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Abstract: We use recent lattice data on the gluon and ghost propagators, as well as the

Kugo-Ojima function, in order to extract the non-perturbative behavior of two particular

definitions of the QCD effective charge, one based on the pinch technique construction,

and one obtained from the standard ghost-gluon vertex. The construction relies crucially

on the definition of two dimensionful quantities, which are invariant under the renormal-

ization group, and are built out of very particular combinations of the aforementioned

Green’s functions. The main non-perturbative feature of both effective charges, encoded

in the infrared finiteness of the gluon propagator and ghost dressing function used in their

definition, is the freezing at a common finite (non-vanishing) value, in agreement with a

plethora of theoretical and phenomenological expectations. We discuss the sizable dis-

crepancy between the freezing values obtained from the present lattice analysis and the

corresponding estimates derived from several phenomenological studies, and attribute its

origin to the difference in the gauges employed. A particular toy calculation suggests that

the modifications induced to the non-perturbative gluon propagator by the gauge choice

may indeed account for the observed deviation of the freezing values.

Keywords: Nonperturbative Effects, QCD

ArXiv ePrint: 1004.1105

c© SISSA 2010 doi:10.1007/JHEP07(2010)002

mailto:arlene.aguilar@ufabc.edu.br
mailto:binosi@ect.it
mailto:joannis.papavassiliou@uv.es
http://arxiv.org/abs/1004.1105
http://dx.doi.org/10.1007/JHEP07(2010)002


J
H
E
P
0
7
(
2
0
1
0
)
0
0
2

Contents

1 Introduction 1

2 The two effective charges: definitions and basic concepts 3

2.1 Effective charge from the ghost-gluon vertex 4

2.2 The PT effective charge 5

3 Effective charges from lattice 7

3.1 The basic building blocks: gluon and ghost propagators from the lattice 8

3.2 Fixing the value of g2(µ) 10

3.3 G(q2) and L(q2): lattice data, renormalization subtleties, and SDE determi-

nation 12

3.4 Final results 14

4 Reconciling lattice with phenomenology 15

5 Conclusions and outlook 18

1 Introduction

In recent years, a large number of independent lattice simulations have furnished highly

non-trivial information on the infrared (IR) behavior of two fundamental ingredients of

pure Yang-Mills theories, namely the (quenched) gluon and ghost propagators, for both

SU(2) and SU(3) [1–6]. In particular, these simulations have firmly established that (in the

Landau gauge) the QCD gluon propagator and the ghost dressing function are IR finite and

non-vanishing. Given that the entire issue is under intense scrutiny, it is natural to explore

some of the most salient theoretical and phenomenological implications of these lattice

results. The purpose of the present work is to use the available lattice data to extract

the running of the QCD effective charge for a wide range of physical momenta, and, in

particular, its behavior and value in the deep IR. This quantity lies at the interface between

perturbative and non-perturbative effects in QCD, providing a continuous interpolation

between two physically distinct regimes: the deep ultraviolet (UV), where perturbation

theory is reliable, and the deep IR, where non-perturbative techniques must be employed.

The generalization of the concept of the renormalization group (RG) invariant and

process independent effective charge from QED to QCD is far from obvious, and has

been discussed extensively in the literature. In this article we will consider two of the

most standard definitions of the QCD effective charge. The first charge, to be denoted

by α(q2), constitutes the most direct non-Abelian generalization of the QED effective

charge. This charge is obtained within the framework of the pinch technique (PT) [7–11],
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and its generalization, known as generalized PT (GPT), introduced in [12]. Of particular

importance in this construction is the profound correspondence [13–17] that exists between

the PT (GPT) and the background-field method (BFM) [18]. The second charge, to be

denoted by αgh(q2), involves the ghost and gluon self-energies, in the Landau gauge, and in

the kinematic configuration where the well-known Taylor non-renormalization theorem [19,

20] becomes applicable [21].

Both effective charges mentioned above display a strong dependence on the detailed

characteristics of some of the most fundamental Green’s functions of QCD. Specifically, in

the case of αgh(q
2) the required ingredients are the conventional gluon propagator, ∆(q2),

(that of the Rξ gauges) and the ghost dressing function, F (q2); both quantities are simu-

lated on the lattice, and we will use them as inputs for obtaining αgh(q
2). For α(q2) the sit-

uation is slightly more involved. The fundamental ingredient one needs for obtaining α(q2)

is the gluon propagator of the PT-BFM, denoted by ∆̂(q2), which, unfortunately, has not

been simulated on the lattice yet. The way one establishes the required connection between

the conventional gluon propagator (simulated on the lattice) and the PT-BFM propagator

entering into the definition of α(q2) is by resorting to two powerful non-perturbative iden-

tities. First, a formal relation known as “background-quantum” identity [22, 23], given in

eq. (2.11), relates the two gluon propagators by means of a special function, G(q2), which

plays a central role in the new Schwinger-Dyson equations (SDE) derived within the PT

framework [24, 25]. In fact, interestingly enough, in the Landau gauge only, G(q2) coincides

with the well-known Kugo-Ojima function [26]. The second identity, given in eq. (2.16), al-

lows one to obtain G(q2) from F (q2), to a very good approximation, given that the function

that controls their difference, L(q2), is numerically rather small, and vanishes exactly at

q2 = 0. Therefore, even though the theoretical origin of these two effective charges is vastly

different [e.g., α(q2) originates from a propagator, while αgh(q
2) from a vertex], they are

very close in the entire range of physical momenta, and exactly coincide in the deep IR [27].

