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Introduction

Most of the climate change models predict an increase of aridity of the Mediterranean 
basin and that drought episodes could be more frequent in the present century due to 
climate change (IPCC 2007). Similar changes are also expected in temperate regions 
in the Northern Europe (Bréda et al. 2006) and South-Eastern Europe (Chapter 8, 
this volume), with direct consequences on forest health. A massive dieback of oaks 
forest (both evergreen and deciduous) has been observed some summers in last 
decades (Peñuelas et al. 2001; Corcuera et al. 2004), and several authors have 
shown how some mesic Meditterranean trees could be replaced for other more xeric 
species under the current scenario of climate change in Mediterranean forests 
(Martínez-Vilalta et al. 2002; Peñuelas and Boada 2003).

The functional characteristics of Mediterranean deciduous trees provide an 
interesting model for investigating adaptative mechanisms to drought, useful to 
understand future changes of northern forests in a scenario of climate change 
(Baldocchi and Liukang 2007). The genus Quercus comprises 531 tree and shrub 
species distributed among contrasting phytoclimates in the Northern Hemisphere, 
from temperate and subtropical deciduous forests to dry Mediterranean evergreen 
woodlands (Corcuera et al. 2002). The range of variation in the ecophysiology of 
Mediterranean oaks is comparable to that observed between other deciduous and 
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evergreen species in the Mediterranean basin (Duhme and Hinckley 1992), in the 
Californian chaparral (Blake-Jacobson ME 1987) and in Tropical dry forests 
Sobrado (1986). Corcuera et al. (2002) identified three phytoclimatic groups of 
Quercus, which were characterized by their contrasting ecophysiological response 
to water stress. They found that Mediterranean deciduous oaks perform better than 
temperate deciduous oaks under water-stress conditions, the last having difficulties 
to thrive in dry soils. Valladares et al. (2004) predicted that Mediterranean decidu-
ous oaks will be replaced by evergreens, and the former species will extend in areas 
currently occupied by temperate deciduous oaks.

The main characteristics defining Mediterranean ecosystems generally are the 
scarcity and irregularity of rainfall (P) and potential evapotranspiration (E

P
) values, 

the latter usually higher than the former in an annual basis. Mountainous areas, 
where Mediterranean deciduous oaks are mostly located, exhibit similar or higher 
P than E

P
 values, but a much higher evaporative demand than rainfall during summer, 

in addition to long and cold winters. These climate conditions determine that 
deciduous oaks have a short growing season (around 120 days year−1), mostly coincident 
with the period without rain. Deciduous leaves can be as costly to produce as ever-
green leaves (Merino et al. 1982) and in a relatively short time, should maintain a 
high photosynthetic activity throughout summer to obtain a positive annual C balance. 
This pattern clearly contrasts with that of Mediterranean evergreen species, which 
are photosynthetically active all year. Evergreen oaks gain significant amounts of C 
in winter period, and water stress usually cause stomatal closure early in the growing 
season (Rodá et al. 1999).

Under these circumstances, Mediterranean deciduous trees surely exhibit a high 
dependence on soil water reserves (SWR) accumulated on soil along wet season. This 
reserve however could be limited in many sites because of the frequent shallowness 
of Mediterranean soils. The investment on very deep root systems is a morphological 
traits frequently associated to Mediterranean evergreen species (Canadell et al. 1996; 
Moreno et al. 2005). However this trait was scarcely studied in Mediterranean 
deciduous trees yet. We hypothesised that Mediterranean deciduous oaks have also 
very deep root systems and use bedrock water reserve; this powerful root system 
entails a resource use allowing an increment in the aboveground production.

Apart of the use of SWR, Mediterranean deciduous forest could exhibit a set of 
anatomical and physiological traits compatible with long summer drought. In this 
article we also analyse the diurnal and seasonal dynamic of stomata conductance 
on one hand and, on the other hand, a set of potential of morphological/physiological 
traits that could contribute to increasing the water use efficiency (WUE).

