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SUMMARY:: Computerized image-analysis of epifluorescence preparations is the most accurate and simple method for the
estimation of bacterial size. We present a simple and inexpensive image-analysis system used to measure and count plank-
tonic bacteria and presently in operation in our laboratory. We show that there is a wide range of image exposures (bright-
ness) over which the system performs correctly. Even though the procedure involves some steps that depend upon operator
intervention, the results obtained are highly reproducible and we have estimated the among-operator variability at 5%. We
then discuss the advantages and disadvantages of different algorithms used for the estimation of volume from two-dimen-
sional images and we identify those that perform better for curved and unusual cells. We finally estimate that 4 to 6 images
and 200 - 250 cells are the optimal number of images to be processed and cells to be measured to obtain accurate estimates
of population values with the minimum effort. These calibrations should be useful to all those laboratories that are imple-
menting image-analysis systems.
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RESUMEN: El anilisis de imagenes obtenidas a partir de preparaciones de epifluorescencia es el método mas sencillo y
preciso para medir el tamafo bacteriano. En este trabajo se presenta un sistema de anélisis de iméagenes sencillo y asequible,
actualmente en funcionamiento en nuestro laboratorio, desarrollado para medir y contar bacterias planctonicas. Se demues-
tra que el sistema funciona correctamente dentro de un rango amplio de brillo de imagen. Aunque algunos pasos del proce-
so dependen del operador, los resultados obtenidos fueron altamente reproducibles, y se estim6 una variabilidad entre oper-
adores del 5%. Se discuten las ventajas de los diferentes algoritmos usados para calcular el biovolumen a partir de imagenes
de dos dimensiones, e identificamos el algoritmo que funciona mejor en células curvados o de formas inusuales. Finalmente,
se estimd que para obtener medidas precisas del tamano medio de la poblacion con el minimo esfuerzo se debian procesar
entre 4 y 6 imagenes y contar entre 200 y 250 células. La informacion presentada en este trabajo puede ser til para aquel-
los laboratorios que deseen desarrollar sistemas de analisis de imagenes parecidos.
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INTRODUCTION

Size of an organism is an ecologically important
factor because it determines many aspects of its
metabolism, food size range and susceptibility to
predators (Peters, 1983). Thus, size can be used to
define individual and population characteristics of
groups of organisms. Size is also a factor required
for converting concentrations of organisms to bio-
mass, a value necessary to assess the role of the
organisms in the carbon cycle. For the smallest
organisms of the plankton, prokaryotes and small
eukaryotes, size is a parameter easier to determine
than genetic identity, and size diversity has been
proposed as a method to characterize picoplankton-
ic communities (Gasol et al., in press).

Even though size of planktonic bacteria is some-
times taken as a constant, it is well known that it
changes with growth rate (Chrzanowski et al., 1987,
Bjgrnsen et al., 1989; White et al., 1991), temperature
(Chrzanowski et al., 1987), activity (Gasol et al.,
1995), nutrient availability (Billen et al., 1990) or
grazing pressure (Jurgens and Gude, 1994). Certain
cells can be very large in nature (Cole et al., 1993;
Sommaruga and Psenner, 1995), while starved cells
are commonly very small (Novitsky and Morita,
1976). In a given system, the ratio between the small-
est cell and the biggest one can be as high as 100
(Cole et al., 1993). Considering the average for the
community, cell size can vary from 0.03 ym’ in an
Antarctic open-ocean sample (Lee ef al., 1995) to
more than 1 ym? in marine snow bacteria (Alldredge
etal., 1986). Average bacterial size is, thus, an impor-
tant parameter that can provide ecologically impor-
tant information about the bacterial assemblage.
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Several methods have been used in the past to
estimate average bacterial size: electron microscopy,
electronic devices (Coulter counter and flow cytom-
etry), and epifluorescence microscopy. Transmission
electron microscopy is tedious and expensive
because samples require long and elaborate process-
ing before analysis. Scanning electron microscopy is
relatively faster and cheaper, but processing of the
samples may produce cell shrinkage and underesti-
mation of bacterial size (Fuhrman, 1981). Coulter
counters have a very low resolution in the bacterial
size range and do not discriminate between bacteria
and dead or inert particles. Flow cytometry has sim-
ilar limitations, although specific staining may solve
some of these problems (Robertson and Button,
1989; Li et al., 1995; del Giorgio et al., 1996). The
most popular method for bacterial size measurement
relies on epifluorescence images of DAPI, Acridine
Orange or Acriflavine stained bacteria. Direct sizing
with a calibrated eyepiece is time-consuming (one
cell at a time) and not very precise. Obtaining a pho-
tograph from the sample, projecting it and measuring
the bacteria on a screen introduces an additional step
in the procedure and is also time consuming. Direct
computerized image analysis of the epifluorescence
samples is the most precise and fastest method, as
long as procedures are developed for cell edge detec-
tion and for converting cell area to volume.