A large number of theoretical and phenomenological studies, based on a-priori very dis-

tinct approaches [8, 28–33, 35, 36, 38–41] support the notion of the “freezing” of the QCD

running coupling in the deep IR. In fact, when the QCD charge is constant (non-vanishing!)

in the IR, and the quark masses are ignored, QCD becomes conformally invariant. There-

fore, as has been emphasized amply in the recent literature [42], the IR finiteness of the

QCD effective charge constitutes a crucial requirement for the applicability of the powerful

AdS/CFT correspondence [43].

As has been argued in numerous works, the IR finiteness of the effective charge and

that of the gluon propagator are inextricably connected: they can be both traced back to

the same phenomenon, namely the non-perturbative generation of a dynamical gluon mass,

through the implementation of the Schwinger mechanism at the level of the SDE govern-

ing the gluon propagator [44]. Within the PT-BFM framework, the SDE solutions for the

gluon self-energy, denoted by ∆̂(q2), are used to form the RG-invariant combination d̂(q2) =

g2∆̂(q2) which, in turn, may be cast in the form d̂−1(q2) = [q2 +m2(q2)]{b ln( q2+4m2(q2)
Λ2 )},

where b is the first coefficient of the QCD β function, and Λ the QCD mass scale of

a few hundred MeV. The non-perturbative generalization of α(q2), the QCD effective

charge, is contained in the curly brackets; evidently, the m2(q2) in the argument of the
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logarithm tames the Landau pole, and α(q2) freezes at a finite value in the IR, namely

α−1(0) = b ln(4m2(0)/Λ2).

The IR finiteness of the effective charge obtained from the lattice data becomes man-

ifest in the following way. First, one uses the available data for the gluon, the ghost, and

the Kugo-Ojima function, to construct the lattice version of the corresponding dimension-

ful (mass dimension −2 ) RG-invariant quantity, denoted by d̂(q2) in the case of α(q2) (as

above), and r̂(q2) in the case of αgh(q
2) [see eq. (2.14) and eq. (2.3), respectively]. The next

step is to extract from d̂(q2) and r̂(q2) a dimensionless quantity, which will correspond to

the associated effective charge. Both RG-invariant quantities have the the gluon propaga-

tor, ∆(q2), as a common ingredient. Given that ∆(q2) is effectively massive in the IR, one

should follow the standard procedure used for massive gauge bosons, such as the W and

the Z, namely factor out a massive “tree-level” propagator of the form [q2 + m2(q2)]−1.

The procedure outlined above guarantees the freezing of the resulting coupling at a finite

(non-vanishing) value. If, instead, a q−2 is factored out of the IR finite gluon propagator,

one obtains (trivially) an effective charge that vanishes exactly as q2 in the IR.

The article is organized as follows. In section II we briefly review the definitions of

the two effective charges under study, and recall the fundamental identities, eq. (2.11) and

eq. (2.16), which relate their ingredients. Section III contains the main results of this work.

In particular, after reviewing some of the most important lattice results on the (Landau

gauge) gluon and ghost propagators, we construct the QCD effective charges and determine

their freezing value in the deep IR. In section IV we discuss the sizable discrepancy between

the freezing values obtained in the previous section and those favored by a variety of

phenomenological studies. We argue that the main reason for the observed discrepancy is

the difference in the gauge used: while the α(0) extracted from the lattice corresponds to

the BFM Landau gauge, the phenomenological constraints are almost exclusively obtained

in the BFM Feynman gauge. We will then derive an approximate formula that relates

the two, suggesting that the discrepancy may be indeed accounted for by the difference in

gauge choices. Finally, in section V we will discuss our results and present our conclusions.

2 The two effective charges: definitions and basic concepts

Before introducing the definitions of the effective charges and some of the important con-

cepts related to them, we establish the necessary notation. The gluon and ghost propagator

will be defined as

∆µν(q) = −i

[
Pµν(q)∆(q2) + ξ

qµqν
q4

]
, (2.1)

D(q2) =
iF (q2)

q2
, (2.2)

where ξ denotes the gauge-fixing parameter, and Pµν(q) = gµν − qµqν/q
2 is the usual trans-

verse projector. One has ∆−1(q2) = q2 + iΠ(q2), with Πµν(q) = Pµν(q)Π(q2) the gluon

self-energy; finally F (q2) is the so called ghost dressing function.
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2.1 Effective charge from the ghost-gluon vertex