Stomata regulation is considered the most immediate mechanism of the optimi-
sation of C-gain/water-loss in plants (Rambal 1993) and we hypothesised that 
deciduous trees exhibit a non-conservative pattern of water transpiration (stomata 
activity), contrary to their neighbour or co-existing evergreen trees (Damesin et al. 
1998). The reduction of leaf area index (LAI) is a third mechanism associated to 
optimisation of WUE and, presumably, Mediterranean deciduous oaks have low 
LAI compared to congeneric species, either temperate deciduous or Mediterranean 
evergreen oaks.
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10 Mediterranean deciduous trees coping with summer drought[AU1]

Given the wealth of information that exists on water dynamics of temperate 
coniferous and deciduous broadleaves (e.g., Bréda et al. 2006), and Mediterranean 
evergreen trees and forests (e.g., Rodá et al. 1999; Ciais et al. 2003), corresponding 
knowledge is scarce about Mediterranean deciduous species. The understanding of 
these southern deciduous forests is needed for modelling water budgets and water 
yield, planning forest conservation and/or restoration programmes, and understanding 
the future dynamic of both Mediterranean and temperate forests under current 
scenarios of climate change.

In this article we analyse how a Mediterranean deciduous oak, Quercus pyre-
naica, with a short vegetative period coincident with summer drought, cope with 
water deficit in that period. We revised published data on temporal dynamic of soil 
moisture and physiological status of tree leaves of several forest stands of Central–
Western Spain and discuss the significance of soil water reserve (SWR) and deep 
rooting system on the maintenance of tree transpiration and physiological activity 
of the trees along summer drought. Accordingly, the following three questions are 
addressed: (a) Are trees water-limited during summer drought? (b) What is the tree 
water source during summer drought? and (c) Which adaptative mechanisms 
exhibit this species to face water deficit?

Study Species

Quercus pyrenaica is a slow-growing Mediterranean deciduous species, distributed 
throughout mountainous sub-humid Mediterranean areas of the southwestern 
region of Europe, especially in the western regions of the Iberian Peninsula. It has 
a short growing season (from the end of May till mid October), which may deter-
mine its distribution. The species is well adapted to survive maintaining photosyn-
thetic production in spite of the long summer water deficit (Gallego et al. 1994; 
Rico et al. 1996) and, therefore, it often occupies transitional areas from sub-humid 
to semi-arid conditions (Hernández-Santana et al. 2008a). Despite its distribution 
and interesting ecology, Q. pyrenaica has been poorly studied in comparison with 
other Mediterranean Quercus species (Silla and Escudero 2006), probably because 
of its low aboveground productivity (Gallardo 2000).

A common strategy to thrive on water-limited conditions is the reduction of the 
transpiration area (Rambal 1993); then, leaf area index (LAI) usually decreases 
with water deficit (Grier and Running 1977; Ogaya and Peñuelas 2007). Hernández-
Santana et al. (2008a) have reported an average value of 2.4 m2 m−2 for Q. pyrenaica 
stands located in Central–Western Spain. This values can be qualified as low or 
very low compared with LAI values reported for other congeneric species: 5.8 for 
Q. petraea (Davi et al. 2009), 5.0 for Q. robur (Chapter 4, this volume), 3.4 for Q. 
cerris (Llorens and Domingo 2007), 3.3 and 2.9 m2 m−2 for Q. pubescens (Čermák 
et al. 1998; Damesin et al. 1998, respectively).

In a comparative study of 17 Quercus species (Corcuera et al. 2004), Q. pyrenaica 
shows values for some water-related parameters closer to Mediterranean evergreen 
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oaks than those of deciduous ones. For instance, Q. pyrenaica showed very low 
leaf water potential (Y

l
) at the turgor-loss point (Y

tlp
 < −3.2 MPa), similar to 

other Mediterranean deciduous oaks (Q. cerris and Q. frainetto) and clearly 
lower than temperate deciduous ones (around −2.4 MPa). Osmoregulation is a 
strategy for drought tolerance, and Q. pyrenaica showed a low osmotic potential 
(p) at full turgor (p

o
 < −2.6 MPa), again similar to other Mediterranean decidu-

ous oaks and clearly lower than temperate deciduous ones (around −2 MPa). 
Finally, Q. pyrenaica showed a high maximum bulk modulus of elasticity (e

max
 » 18 

MPa), the highest among the deciduous oaks. More inelastic tissues will result 
in a more rapid decrease of turgor with loss of water; this will generate a steeper 
soil to leaf water potential gradient and, consequently, less leaf dehydration. 
This may improve water uptake from dry soils, avoiding severe water deficit in 
leaf tissues, what is important for species with deep rooting as oaks. Their capacity 
of exploiting deep soil layers improves soil–water extraction, maintaining the soil 
to leaf water potential gradient without leaves becoming too much dehydrated 
(Aranda et al. 2004).