There are several papers describing the devel-
opment of image analysis systems used to measure
bacterial size. Sieracki et al. (1985), Estep et al.
(1986) and Bjgrnsen (1986) were the first to intro-
duce image analysis of epifluorescence images to
size bacteria, but the computers and cameras at the
time were slow and expensive. Sieracki et al.
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FIiG. 1. — Schematic presentation of the hardware and the image analysis procedure as it is performed in our laboratory.
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(1989a) proposed a method of automatic thresh-
olding while Krambeck et al. (1990) suggested a
way to solve the halo effects via the application of
a nonlinear function. Sieracki et al. (1989b) intro-
duced an algorithm to compute biovolume by
automatically slicing the cells and rotating each
slice. A review of the method, with many useful
suggestions can be found in Psenner (1993). More
recently, newer and more sophisticated systems
have been introduced: cooled charge-coupled
cameras (Viles and Sieracki, 1992), color cameras
(Sieracki and Webb, 1991; Verity and Sieracki,
1993), or even digital confocal laser microscopy, a
very sophisticated method that can reach preci-
sions of 0.049 um pixel! (Bloem et al., 1995).
However, most of these systems are relatively
inaccessible to most researchers, specially due to
the prices.

In this paper we present a simple image-analysis
system, describing the whole process from sample
preparation to volume determination. Since many
details of image processing have been dealt with in
others papers, or are described in unpublished
reports, we will cite them without discussion. We
will focus on some problems that we have encoun-
tered and some of the solutions we have chosen. In
our experience, the system we present can be a great
aid for other laboratories when trying to setup an
image-analysis system.

DESCRIPTION OF THE IMAGE ANALYSIS
SYSTEM

Equipment: Hardware and software

The elements required for image analysis of
bacterial assemblages are an epifluorescence
microscope, a video camera and a computer
equipped with video acquisition capabilities
(frame grabber) plus the appropriate software for
image processing. Our system is slightly more
complex because image acquisition and image
processing are performed in different computers
(Fig. 1), but there is no need for doing so. We use
a Nikon Diaphot inverted epifluorescence micro-
scope and a Hamamatsu C2400-08 video camera
with a SIT (Silicon-Intensified Target) to amplify
the light signal. In the microscope, we introduced
a lens (a conventional ocular) in the optical path to
the camera, resulting in a pixel size (100x objec-
tive) of 0.067 um pixel!. This value is slightly

lower than that obtained by Psenner (1991, 0.083
pm! pixel) and Schroder and Krambeck (1991,
0.090 pm pixel '), and identical to that obtained by
Hygum (1995) and Sieracki et al. (1995) with dif-
ferent image analysis systems. The images are
captured by a Mitsubishi 386 PC computer run-
ning at 20 MHz, using the commercial software
MIP, developed by CID S.L., Espanha. Images have
512 x 512 pixels and 8-bit dynamic range (256
gray levels). The images are downloaded to an
Apple Power Macintosh (7100/66) where they are
processed with the public domain software NIH-
Image v. 1.57 (for powerpc) from the National
Institutes of Health, USA, distributed at
http://rsb.info.nih.gov/nih-image/. Many different
system configurations can be used instead of the
one we describe here. A detailed discussion on dif-
ferent image analysis systems and advances using
CCD cameras can be found in Verity and Sieracki
(1993).