A reasonable definition of the QCD effective charge may be obtained from the ghost-gluon

vertex in the Landau gauge [21, 30]. Exploiting the fact that, in this gauge, the ghost-gluon

vertex does not get renormalized, one can construct the RG-invariant product

r̂(q2) = g2(µ2)∆(q2)F 2(q2). (2.3)

It should be noted, however, that away from the Landau gauge additional information on

the form-factor of the ghost-gluon vertex must be supplemented, in order to define the

RG-invariant quantity analogous to the r̂(q2) of (2.3). This necessity, even though is not a

limitation of principle, brings about several ambiguities; for example, the aforementioned

vertex form-factor depends on two physical momenta, and a particular choice of the scale

must be implemented, in order for the effective charge to be a function of a single momen-

tum scale. In other words, one cannot obtain a universal definition of the charge, i.e., one

that does not depend on the specific kinematic details of the vertex employed.

Since ∆(q2) and F (q2) correspond exactly to the quantities measured directly on the

lattice, the non-perturbative behaviour of r̂(q2) is fully determined, without any addi-

tional assumptions. However, the extraction of a dimensionless and IR finite quantity from

r̂(q2) introduces a certain model-dependence, associated with the (yet unknown) dynami-

cal details of the effective gluon mass. Specifically, from the r̂(q2) one defines the effective

charge as

4παgh(q
2) = [q2 +m2(q2)]r̂(q2) , (2.4)

where α(µ2) = g2(µ2)/4π. The quantity m(q2) appearing in eq. (2.4) is the effective gluon

mass, displaying a non-trivial dependence on the momentum transfer q2, a common fea-

ture of dynamically generated masses. On general grounds, we have that in the deep IR,

m(0) ≡ m0 > 0, while in the deep UV, m(q2) is supposed to vanish. The exact way that

m(q2) approaches zero in the deep UV is determined by the operator product expansion,

and in particular by the gauge-invariant gluon condensate 〈G2〉 = 〈0| :Ga
µνG

µν
a : |0〉 of di-

mension four (no quarks were considered1) [47, 48]. Specifically, for asymptotic momenta,

m2(q2) ∼ 〈G2〉/q2, i.e. the gluon mass displays power-law running [49–51].

The first lattice determination of m0 dates back to the work of Bernard [52, 53]; there,

m0 was defined as one half the energy stored in the flux tube between adjoint sources at the

crossover or screening distance, i.e. at the separation at which two dynamical gluons are

created. More recently [54], m0 has been extracted from the lattice simulation of the gluon

propagator in the Landau gauge. These lattice studies suggest that m0 ∼ 400 − 600 MeV,

in agreement with the values favored by a variety of phenomenological estimates [55–62].

Unfortunately, to date, there is no definitive lattice determination of the full momentum

dependence of m(q2); for some recent attempts see [63, 64]. The main difficulty can be

1In addition to 〈G2〉, another quantity that might be relevant to these considerations is the gauge-

invariant non-local condensate of dimension two, usually denoted by 〈A2
min〉, obtained through the mini-

mization of
R

d4x (Aµ)2 over all gauge transformation [45]. Note that 〈A2
min〉 should not be confused with

the local gauge-variant condensate of dimension two 〈0| : Aa
µAµ

a : |0〉 (see, e.g. [46]) which cannot appear in

the operator product expansion of gauge-invariant quantities.
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Figure 1. The dynamical gluon mass of eq. (2.5) with m0 = 600MeV (black curve with squares)

and m0 = 500MeV (red curve with circles). The UV behavior predicted by operator product

expansion is represented by the blue curve; clearly, it diverges in the IR.

traced back to the fact that the mass becomes very small in the UV, and its signal gets

mixed in the background of the gluon propagator uncertainties. Therefore, for the purposes

of the present work we will resort to a simple model of m2(q2), which interpolates between

the m0 found on the lattice (deep IR) and the power-law running dictated by the operator

product expansion (deep UV). Specifically, the functional form we will assume for m2(q2)

is given by

m2(q2) = m4
0/(q

2 +m2
0) ; (2.5)

evidently, the running mass of (2.5) has a finite value at q2 → 0, i.e. m2(0) = m2
0, with

a power-law decrease in the deep UV. In figure 1 we show the dynamical gluon mass of

eq. (2.5) for m0 = 600 MeV and m0 = 500 MeV.

2.2 The PT effective charge

A universal (process-independent) definition of an effective charge for every gauge may

be obtained from the gluon self-energy in the (covariant) BFM. As is well-known, this

quantity, to be denoted by Π̃(ξQ)(q), captures the running of the QCD coupling for every

value of the (quantum) gauge-fixing parameter, ξQ. In particular, at one loop, we have

iΠ̃(ξQ)(q) = q2g2[b ln
(
−q2/µ2

)
+ CξQ], (2.6)

where b = 11CA/48π
2 is the first coefficient of the QCD β function (β = −bg3) in the

absence of quarks, CA is the Casimir eigenvalue of the adjoint representation (CA = N for

SU(N)), and the gauge-dependent constant CξQ is given by (third item in [13–15])

CξQ =
CA

16π2

[
(1 − ξQ)(7 + ξQ)

4
−

67

9

]
. (2.7)

Note that the value ξQ = 1, i.e., the Feynman gauge of the BFM, is very special, because

it reproduces the (gauge-independent) PT gluon self-energy; in this privileged gauge all
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unphysical longitudinal terms appearing inside an ostensibly gauge-independent quantity

(physical on-shell amplitude, Wilson-loop, etc) have been discarded.