Study Area

Data used in this article are based on a long-term monitoring carried out in four Q. 
pyrenaica stands located in the Sierra de Gata (40° 2¢ 40″ N, 3° 0¢ 50″ W, CW of 
Spain). Four stands are located in a smoothly hilly area along a rainfall gradient: 
720, 872, 1,245 and 1,580 mm a−1 for S

dry
, S

m-dry
, S

m-wet
 and S

wet
, respectively. The 

climate is sub-humid Mediterranean according to the Emberger’s climogram, with 
relatively high amount of annual rainfall and moderate temperatures (annual mean 
about 12°C). Soils are acid, predominantly Cambisols with a typical A-humic, 
B-weathering, and C-horizons (AhBwC profile) developed over granites, gneiss, 
schists, and greywackes.

From litterfall data (Gallardo et al. 1998) we have estimated LAI values ranging 
from 1.8 and 2.6 m2 m−2 in the four Q. pyrenaica stands. These values are similar 
to those reported for other Q. pyrenaica stands (Hernández-Santana et al. 2008a).

Other characteristics of the four stands are given in Table 10.1.

Temporal Dynamic of Soil Moisture. Estimation of Stand 
Evapotranspiration

Soil water content (SWC), in terms of both extreme and mean values, increased 
gradually with soil depth throughout growing season (June–September). The minimum 
SWC was found at the surface, as expected, owing to a more marked drying process 
at the soil surface (Fig. 10.1). Increases in SWC at depth, with a certain delay over 
the more superficial horizons, were noticeable from the beginning autumn, i.e., the soil 
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wetting front advanced very rapidly (data not shown). The pattern of soil profile 
dryness, similar throughout years and plots, showed a gradual change of the relative 
importance of the water at different depths (Fig. 10.1). Comparing SWC values of 
consecutive dates, it observed that at the beginning of the growing season, soil dry 
mostly in the uppermost soil layers, while dryness is a slow process at the deep 
layers. Over time, the deep soil water acquires higher relative importance; that is, 
SWC values decreases mostly at deep layers, indicating that only deep soil water is 
being consumed by plants.

The seasonal variation of SWC within the first 100 cm depth closely mirrored 
the precipitation pattern, with alternating wet and dry periods occurring in all 
stands and years analysed (Fig. 10.2). Autumn recharge entailed a rapid soil 
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Fig. 10.1 Temporal evolution of soil drying in Quercus pyrenaica forests of Central–Western 
Spain. More examples, including soil re-watering period, in Moreno et al. (1996), Vicente et al. 
(2003)
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10 Mediterranean deciduous trees coping with summer drought

moistening, obtaining frequently maximum values of SWC at the end of autumn. 
Although in dry autumn, complete soil recharge was reached later, it was 
reached every year. Then, SWC content remained more or less constant till mid 
spring, when soil begun to dry quickly. Some years, when trees leafed out (end 
May–early June) more than 50% of the available water content (AWC) had been 
consumed and, every year, AWC practically was exhausted halfway through the 
summer. Then the soil remained similarly dry during 30–50 days, with the 
exception of some abnormally wet summer. The situation of water deficit 
occurred earlier and lasted longer at the dry sites, but minimum SWC values are 
similar for each plot every year. On average, SWC declined from the bud burst 
to the end of the summer by 115 mm in S

wet
, 111 mm in S

m-wet
, 113 mm in S

m-dry
, 

and 79 mm in S
dry

, differences being more related with soil depth and texture, 
than rainfall amounts (Table 10.1).

From the temporal evolution of SWC, monthly actual evapotranspiration (E
A
) of 

the four stands was calculated by applying a simple iterative model of monthly 
water balance (Moreno et al. 1996). The model is based on the relationship between 
deep drainage (water flowing down from the soil to the bedrock; Dp) and SWC, and 
on the limitation imposed by E

P
 (potential evapotranspiration). These authors found 

that P was significantly related to Dp but not to E
A
. The higher P values in wet and 

cold season were, the higher Dp values were, without involving a significant change 
in the water availability for plants. Rainfall interception was moderate and surface 
runoff negligible (15 and <0.5% of the rainfall, respectively). The limited SWR 
determined moderate to low E

A
 rates in the growing season (Table 10.2) and with 

Table 10.2 Mean values of precipitation (P), actual evapotranspiration 
(E

A
), and ratios of actual and potential evapotranspiration (E

A
/E

P
) in four 

Q. pyrenaica stands located along a rainfall gradient (wet, moderately wet, 
moderately dry and dry sites). Data refer consecutive growing seasons 
(May–September)