Sample preparation

Water samples are fixed with formaldehyde (2%
final concentration) and kept cool and in the dark
until processed. Bacteria are stained with DAPI
(Porter and Feig, 1980) and collected on 0.2 uym
black Nuclepore filters. Other fluorescent dyes
could be used as well. High quality images (bright
cells and dark background) are necessary for image
analysis. The volume of sample to be filtered should
be adjusted to maximize the number of bacteria per
image without overlapped cells. According to our
experience, around 50 cells per image would be
optimal. Considering an effective diameter of 16
mm onto which the sample is filtered, and that each
image corresponds to an area of 0.12 mm? (34 x 34
pm), this implies the filtration of 8.5 ml of a sample
at 10° cells ml!.

Image capture

With the appropriate set up of the microscope,
camera and computer, the microscopic fields are
directly visualized on the computer screen. Images
of very flat fields with enough bacteria and absence
of very bright particles are selected to be digitized.
The camera controls allow regulation of light inten-
sity so that the bacteria appear as bright as possible
without having been overexposed. As we will show
later, there is a reasonable range of light intensities
that produce similar estimates.
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FIG. 2. — Overview of the whole process of image processing. The original image (upper left), is treated with a Gauss filter (upper right)
that prepares it for a Laplace filter (middle left). The image is then manually thresholded (middle right) and binarized (lower left). Finally,
the program analyzes all the detected objects (lower right).

Image processing

Bacteria visualized through epifluorescence
appear as bright objects surrounded by a halo of
decreasing light (Psenner, 1991). Because of this,
the detection of their edges is not trivial and requires
the application of several filters (discussed in detail
in Bjgrnsen et al., 1995). The most important is a
second derivative filter (i.e. Laplace) which finds
the points of maximal gray level gradient, assumed
to coincide with the true edge of bacteria. In addi-
tion, other filters must be applied to reduce the
noise. We have arrived at an optimal sequence for
our system involving the application of a Gauss fil-
ter (kernel 5x5), a Laplace filter (kernel 5x5), and a
median filter (rank 3), the latter run three times.
When working with NIH-Image, the option “Scale
Convolutions” should be selected when running the
Laplace filter (see later).

After filtering the image, the gray levels corre-
sponding to bacteria are selected in order to obtain
the binary image (black particles onto a white back-
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ground). This process is done interactively and the
criterion is to obtain the biggest cells without select-
ing non-bacterial objects. As we will discuss latter,
the Laplace filter prepares the image in a way that
this choice is highly reproducible. Next, the undesir-
able objects are interactively removed by comparing
the binary image with the original one. Finally, the
parameters of interest (i.e. Area, Perimeter, Length
and Width) are automatically measured for each sin-
gle bacteria. We decided not to consider particles
smaller than 0.2 ym of equivalent diameter, corre-
sponding to the filter pore-size used. Fig. 2 shows
the changes in the image throughout the different
steps of the process.

Most of the process can be automated by running
several Pascal macros that control the software. We
routinely apply three scripts, interrupted by the two
processes that require operator intervention: choice
of the threshold level, and deletion of undesired
objects. The macros are available via anonymous
FTP at cucafera.icm.csic.es, in the directory
pub/Massana.
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FIG. 3. — Set of algorithms used to calculate bacterial volume (V)
from the parameters obtained by image analysis: Length (L),
Width (W), Area (A) and Perimeter (P).

Volume calculations

To calculate a three-dimensional parameter, vol-
ume, from the two-dimensional parameters obtained
by image analysis, we consider all bacteria to be
cylinders with two hemispherical caps. Assuming
this model, we present three sets of equations (algo-
rithms) to calculate the volume (Fig. 3). The first
one uses directly the Length and Width as read by
the software (Eq. 1). The second algorithm uses
Area and Length, computing first the equivalent
width (Eq. 2) and then the volume (Eq. 3). The third
algorithm (Fry 1990) uses Area and Perimeter to
compute equivalent width (Eq. 4) and equivalent
length (Eq. 5) and then the volume (Eq. 6). We are
currently using this third algorithm since it appears
to be appropriate for most types of bacteria (see
later). This equation, however, caused problems
with some very small and round-like cells. In these
cases, we calculated the volume using only the Area,
and assuming the cell to be a sphere (Eq. 7).