For asymptotically large momenta one may neglect the constant CξQ next to the leading

logarithm, and write, in any gauge, (Euclidean momenta)

∆̂(q2) =
1

q2[1 + bg2 ln(q2/µ2)]
. (2.8)

It is then easy to establish (e.g., by resorting to the QED-like identity Z
−1/2
bA

= Zg, valid

in the BFM to all orders and for every ξQ [18]) that the product

d̂(q2) = g2(µ2)∆̂(q2), (2.9)

is invariant under the renormalization group, i.e., it is a RG-invariant quantity, just as

the r̂(q2) in (2.3). From d̂(q2) one may extract the QCD effective charge exactly as

in (2.4), namely

4πα(q2) = [q2 +m2(q2)]d̂(q2). (2.10)

In order to make contact between ∆̂(q2) appearing in the definition of the RG-invariant

product d̂(q2) and the conventional propagator ∆(q2) simulated on the lattice (in the

Landau gauge), we employ a formal all-order identity, which relates them as follows [22, 23]

∆(q2) =
[
1 +G(q2)

]2
∆̂(q2). (2.11)

In the above formula the two gauge fixing constants, ξ and ξQ, associated with ∆(q2) and

∆̂(q2), respectively, must be equal (but otherwise arbitrary); in particular, in the Landau

gauge, ξ = ξQ = 0.

The function G(q2) appearing in (2.11) is the gµν component of a particular two-point

function, denoted by Λµν(q), defined as

Λµν(q) = −ig2CA

∫

k
H(0)

µρ D(k + q)∆ρσ(k)Hσν(k, q)

= gµνG(q2) +
qµqν
q2

L(q2), (2.12)

where
∫
k ≡ µǫ(2π)−d

∫
ddk, with d = 4−ǫ the space-time dimension. The functionHσν(k, q)

appears in the all-order Slavnov-Taylor identity satisfied by the three gluon vertex [65], and

is related to the ghost-gluon vertex Γµ(k, q) through the identity

qνHµν(k, q) = −iΓµ(k, q) . (2.13)

At tree level, H
(0)
µν = igµν and Γ

(0)
µ (k, q) = Γµ(k, q) = −qµ. Note that both G(q2) and L(q2)

depend explicitly on the value of the gauge-fixing parameter ξ.

Since the origin of the identity in (2.11) is the BRST symmetry of the theory, it does

not get deformed by the renormalization procedure. Thus, one can write (2.9) in terms of

∆(q2) and G(q2) as follows

d̂(q2) =
g2(µ2)∆(q2)

[1 +G(q2)]2
. (2.14)
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It turns out [66–68] that the function G(q2), coincides (in the Landau gauge only)

with the well-known Kugo-Ojima function [26], u(q2) defined as
∫
d4x e−iq·(x−y)〈T

[
(Dµc)

m
x (Dµc̄)

n
y

]
〉 = −

qµqν
q2

δmn + Pµν(q)δmnu(q2), (2.15)

where (DµΦ)m = ∂µΦm + gfmnrAn
µΦr is the usual QCD covariant derivative. The Kugo-

Ojima function has been simulated on the lattice by means of Monte-Carlo averages of

the operator time-ordered product appearing on the left-hand side of the defining equa-

tion (2.15) [69–72]. Given that G(q2) = u(q2), the lattice information on u(q2) may be

used, in principle, into (2.14), together with the lattice results for the Landau gauge ∆(q2).

However, as we will explain in detail in subsection 3.3, the existing lattice results are af-

flicted by a certain ambiguity related to renormalization, a fact that limits their usefulness

for the construction at hand.

In addition, G(q2) is related to the ghost dressing function F (q2) and the form-factor

L(q2) of (2.12) through the BRST identity

F−1(q2) = 1 +G(q2) + L(q2). (2.16)

This identity, in conjunction with the corresponding dynamical equations [27] given in

eq. (3.6), allows the indirect determination of G(q2) and L(q2) from the lattice data on

the ghost dressing F (q2) [73]. Thus, provided that one carries out the renormalization

procedure in a way that manifestly preserves (2.16), the two effective charges are related

through the equation [27]

αgh(q
2) =

[
1 +

L(q2)

1 +G(q2)

]−2

α(q2). (2.17)

An important corollary of the dynamical equations of eq. (3.6) is that L(0) = 0. In addi-

tion, under very general conditions, G(0) ∈ (−1, 0). Therefore, from (2.17) one concludes

that [27]

αgh(0) = α(0). (2.18)

Since, finally, αgh(q
2) and α(q2) coincide in the deep UV, where they both reproduce the

correct perturbative behavior, the two charges can only differ appreciably in the intermedi-

ate region of momenta; however, since L(q2) is numerically suppressed [27], this difference

is rather small.