Growing season Water flow

Experimental sites

S
wet

S
m-wet

S
m-dry

S
dry

1990 P 207 184 179 137
E

A
180 202 193 159

E
A
/E

P
0.29 0.32 0.31 0.25

1991 P 114 104 107 82
E

A
205 178 213 154

E
A
/E

P
0.34 0.29 0.34 0.24

1992 P 347 272 244 173
E

A
216 209 208 167

E
A
/E

P
0.37 0.35 0.35 0.27

1993 P 562 422 407 342
E

A
261 256 278 239

E
A
/E

P
0.48 0.46 0.49 0.42

Average P 308 246 234 183
E

A
216 211 223 180

E
A
/E

P
0.37 0.36 0.37 0.30

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

t2.1

t2.2

t2.3

t2.4

t2.5

t2.6

t2.7

t2.8

t2.9

t2.10

t2.11

t2.12

t2.13

t2.14

t2.15

t2.16

t2.17

t2.18

t2.19

t2.20

t2.21



G. Moreno et al.

scarce differences among plots. E
A
 differs significantly only among S

dry
 and the rest 

of stands, because of the lower P and SWC of the former site. Maximum E
A
 value 

was usually found in June, and August usually showed the lowest mean values. The 
E

A
 values (mm day−1) for August ranged from 0.40 to 0.97 for S

wet
, 0.74 to 0.87 for 

S
m-wet

, 0.74 to 0.90 for S
m-dry

, and 0.37 to 0.80 for S
dry

. According to the low E
A
 

values, it should seem that Q. pyrenaica trees experienced a strong water deficit, 
with mean E

A
/E

P
 ratios ranging, on average, from 0.30 to 0.37 in the growing season 

(0.14–0.28 in August).

Daily and Seasonal Evolution of Stomata Activity. Estimating 
Tree Transpiration

Studies carried out in two extremes of the rainfall gradient (S
wet

 and S
dry

) showed 
that trees maintained very favourable water conditions throughout summer, with 
predawn leaf water potential (Y

l-pd
) very high at two sites in two consecutive sum-

mers (Fig. 10.3). Only 1 day of the 18 monitored, the Y
l-pd

 was < −1 MPa (Gallego 
et al. 1994). Similarly, Hernández-Santana et al. (2008a) found Y

l-pd
 < −1 MPa only 

1 day from a total of 24 days monitored (2004–2006) in different Q. pyrenaica 
stands, while evergreen-oak forests frequently reach Y

l-pd
 values around −4 MPa 

(Savé et al. 1999).
Y

l-pd
 correlated better with the seasonal dynamics of SWC of the deepest layers 

(60–100 cm soil depth; Gallego et al. 1994). Differences between wet and dry sites 
were only found at the end of the driest summer. Leaf water potential (Y

l
) decreased 

quickly during the day with the minimum value early in the afternoon, but it 
remained the whole time above the turgor-loss point (−3.2 MPa; Corcuera et al. 
2002). In the afternoon, Y

l
 increased also quickly, and at the sunset values similar 

to Y
l-pd

 has been reached (Fig. 10.3).
Despite the rapid decrease of Y

l
, stomatal conductance (g

s
) was high in all moni-

tored days (Fig. 10.4). Maximum mean values of gs (around 250 mmol m−2 s−1) and 
mean daily values varied very little along summer (Fig. 10.4), in spite of the fact 
that SWR was depleted. The diurnal behaviour of stomatal activity (g

s
) indicated 

the absence of limiting factors most of the summers; g
s
 increased in the morning 

and reached a maximum about 3 h before the daily minimum in Y
l
 occurred. 

Maximum g
s
 values were reached at wet site (S

wet
), but daily curves showed a more 

quick and acute decreased of g
s
 along day at S

wet
, defining a stronger effect of water 

deficit at S
wet

 than at S
dry

.
Stomata conductance behaviour with respect to atmospheric humidity may be 

linear or nonlinear, depending on the type of control mechanism. Rico et al. (1996) 
showed for S

wet
 and S

dry
 stands that stomata conductance of Q pyrenaica remained 

constant at low and moderate vapour pressure deficit (VPD) and strongly decreased 
after a VPD threshold (2.4 kPa). This response is interpreted in terms of high sen-
sitivity to drought and weak functional adaptative strategy of trees, similarly to 
other deciduous Quercus (Chambers et al. 1985). This decrease of g

s
 with VPD was 

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224



10 Mediterranean deciduous trees coping with summer drought

Sdry-
29/7/91
Sdry-
13/8/91
Sdry-
4/9/91
Swet-
30/7/91
Swet-
14/8/91
Swet-
5/9/91