TABLE 1. — Average bacterial volume (SE shown between parenthe-
sis) and bacterial abundance in the samples used for the different
calibrations reported in this paper.

System Average Abundance
volume (um?) (cells ml")
Mediterranean 0.054 (0.003) 1.94 x 10°
(cruise VARIMED93)
Mediterranean 0.055 (0.001) 8.70 x 10°
(Blanes Bay)
Drake Passage 0.040 (0.003) 3.23x 10°
(cruise ECOANTAR’94)
Santa Pola salterns (Alicante)
38 %o 0.084 (0.004) 9.83 x 10°
150 %o 0.106 (0.005) 5.43 x 107
352 %o 0.916 (0.085) 6.47 x 107
Lake Redd (Catalonia) 0.116 (0.043) 2.96 x 10°
Lake Ciso (Catalonia)
Epilimnion 0.058 (0.005) 6.30 x 10°
Metalimnion 0.104 (0.011) 1.95 x 107
Hypolimnion 0.134 (0.015) 1.09 x 107
Lake Bowker (Québec) 0.086 (0.004) 3.08 x 10°
Lake Massawippi (Québec) 0.116 (0.007) 1.40 x 10°
Lake Waterloo (Québec) 0.063 (0.003) 6.45 x 10°

Test images

Samples for the different tests and comparisons
were taken from several aquatic systems (Table 1),
mainly marine environments (FRONTS and
VARIMED cruises in the Northwestern Mediter-
ranean and ECOANTAR in the Drake Passage,
Weddell Sea and Bransfield Strait in Antarctica),
solar salterns (Bras-del-Port, Santa Pola, Southeast-
ern Spain) and freshwater lakes (different lakes in
Quebec, the Pyrenees and the Banyoles area, Cat-
alonia). The images used for the interuser compari-
son reported in Table 2 can be obtained via anony-
mous FTP at cucafera.icm.csic.es, in the directory
pub/Massana.

RESULTS AND DISCUSSION

Sizing aquatic bacteria involves the difficulty of
dealing with very small cells, close to the limit of
resolution of light microscopy. Under epifluores-
cence microscopy, bacteria appear as bright particles
on a dark background, which complicates determi-
nation of their true edges. Researchers have devel-
oped ways to account for the halo effects (Sieracki
et al., 1989a; Schroder and Krambeck, 1991; Psen-
ner, 1991; Bjgrnsen et al., 1995). However, there are
also other problems encountered in daily practice. In
this paper we present how we determine bacterial
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volume in our laboratory, and how we optimized the
process. We will separately analyze the different
steps that can introduce variations in size determina-
tions, such as the brightness of the captured image,
the choice of the threshold level or the effect of the
formula used to compute the bacterial volume.
Then, we will calibrate our system against reference
objects. Finally, we will discuss the statistically
appropriate number of cells and images to be ana-
lyzed to minimize errors.

Differences in brightness of the captured images

Conventional cameras do not have enough sensi-
tivity to detect the small and dim bacteria visualized
by epifluorescence. This problem is solved either by
photomultiplying the light signal or by increasing
the exposure time during image capturing. Our cam-
era (Hamamatsu C2400-08) follows the first strate-
gy. The operator chooses the brightness of the image
and, obviously, different operators can choose dif-
ferent levels. To test how variations in image bright-
ness affected our determinations, we captured three
images from the same microscopic field using three
levels of exposure, one considered to be the optimal,
and the others above and below this optimal level
(Fig. 4). This was done six times and in all cases the
average value obtained by the under- and overex-
posed image was statistically the same as the value
obtained for the optimally-exposed image (t-tests, P
< 0.005). We argue that most operators would
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FiG. 4. — Average bacterial volume (+SE) obtained after measuring
the same microscopic field captured at optimal brightness (opti-
mally exposed) and above (overexposed) or below (underexposed)
this optimal level.

choose a level close to the optimal, and in any case
within the range represented by the lower and upper
levels. This absence of difference, despite the wide-
spread prejudice that brighter images will result in
larger bacteria, is a demonstration of the power of
the second derivative filter used during image pro-
cessing.