3 Effective charges from lattice

This section contains the main results of this article, and is composed of several subsections.

After presenting a collection of lattice data, which firmly establish the IR finiteness of

the conventional gluon propagator ∆(q2) (in the Landau gauge) and the ghost-dressing

function, we embark on the actual extraction of the effective charges from the lattice data,

using the definitions and results of the previous section. The final results of all the analysis,

carried out throughout this section, are shown on the right panel of figure 9; evidently, in

the deep IR, both charges, αgh(q
2) and α(q2), saturate at the same finite value, as predicted

on general principles.
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Figure 2. The lattice data for the gluon propagator obtained by three independent groups [1, 3, 5, 6]

fitted by eq. (3.1). Upper left panel : Lattice data from ref. [3] renormalized at µ = 3.0GeV. Upper

right panel : Lattice result, renormalized at µ = 3.0GeV, obtained in ref. [5, 6]. Bottom panel : The

SU(2) gluon propagator obtained in ref. [1].

3.1 The basic building blocks: gluon and ghost propagators from the lattice

In this subsection we present some of the most relevant lattice results on the (Landau

gauge) gluon propagator, given that it constitutes a central common ingredient of both

effective charges. Even though in our analysis we will use only one set of lattice data

(that of [3]), it is important to establish that various groups coincide on the qualitative

behavior for the Green’s functions in question. In figure 2 we show the results for the gluon

propagator obtained by three independent lattice groups [1, 3, 5, 6]. Although, for each

group, the lattice spacing and the gauge group employed are different, all results have as a

common feature the appearance of a plateau in the deep IR region, namely one of the most

salient and distinctive predictions of the the gluon mass generation mechanism. In fact, the

three set of data can be accurately fitted in terms of a massive gluon propagator of the type

∆−1(q2) = m2 + q2

[

1 +
13CAg

2
f

96π2
ln

(
q2 + ρm2

µ2

)]

, (3.1)

where m2, g2
f , and ρ are treated as free fitting parameters. For the SU(3) lattice simula-

tions, µ will be chosen to coincide with the renormalization point, while for the SU(2) case

we will treat it as an adjustable parameter.
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Figure 3. The lattice data for the ghost dressing function obtained by two independent groups [1, 3]

fitted by eq. (3.2). Left panel : Lattice data from ref. [3] renormalized at µ = 3.0GeV. Right panel :

The SU(2) ghost dressing function obtained in ref. [1].

Specifically, for the data presented on the upper left panel [3], we find that

m2 = 0.16GeV2, g2
f = 8.79, ρ = 4, and µ = 3GeV. For the upper right panel, we use

m2 = 0.11GeV2, g2
f = 9.77, ρ = 9.6, and µ = 3GeV; while the SU(2) lattice data of ref. [1]

can be accurately adjusted using m2 = 0.27GeV2, g2
f = 27.68, ρ = 4, and µ = 1.92GeV.

The parameter m acts as a physical mass scale, whose function is to regulate the

perturbative RG logarithm; so, instead of diverging at the Landau pole, the logarithm

saturates at a finite value. Clearly, for large values of q2, we recover the one-loop expression

of the gluon propagator in the Landau gauge. Note also that for the purposes of this fit we

have treated m as if it were a hard mass, even though an important theoretical feature of

the dynamically generated mass is that it should be function of the momentum, vanishing

in the deep UV in a way consistent with the operator product expansion, [viz. eq. (2.5)].

In figure 3, we show the results for the ghost dressing function obtained by two inde-

pendent lattice groups [1, 3]. Both, SU(2) and SU(3) set of data, can be accurately fitted

by the following expression

F (q2) =
a1 − a2

1 +
(
q2/q21

)p1
+ a2. (3.2)

The fit for the SU(3) ghost dressing function, presented on the left panel of figure 3,

can be reproduced choosing a1 = 2.72, a2 = 0.86, q21 = 0.35, and p1 = 0.80; while for the

SU(2) lattice data (right panel of figure 3), we use a1 = 4.18, a2 = 1.59, q21 = 0.24, and

p1 = 0.91.

Notice that in the case of the ghost dressing function, the lattice data, and correspond-

ingly our fit, show no enhancement in the deep IR; instead, F (q2) saturates at the constant

value a1.