1-Apr 1-May 31-May 30-Jun 30-Jul 29-Aug 28-Sep

Swet -
1991

Sdry -
1991

Swet -
1992

Sdry -
1992

−4

−3

−2

−1

0

4 7 10 13 16 19 22

Time (h)

−1,5

−1

−0,5

0

Le
af

 W
at

er
 P

ot
en

tia
l, 

M
P

a
P

re
da

w
n 

Le
af

 W
at

er
 P

ot
en

tia
l, 

M
P

a

Fig. 10.3 Daily curve of leaf water potential (Y
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and seasonal evolution of predawn leaf water potential (Y
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more attenuated, but began earlier (lower VPD), at the drier site. Here g
s
 showed a 

more linear tendency, typical of species adapted to aridity, with a conservative 
strategy. g

s
 showed also little response to Y

l
, remaining high in certain range of Y

l
. 

After a threshold (Y
l
 around −2 MPa) a rapid decrease in g

s
 occurred as potential 

continued to decline. Winkel and Rambal (1990) detected similar response in other 
deciduous oaks. Differences between dry and wet sites were again detected, 
although less acute than for g

s
 response to VPD. A better response of g

s
 to Y

l
 was 

detected in dry site, with a high threshold and a less pronounced trend than in wet 
site (Rico et al. 1996).

From seasonal and diurnal curves of g
s
 values, VPD and LAI data, E

A
 was esti-

mated for S
dry

 and S
wet

 stands. Estimation also involved the calculation of the decou-
pling coefficient (Ώ) of Jarvis and McNaughton (1986), which is a measure of the 
coupling between conditions at the canopy surface and in the free air stream. For 
the study stands and days, we have estimated Ώ values moderately high (0.34 on 
average), as a result of large stomata and low wind velocities. This value indicated 
a rather low stomata control of transpiration (which grows progressively weaker as 
Ώ approaches 1.0) if compared with other broadleaf forests (Jarvis and McNaughton 
1986; Goldberg and Bernhofer 2008).

Values of E
A
, so estimated, do not show a clear seasonal trend or clear differences 

between sites; values ranged 2–4 mm day−1 (Fig. 10.5). Recently, Hernández-
Santana et al. (2008b) also reported values of daily E

A
 above 2 mm for most of 

the summer days in similar Q. pyrenaica forest stands. E
A
 values here estimated 

are threefold higher than those estimated from soil water balance. Although 
both approaches of E

A
 estimation have a certain level of uncertainty, the 

high differences must be, a least partially, explained because of the existence of 
an additional source of water for tree transpiration that is not accounted in the 
soil water balance.
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from stomata conductance (g
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Lessons Learn

Quercus pyrenaica Oak Is Only Slightly Water-Limited 
During Summer Drought

In response to progressive decreases in soil water, no substantial changes were 
found in Y

l
 or in g

s
, with a tendency to use up water reserves from progressively 

deeper soil layers, thereby avoiding marked stomata closure. Q. pyrenaica seems 
well adapted to surviving summer drought period while maintaining photosynthetic 
activity and it seems to have a non-conservative strategy of water consumption 
(sense Jones 1992), according to patterns described by other authors for different 
deciduous oaks (Mediavilla and Escudero 2003; Manes et al. 2006). Y

l
 and g

s
 of 

Q. pyrenaica remained high when SWR had been completely depleted. Tree tran-
spiration (E

A
) only decreased slightly during summer in dry and wet stands of 

‘Sierra de Gata’ mountains and other stands of Central–Western Spain (Hernández-
Santana et al. 2008b). However, stand E

A
 estimated from the soil water balance 

gave values much lower than those estimated from the leaf conductance, in spite of 
the fact that the latter only included tree transpiration and the former included soil 
evaporation (presumably negligible) and understorey (shrubs and grasses) transpi-
ration, besides the tree transpiration. Irrespective of possible imprecision on E

A
 

estimates, differences among both approaches allow speculating that trees take up 
water from an extra water reserve.