Operator intervention in the image processing
The image processing proposed is semi-automat-

ic, with two steps requiring operator intervention.
The choice of the threshold level before binarizing

TABLE 2. — Variability among operators when estimating cell count and average bacterial volume. Five epifluorescence images were analyzed
by 10 different operators. Data are presented as the measured value divided by the Among-Operator Average. Among-Operator Error (AO
error) is computed as Standard error of interoperator estimates divided by Average value and is expressed as a percentage.

Cell count (10° cells ml")

Average bacterial volume (pm?)

Operator Image 1 Image2  Image3 Image4 Image5 Image 1 Image 2 Image 3 Image 4 Image 5
R 1.026 0.927 0.925 1.000 0.947 0.998 1.074 1.058 1.044 1.093
P 0.949 1.026 0.940 1.000 0.947 1.036 0.967 0.971 1.118 1.032
T 1.051 0.945 1.013 1.000 1.000 - - 1.092 1.116 1.249
E 1.026 1.116 1.013 1.063 1.000 - 1.034 0.906 0.906 0.890
C 0.949 0.999 0.984 1.000 1.105 1.018 1.100 1.075 1.093 1.008
G 1.026 0.963 1.013 1.000 0.947 0.884 0.798 - - -

J 0.872 - 0.925 0.875 0.985 - 0.783 1.056 0.819 -
N 1.077 1.098 1.101 0.938 1.053 1.064 - 1.025 1.000 0.810
D 1.077 1.053 1.072 1.125 1.105 1.026 1.006 1.043 0.903 0.918
H 0.949 0.873 1.013 - - 0.964 1.239 0.775 - -
Average 6.67 18.22 22.44 1.44 1.11 0.056 0.107 0.138 0.093 0.071
value

% AO 2.1 2.7 1.9 2.3 2.5 23 5.3 34 4.0 5.5

error
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the image is the most critical. This step is best
accomplished by the zero-crossing technique, an
automatic process that is also the most accurate
(Sieracki et al., 1989a). The image obtained after the
application of the Laplace filter presents gray level
values of 0 for the background, and a change from
negative to positive values at the points of maximal
gradient. Following the zero-crossing technique the
threshold level is set to 1. Together with bacteria,
many noise particles from the background are select-
ed, and thus high-quality images and special algo-
rithms to delete background noise are required. Here
we describe a process that is almost equivalent to the
zero-crossing technique. With the option “Scale
Convolutions” in NIH-Image, the results of the
Laplace filter are scaled, and the resultant gray value
for the background is higher than O (i.e. 150). This
allows to threshold at a slightly lower gray level (i.e.
148), and this avoids selecting most of the noise.
Therefore, our procedure allows the processing of
medium-quality images which could not be automat-
ically analyzed with the zero-crossing technique.

To test the effect of the operator in image pro-
cessing, five very different images were processed
by ten operators (Table 2). The average values for
cell count and cell volume were assumed to be the

A AB\\
ND

NA

AN

AN

L =6.23 units
W =2.25 units

N\ \\‘
N
2

A =11 units?

E

A =9 units?
P (v.1.57) = 9.96 units
Pe (from A) = 10.63 units

“true” values (Table 2). The table shows the values
estimated by each operator divided by the averaged
values. In this way, 75% and 88% of the estimates of
volume and 86% and 100% of the cell counts were
within the 10% and 20%, respectively, of the aver-
age values. The average error (as standard error of
interoperator estimates divided by average value)
ranged from 1.9 to 2.7% for cell counts, and from
2.3 t0 5.5% for cell volumes (Table 2). Interoperator
variability in analyzing the same image with our
system was therefore 5% as a maximum.