Even though it is evident from figure 2 and figure 3 that the various lattice groups

appear to be in qualitative agreement with each other, for the actual extraction the ef-
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Figure 4. Lattice results for the gluon propagator (left panel), the ghost dressing function (right

panel) renormalized at µ = 2.5 GeV (circles) and µ = 4.0 GeV (squares). The values of the fitting

parameters of eqs. (3.1) and (3.2) are: m2 = 0.18 GeV2, g2
f = 10.64, a1 = 2.64, and a2 = 0.84, for

µ = 2.5GeV; m2 = 0.14 GeV2, g2
f = 6.95, a1 = 2.89, and a2 = 0.91, for µ = 4.0GeV. For both

values of µ we use ρ = 4, p1 = 0.8, and q21 = 0.36 GeV2.

fective charges we will rely on the data of ref. [3], given that this latter group uses SU(3)

simulations, and has available data also on the ghost propagator.

In order to verify explicitly the expected µ-independence of r̂(q2) and d̂(q2), we need

to have at our disposal lattice data for ∆(q2), F (q2), and G(q2) at different renormaliza-

tion points. To that end, we will exploit the property of multiplicative renormalizability,

which allows one to connect a set of points renormalized at µ with the corresponding set

renormalized at ν, through the relations

∆(q2, µ2) =
∆(q2, ν2)

µ2∆(µ2, ν2)
, F (q2, µ2) =

F (q2, ν2)

F (µ2, ν2)
. (3.3)

Thus, choosing the two different values µ = 2.5 GeV, and µ = 4.0 GeV, we obtain the

curves for ∆(q2), and F (q2) shown in figure 4.

3.2 Fixing the value of g2(µ)

The next step is to determine the value of the renormalized coupling g2(µ2) that enters in

both the definitions of the two RG-invariant quantities, r̂(q2) and d̂(q2). To that end, we

resort to the SDE equation governing F (q2), namely

F−1(q2) = Zc + g2CA

∫

k

[
1 −

(k · q)2

k2q2

]
∆(k)D(k + q), (3.4)

where Zc is determined by imposing the momentum subtraction (MOM) type of condition

F (µ2) = 1. The reason for using this particular dynamical equation is because it is given by

a single “one-loop dressed” Feynman diagram, as opposed to the corresponding SDE for the

gluon propagator, which involves a large number of one- and two-loop dressed diagrams,

containing various fully dressed (and poorly studied) vertices. Note that the above SDE

– 10 –



J
H
E
P
0
7
(
2
0
1
0
)
0
0
2

0,01 0,1 1 10 100
0,5

1,0

1,5

2,0

2,5

3,0

 

 

Ghost dressing function
 = 2.5 GeV and ( 2) = 0.467

 L=64 and =5.7
 L=80 and =5.7
 SDE

F(
q2 )

q2[GeV2]

0,01 0,1 1 10 100
0,5

1,0

1,5

2,0

2,5

3,0

3,5

 

 

Ghost dressing function
 = 4.0 GeV and ( 2)=0.309

 L=64 and =5.7
 L=80 and =5.7
 SDE

F(
q2 )

q2[GeV2]

Figure 5. Comparison between the ghost dressing function F (q2) obtained from the ghost SDE

(continuous lines) and the corresponding lattice data at µ = 2.5 GeV (left panel) and µ = 4.0 GeV

(right panel).

has been derived using a tree-level expression for the fully dressed ghost-gluon vertex

Γµ; this appears to be a good approximation, given that Γµ has been studied in lattice

simulations [74, 75], where it was found to deviate only mildly from its tree-level value.

The way the value of g2(µ2) is determined from eq. (3.6) is the following. One sub-

stitutes on the rhs of eq. (3.4) the lattice data for ∆(q2), and solves the resulting integral

equation for F (q2) numerically, adjusting the value of the g2(µ2) (multiplying the integral)

such that the solution obtained coincides as well as possible with the available lattice data

on F (q2).

The results of this procedure are presented in figure 5; in particular, we obtain the

value α(µ2) = 0.467 for µ = 2.5 GeV, and α(µ2) = 0.309 for µ = 4.0 GeV.

The reason for quoting the values for α(µ2) with a three-decimal precision is because

eq. (3.4) is extremely sensitive to any minor change in the value of α(µ2). In particular,

increasing the value of α(µ2) by 1%, which corresponds to a change in the third decimal

of α(µ2), results in a 9% increase in the the value of F (0).

The same procedure is repeated choosing renormalization points as deep in the UV

as permited by the lattice data available. In particular, for µ = 3.0 GeV, µ = 3.3 GeV,

µ = 3.6 GeV, and µ = 3.9 GeV, we obtain α(µ2) = 0.395, α(µ2) = 0.356, α(µ2) = 0.335,

and α(µ2) = 0.324, respectively.

Then, in order to check if the α(µ2) values found through the above procedure are

compatible with what one would expect within the MOM scheme that we use, we compare

them with the corresponding four-loop perturbative calculation, presented in [76, 77]. The

result of this comparison is shown in figure 6; the yellow band is obtained by varying the

ΛQCD, appearing in the expression derived in [76, 77], in the range between 350− 450 MeV.