Quercus pyrenaica Oaks Depend on Thick Porous-Weathered 
Bedrocks

The ability to take up water stored in the upper few meters of the weathered bedrock 
during the pronounced dry season is likely the key feature allowing Q. pyrenaica to 
thrive under dry summer conditions in the shallow, rocky soils of study sites, as other 
authors have shown for other Mediterranean-type ecosystems (Sternberg et al. 1996; 
Witty et al. 2003; Schiller et al. 2007). Although weathered bedrock has much lower 
available-water capacities in the four Q. pyrenaica stands than those of soils 
(Table 10.1), the weathered rock zone is much thicker (several meters) than the soil 
(< −1 m). From our data, we estimated that a hydraulically active bedrock of around 
−2.2 and −4.8 m depth (on schist and granite soils, respectively, derived of old 
weathering during the last interglacial periods; Gallardo and Molina 1979) can pro-
vide the water needed by Q. pyrenaica trees during summer in the study area. Witty 
et al. (2003) reported that weathered bedrock supplied at least 70% of the water used 
by the Pinus jeffreyi during the growing season in Sierra Nevada mountains, USA.

The scarce information available on the Quercus pyrenaica rooting system indicates 
a rapid decrease of root length density with depth (Schneider et al. 2001) and also 
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that most of the root is located in the first −50 cm of the soil (Hernández-Santana 
et al. 2008a). However, deep rooting has been suggested to be a key trait to over-
come water depletion in the upper soil layers during the dry season in Mediterranean 
ecosystems (Rambal 1984; David et al. 2004; Kurz-Besson et al. 2006; Querejeta 
et al. 2007). Indeed, Cubera and Moreno (2007) and Hernández-Santana et al. 
(2008b) have shown that Q. ilex and Q. pyrenaica stands of Central–Western Spain 
use soil water located deeper than −2.5 m depth (Fig. 10.6).

A complete re-moistening of thick bedrocks in wet season needs of high rates of 
water infiltration and non-torrential rainfall regimes. However, rainfall regime 
seems to be changing and less frequent and more torrential rainfall events are pre-
dicted for the near future in Mediterranean Basin (IPCC 2007). Through a decadal 
analysis of the rainfall over the last 55 years, Hernández-Santana et al. (2008a) have 
shown a decrease of mean annual rainfall of 17.7%. This trend was more marked 
in summers (decrease of 26.1%). This trend could reduce adequate bedrock 
re-watering in the forthcoming years and water stress experienced by Q. pyrenaica 
would be more pronounced. For instance, Mediavilla and Escudero (2003) found 
Y

l-pd
 values as low as −3.2 MPa where thick weathered bedrock was not present.

Quercus pyrenaica Is a Well-Performed Deciduous Oak to Cope 
with Increasing Summer Drought

Morphological (e.g., low LAI) and physiological (e.g., low Y
tlp

 and p
o,
 and high 

e
max

) differences between Q. pyrenaica and other deciduous oaks will be surely 
crucial under this global change scenario. E

A
 values here reported and those 

reported by Hernández-Santana et al. (2008a) for Q. pyrenaica can be qualified as 
moderately low. E

A
 rates always showed an upper limit well below E

P
, indicating 

0-50 cm

50-10 cm

200-250 cm

0

0,05

0,1

0,15

0,2

0,25

0,3
S

oi
l w

at
er

 c
on

te
nt

 (
cm

3 
cm

3)

May-07 Jun-07 Jul-07 Aug-07 Sep-07 May-08 Jun-08 Jul-08 Aug-08 Sep-08 Oct-08
0

0,05

0,1

0,15

0,2

0,25

0,3

Fig. 10.6 Variation in SWC at three depths from June to September 2006 and 2007 in a Q. pyre-
naica stands in Central–Western Spain (Adapted from Hernández-Santana et al. 2008b)
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a control of transpiration by stomata (Rico et al. 1996; Hernández-Santana et al. 
2008b). The fact that transpiration becomes constant above a certain threshold of 
VPD, with a gradual stomata closure as VPD increases, protects xylem from cata-
strophic cavitations (David et al. 2004; Chapter 3, this volume).

Stomata activity and its response to atmospheric conditions varied clearly 
between sites (Rico et al. 1996). With favourable water availability, wet sites 
reached higher conductance values, although stomata functioning fell off 
sharply starting with a threshold value, mainly VPD and Y

l
. Under dry condi-

tions, more homogeneous conductance values are found, with a less pronounced 
but more immediate and constant response to environmental variability (Rico 
et al. 1996). This could be interpreted as a functional adaptation, implying a 
more conservative strategy of Q. pyrenaica growing in drier sites. This possible 
genetic differentiation will require further studies given its potential interest for 
future forest dynamic under increasing water deficit in Mediterranean and temperate 
forests in Europe.
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