Calculation of bacterial volume

As shown in Fig. 3, different algorithms can be
used to calculate bacterial volume from the parame-
ters provided by the image analysis software. An
understanding of how the different parameters are
obtained is necessary to discuss the use of each algo-
rithm. One parameter, Area, is determined by count-
ing the number of pixels of the binarized cell (Fig.
5A). The other three parameters are derived from
the binarized cell by applying special algorithms
that may be different in different software packages.
NIH-Image calculates Length and Width as the
major and minor axis of the best-fitting ellipse (Fig.

C D

P (v. 1.57)= 13.26 units P (v. 1.58)= 13.31 units

F

P (v. 1.58)= 9.66 units

FI1G. 5. — A-C: Representation of the way in which NIH-Image (v.1.57) computes A, L, W and P from the binarized image of a bacterium
(see text for explanation). D: Calculation of the perimeter by the newer versions of NIH-Image (1.58 to 1.61). E-F: The insoluble geometri-
cal problem produced by NIH-Image with very small bacteria. The perimeter calculated by NIH-Image (9.96 with v. 1.57; 9.66 with v.
1.58) is smaller than the minimal perimeter that closes the area measured (10.63).
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5B). To calculate the Perimeter, NIH-Image (ver-
sions 1.53 to 1.57; here we used v. 1.57) determines
the coordinates of the cell (stars in Fig. 5C) and
finds new coordinates (points in Fig. 5C) averaging
the position of the three nearest coordinates. The
Perimeter is then calculated as the sum of the dis-
tances between these new coordinates (Fig. 5C).
Newer versions of NIH-Image (1.58 to 1.61) apply a
different formula, which adds 1 to the perimeter for
each edge pixel and the square root of 2 for each
corner pixel (Fig. 5D), and produces perimeters
slightly smaller than that previously described
(average of 2.1% in 111 cells analyzed).

The simplest algorithm (Algorithm 1, Fig. 3) uses
L and W directly as provided by the software. This
could cause some inaccuracies since the model used
to estimate L and W (ellipse, Fig. 5B), is different
from the model to calculate volume (cylinder with
two hemispherical caps). Of the two, W is the most
sensitive parameter, since W is considerably larger in
an ellipse than in a cylinder. Algorithm 2 reduces this
problem by using the equivalent width (W, Eq. 2),
calculated from A and L. Algorithm 3 makes a further
step and uses equivalent width (W, Eq. 4) and equiv-
alent length (L, Eq. 5), calculated from A and P.

As expected, Algorithms 2 and 3 performed simi-
larly for a variety of field samples (Fig. 6), unlike
Algorithm 1, which overestimated bacterial volume
in most instances. In addition, Algorithm 3 was clear-
ly superior when analyzing curved rods or filaments
(Fig. 7), since estimation of L with the best fitting
ellipse model resulted in a large error in these cases.
We assembled an image with curved bacteria from
different natural samples, manually measured their
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FiG. 7. — Comparison of the performance of Algorithms 2 and 3 to
calculate the volume of curved bacteria. The cells in the upper
panel were digitized from different natural samples. The length
along its main axis and the width (at three sections) were mea-

sured manually and used to calculate the “True” volume. The cells
were then treated by image analysis and their volume calculated

with Algorithms 2 and 3. OE: Overestimation as % of true value.

length and width and calculated their volume (the
“true” volume). We then applied both Algorithms 2
and 3 to estimate the volumes. Algorithm 3 overesti-
mated volume very slightly, while Algorithm 2 great-
ly overestimated the volume of these cells (Fig. 7).
Therefore, we decided to routinely use Algorithm 3.
A problem appeared, however, when using this algo-
rithm with NIH-Image and some other software pack-
ages (such as OptiLab). In some very small cocci the
area did not fit into the calculated perimeter (see Figs.
5E and 5F). This fact, caused by the way in which the
perimeter is calculated, is geometrically impossible and
results in a square root of a negative number in Eq. 4.
(This problem occurs in more cells with newer versions
of NIH-Image). For such cells, we suggest to use Eq. 7
which calculates the volume assuming the cell to be a
sphere, and thus using only A. We have analyzed the
effect of Eq. 7 for a set of cells, typically of less than 20
or 30 pixels in area, that presented this problem. The use
of Eq. 7 overestimated the volume (as compared to the
volume calculated with Algorithm 2) by 8.5% on aver-
age (N = 11), with cells ranging from 0.004 to 0.042
um?. This very slight overestimation does not affect the
estimation of average bacterial volume significantly.



