were obtained with perturbed hexagonal (7.49%) and spiral 
(10.66%) samplings respectively. 
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Fig. 4. Modes of the DZT (continued). 

We applied both standard least squares estimation (Eq. (6) and the inverse DZT (Q
T
)  

(Eq. (10) to estimate the continuous 
ZC
⌢

and discrete 
QC
⌢

coefficients (first and second rows in 

Table 2), and from them we reconstructed the wavefront (3rd and 4th rows). For the sake of 
simplicity, we only show results for regular (unperturbed) hexagonal (H), random (R) and 
spiral (S) patterns. The original RMS wavefront was 2.5 µm. The results by the standard 
method (1rst row) are bad for the hexagonal pattern, even for the ideal case (left columns). 
The result is better for complete sampling schemes (R and S), but even then results are 
strongly affected by the presence of higher order modes (i.e. undersampling; central columns). 
Furthermore, results show huge errors in the presence of noise (right columns). Therefore, the 
standard method of Eq. (6) with critical sampling cannot be applied in practice. This is the 
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reason why modal estimation requires redundancy with I >> J. Using the DZT (and the 
complete schemes R and S), the results are greatly improved (the errors are of the order of 

10
−14

 µm). Note that now we applied matrix R to the continuous original coefficients to 
compute the RMS error in the discrete Q basis. Using the DZT the error also increases with 
the presence of higher order modes and noise, but improves by one (182 modes, central 
columns) or three (noise, right columns) orders of magnitude compared to the standard 
method. If we reconstruct the wavefront from the estimated coefficients, we observe that the 
standard method is affected by both under sampling and noise, but the DZT, Q transform is 
unaffected and the initial measurements are recovered with high fidelity. 

Table 2. RMS errors obtained with standard (Z) and discrete (Q) representations in 
coefficients (C) and in wavefront (W) for hexagonal, random and spiral sampling 

patterns. All values are in micrometers. 

 91 modes; 0 noise 182 modes; 0 noise 91 modes; 3% noise 

Sampling H R S H R S H R S 

( )
ZRMS CC
⌢

−  2.717 4.3x10−6 1.6x10−6 2.53 0.066 0.003 1.6x104 2.0 x103 1.2 x103 

( )QRMS CRC
⌢

−   3.1x10−14 1.1x10−14  3.8x10−4 3.8x10−4  0.61 0.64 

( )
ZRMS CZW
⌢

−  2.4x10−8 2.0x10−10 1.3x10−10 4.5x10−5 1.5x10−10 1.3x10−10 0.13 2.7x10−7 9.5x10−8 

( )
QRMS CQW
⌢

−   2.1x10−14 1.1x10−14  1.5x10−14 1.4x10−14  1.8x10−14 1.4x10−14 

5. Discussion and conclusions 

We have proposed and implemented an invertible discrete Zernike transform, the DZT which 
permits one to overcome the problems of lack of completeness and lack of orthogonality of 
sampled Zernike polynomials. This was a serious drawback in many practical applications 
since the only way to estimate the coefficients (modes) was through oversampling. Numerical 
stability of the pseudoinverse (Eq. (6) with real (noisy) data often requires more than double 

number of samples than modes (I ≥ 2J). In applications such as wavefront control by 
deformable mirrors this has an important cost, because mirrors use to have a limited number 
of actuators. Roughly speaking we could consider an actuator as a sample I. On the other hand 
one should be able to control the highest number of modes J for optimal performance. 
Completeness and orthogonality guarantee the possibility to reach that maximum, J = I. The Q 
transform implies to work in a discrete domain, and matrix R changes from the continuous to 

the discrete domain. However, the inverse transformation R
−−−−1

 from the discrete to the 
continuum may have a bad condition number in general. If we apply a complete sampling, 

then we can compute Z
−−−−1

, which implies that R
−−−−1

 also exists. Nevertheless, condition numbers 

get worse with increasing number of samples (from 10
−−−−4

 to 10
−−−−8

 when passing from 36 to 91 
samples), and this might affect numerical accuracy when trying to extrapolate from the 
discrete to the continuous wavefront. However there might be applications were it would be 
possible to work in the discrete plane, as for example wavefront modulation with discrete 
spatial light modulators, deformable mirrors, or modal iterative algorithms among others. In 

these cases the bad conditioning of R
−−−−1

 would not spoil the discrete coefficients. 
Previous studies suggested that random sampling patterns provided better performance in 

wavefront reconstruction from slope measurements. Here we found that random sampling can 
guarantee completeness of the sampled ZPs. In addition to that random solution, here we 
proposed a perturbed deterministic (hybrid) and also a non-redundant deterministic (ordered) 
sampling pattern. Contrarily to 2D sampling patterns, the proposed Fermat spiral is a rolled 
1D curve in which both coordinates increase monotonically. All these random, deterministic 
and hybrid patterns share the property that there is no redundancy in coordinates ρ and θ. This 
is possibly the reason why matrix Z is not singular in these cases. 

The discrete Zernike modes do change with the sampling pattern (see Fig. 3), which has 

physical consequences. For example, the spherical aberration of a standard lens ( 0

4Z  bottom 

row in Fig. 3) is different from that of a segmented mirror (or other optical systems). If one 
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has a mirror with 36 hexagonal facets the spherical aberration looks different: 0

4Q  for H36. 

The same applies for defocus, astigmatism and the rest of aberration modes. In fact, the 
aberration modes change both with the sampling type and the sampling rate, especially the 
highest orders. 

We believe that the non redundant (critical) sampling and the invertible DZT could be 
useful in a variety of applications such as optical design software, interferometry, wavefront 
sensing and aberrometry, optical testing in general, wavefront shaping and control (adaptive 
optics, spatial light modulators, etc.) Critical sampling and invertible transforms are especially 
useful in iterative processes (either computational methods or experimental such as close loop 
control) where one has to pass from the spatial (coordinates) to the modal (coefficients) 

representations several times. The property T
QQ =−1 is then essential not only for improving 

speed but to avoid numerical instabilities and error boost up through iterations. 

Acknowledgements 

This work was supported by the Comisión Interministerial de Ciencia y Tecnología, Spain, 
under Grant FIS2008-00697. R. Rivera acknowledges support by Alban, the European Union 
Program of High Level Scholarships for Latin America, scholarship Nº E07D402088CL. 

#114072 - $15.00 USD Received 9 Jul 2009; revised 20 Nov 2009; accepted 4 Dec 2009; published 18 Dec 2009

(C) 2009 OSA 21 December 2009 / Vol. 17,  No. 26 / OPTICS EXPRESS  24281