As we can see, the best adjustment for the values of α(µ2) occurs for ΛQCD = 410MeV.
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Figure 6. The perturbative running coupling in the MOM scheme, αMOM(q2), up to four-loops

for different values of ΛQCD. The black squares represent the values we use for α(µ2).

3.3 G(q2) and L(q2): lattice data, renormalization subtleties, and SDE deter-

mination

Whereas the RG-invariant quantity r̂(q2) defined from the ghost-gluon vertex needs as

input for its determination the gluon propagator ∆(q2) and the ghost dressing function

F (q2), the corresponding PT quantity, d̂(q2) requires one additional ingredient, namely the

function G(q2). As already mentioned in the previous section, G(q2) in the Landau gauge

coincides with the KO function, usually denoted in the literature by u(q2). This function

has been computed on the lattice in the early work of [69–71] and more recently in [72],

mainly motivated by its relation with the well-known Kugo-Ojima confinement criterion.

These lattice studies established clearly that the aforementioned criterion is not satisfied,

since u(0) ≈ 0.6 deviates appreciably from the special value of −1.

The reason why the existing lattice data on G(q2) cannot be used in our analysis is

rather subtle, and is directly related to the renormalization procedure, and in particular

the fundamental identity of eq. (2.16). The difficulty lies in the fact that in [72] the renor-

malization of G(q2) was carried out without knowledge of the function L(q2). However, as

has been explained in detail in [27], the self-consistent renormalization procedure of G(q2)

requires the knowledge of L(q2). Specifically, in the MOM scheme the correct renormal-

ization condition that preserves the validity of the crucial BRST identity of eq. (2.16) is

G(µ2) = −L(µ2) . (3.5)

Given that L(µ2) 6= 0, the obvious implication of this condition is that one cannot choose

simultaneously F (µ2) = 1 and G(µ2) = 0. Forcing G(µ2) to assume a value other than

that of (3.5) leads to a slight displacement of the entire G(q2) curve. To be sure, the error

so introduced does not alter the important conclusion on the Kugo-Ojima confinement

criterion, because, as we will see in a moment, L(q2) is rather small, so that it could not

possibly account for the difference between the observed u(0) ≈ −0.6 and the required

u(0) = −1. However, for the purposes of the present work, it does distort the unique
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Figure 7. Comparison between the G(q2) function obtained from the SDE (continuous lines) and

the corresponding lattice data at µ = 2.5 GeV (left panel) and µ = 4.0 GeV (right panel).

exact result available, namely that of eq. (2.18), which establishes the coincidence of two

effective charges in the deep IR.

In order to circumvent this unpleasant artifact, we will appeal to the SDEs satisfied

by G(q2) and L(q2) [27],

1 +G(q2) = Zc +
g2CA

d− 1

∫

k

[
(d− 2) +

(k · q)2

k2q2

]
∆(k)D(k + q),

L(q2) =
g2CA

d− 1

∫

k

[
1 − d

(k · q)2

k2q2

]
∆(k)D(k + q). (3.6)

and will obtain G(q2) and L(q2) by substituting lattice data for ∆(q2), the result for

F (q2), and the values for g2(µ2) obtained in the previous subsection. Note that the above

equations have been derived using tree-level value for the kernel Hµν [viz. eq. (2.12)]. This

is consistent with the corresponding approximation employed for deriving the ghost SDE

of (3.4), given that Γµ and Hµν are connected by the identity (2.13).

The advantage of using the set of equations given in (3.6) is twofold. First, they have

the important property L(0) = 0 build in. Indeed, as was first established in [27], if F (q2)

and ∆(q2) are both IR finite, then

∫

k
[1 − d f(k, q)]∆(k)D(k + q)

∣∣∣∣
q→0

= 0, (3.7)

and so, from the second of (3.6) follows immediately that L(0) = 0. Second, once F (µ2) = 1

has been imposed, the value of G(µ2) is completely determined from its own equation, and

is automatically in conformity with eq. (3.5).

Next, using as ingredients the data for ∆(q2) and F (q2) presented in figure 4 and fig-

ure 5 respectively, and the values of α(µ2) quoted in figure 6, we carry out the corresponding

integration numerically, and obtain the functions G(q2) and L(q2).

The comparison of SDE result for G(q2) with the lattice data obtained in [72] are

shown in figure 7 for both values of µ2. As we can see, the numerical results obtained
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Figure 8. L(q2) determined from the corresponding SDE (3.6), using the solutions for ∆(q2) and

F (q2) presented in the figure 4 and figure 5 respectively, at the same renormalization point.

with eq. (3.6) are in good agreement with the lattice data. However, notice that there is a

small discrepancy in the UV region due to the fact that the lattice data do not respect the

renormalizatin condition given in eq. (3.5); instead, the result obtained through eq. (3.6)

does. More specifically, for µ = 2.5 GeV, eq. (3.6) gives G(µ2) = −L(µ2) = −0.046; while

for µ = 4.0 GeV, G(µ2) = −L(µ2) = −0.033.