Bacterial counts by image analysis

The image analysis of bacteria is not aimed at
counting bacteria, since the routine manual count is
easy and does not consume much time. In addition,
the area to be digitized is not selected at random, but
instead, fields with a high number of cells and lack
of bright particles or aggregates are chosen. Howev-
er, when we compared the bacterial numbers
obtained by manual counts and through image
analysis (considering the number of cells measured
and the number of images processed), we found a
very good agreement (Fig. 8). Therefore, simultane-
ously with bacterial volumes, the described image
analysis system provides a very good estimate of
bacterial abundance.

System calibration

Calibration of the system was done by compar-
ing estimates of the sizes of fluorescent beads
against the nominal sizes reported by the manufac-
turers. We used Polysciences Fluoresbrite latex
beads of 0.51, 0.74 and 2.44 ym in diameter. The
smallest beads are close to the size of most bacteria
in nature, only slightly larger than most marine bac-
teria. The second type of beads are at the highest end
of the size range encountered in nature and they are
similar to the sizes of many cultured bacteria. We
also used 2.44 pum beads to see how well did our
system perform in the size range of nanoplankton.
Our system produced a small overestimation of bead
area (3 - 8%, Table 3) and a small underestimation
of bead volume (4 - 13%) in the relevant size range.
Outside of this size range, our system underestimat-
ed bead volume (30%) although underestimation of
bead area was relatively small (7%). These values
are very reasonable and similar to those found by
others (Bjgrnsen, 1986; Schroder and Krambeck,
1991; Bloem et al., 1995).
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FiG. 8. — Comparison of bacterial abundance as obtained by direct
epifluorescence counts and automatically by image analysis. Sam-
ples from different water bodies.

Optimal number of images and cells to be ana-
lyzed per sample

The more cells analyzed, the better the estimate
of average bacterial size. However, the relationship
between number of cells (or images) analyzed and
error is not linear. From a certain point on, many
more cells have to be measured to decrease the error
by a certain percentage. To estimate the number of
cells that should be enough for minimizing the value
of variability (error) while simultaneously minimiz-
ing the sample treatment time, we calculated the
average volume and its standard error (SE) after
considering an increasing number of cells from the
same sample (Figs. 9A, 9C and 9E). Figs. 9B, 9D
and 9E show the average volumes and their SE
when increasing the number of images considered.
In the three cases analyzed the average volume was
fairly constant after 170 cells had been measured

TABLE 3. — Calibration of the image analysis system against fluorescent latex beads of known size. SE shown
between parenthesis. OE: Overestimation as % of nominal value.

Particle Area (um?) Volume (um?)

diameter Nominal Measured OE Nominal Measured OE

0.51 ym 0.204 0.221 (0.002) 8.3 0.069 0.066 (0.001) -4.3

0.74 ym 0.430 0.443 (0.004) 3.0 0.212 0.184 (0.002) -13.2
2.44 ym 4.676 4.361 (0.038) -6.7 7.606 5.257 (0.086) -30.1
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FiG. 9. — A-C-E: Change in average bacterial volume (filled circles) and its Standard Error (upper and lower lines) after averaging a differ-

ent number of cells in three different samples. The gray area in the graphs correspond to the final average volume (+ SE) in each sample.

Panels on the right (B-D-F) correspond to the same data sets as the left panels, averaging the results of one, two or more images analyzed
from the same sample.

and after four to five images had been treated. In
addition, the error did not decrease significantly
when more cells or images were treated. In conclu-
sion, 200 - 250 cells in 4 to 6 images are the ideal
values to obtain a good estimate of bacterial average
size, with minimal variability and with the least pos-
sible time consumed. An amount of 40-50 cells per
image is also good for having them spread out in the
filter without too many falling one on top of the
other.
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