The results for L(q2) are presented in figure 8 for both values of µ2. From figure 8

it is easy to check the three properties of L(q2) mentioned before: (i) indeed L(q2) is

numerically rather small over the full range of momenta, (ii) it vanishes in the deep IR,

and (iii) its maximum occurs in the intermediate momenta region (around 500 MeV).

3.4 Final results

From all the ingredients presented so far, one may construct the two RG-invariant quanti-

ties, r̂(q2) and d̂(q2) of eqs. (2.3) and (2.14). A crucial check of the self-consistency of the

entire procedure is the numerical verification of the theoretically expected independence

of the above quantities of the renormalization point µ. To verify this important point,

r̂(q2) and d̂(q2) have been calculated using into the defining equations two different sets

of inputs for ∆, F , and G, one set renormalized at µ=4.0GeV, and another renormalized

at µ=2.5 GeV. The values for α(µ2) are precisely those obtained through the procedure

of the previous subsection, namely α(µ2) = 0.467 for µ = 2.5 GeV, and α(µ2) = 0.309

for µ = 4.0 GeV. The results of this construction are shown on the left panel of figure 9;

clearly, the r̂(q2) and d̂(q2) obtained from each set of data are practically on top of each

other, thus numerically confirming the theoretical expectations. One can also see that the

two quantities behave as expected, differing only in the intermediate region of momenta

(20–600 MeV).

At this point, the non-perturbative running charges, αgh(q
2), and α(q2), defined in

eqs. (2.4) and (2.10), respectively, may be extracted by multiplying the results obtained

for the corresponding RG-invariant quantities by the factor [q2 + m2(q2)]. To do that,
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Figure 9. Left panel : Comparison between the two RG-invariant products d̂(q2) (solid line) and

r̂(q2) (dashed line); notice that there are two overlapping curves at different µ for each product.

Right panel : Comparison between the QCD effective charge extracted from lattice data: α(q2) (red

line with circles) and αgh(q
2) (black line with squares) for two different masses: m0 = 500MeV

(dashed) and m0 = 600MeV (solid).

however, one must assume a functional form for the running mass m2(q2); we will use the

mass given in eq. (2.5).

The effective charges obtained following the above steps are shown in the right panel

of figure 9. Evidently, both charges exhibit the correct (UV) perturbative behavior, and

freeze at the same finite IR values corresponding to αgh(0) = α(0) = 4.45 (m0 = 500 MeV)

and αgh(0) = α(0) = 6.40 (m0 = 600 MeV). The difference between the two couplings is

only in the intermediate momenta region, and it is entirely due to the L(q2) function; in

this region α(q2) is always bigger than αgh(q
2).

4 Reconciling lattice with phenomenology

The effective charges we have obtained from the lattice (within the MOM renormalization

scheme that we use), reach values in the deep IR that are almost an order of magnitude

higher than those obtained from a large number of phenomenological studies. In particular,

while the charge obtained from the lattice ranges between 4.5 – 6.5 [depending on the value

ofm(0)], the systematic fitting of numerous processes suggests values for the effective charge

in the range 0.7 ± 0.3 (for a similar range of gluon masses).

If one were to take both lattice and phenomenological results at face value, one should

attempt to determine the reason for this sizable discrepancy. In this section we will address

this issue in the context of a toy calculation, and we will argue that the observed discrepancy

may be traced back to the difference in the gauge used when extracting the lattice results

(the Landau gauge of the BFM, ξQ = 0) and that assumed in the phenomenological studies

(the Feynman gauge of the BFM, ξQ = 1). Even though we cannot reach firm conclusions,

our calculation seems to indicate that the difference in the gauges may indeed reconcile

lattice with phenomenology.
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The crux of the matter is that the effective charge entering into physical processes

is neither αgh(q
2) nor α(q2), but rather the genuine PT effective charge [7–11], to be

denoted by αPT(q2). This charge is defined exactly as α(q2) in (2.10), but with the crucial

difference that the propagator used to form the d̂(q2) is the PT gluon propagator, i.e.,

the BFM propagator calculated in the Feynman gauge. The Feynman gauge of the BFM

is privileged, in the sense that it is selected dynamically when the gluon self-energy is

embedded into a physical observable (such as an on-shell test-amplitude). Specifically,

this gauge captures the net propagator-like subamplitude emerging after QED-like

properties have been replicated inside the test-amplitude, by means of the PT procedure.

Therefore, any gauge-related exchanges between the Green’s functions put together to

form observables, are eliminated in this particular gauge. Instead, the gluon propagator

in the Landau gauge, for example, contains still residual unphysical contributions, which,

when introduced into a physical amplitude, will cancel against similar terms from vertex

and box diagrams (see third item in [13–15]).

For asymptotically large momenta the numerical difference between the charges defined

in either gauge is controlled by the constant CξQ , given in (2.7). Evidently, in the UV

this difference is subleading, and cannot give rise to any appreciable difference. Non-

perturbatively, however, the difference between the two charges may be sizable. If, for

example, we subscribe to the notion of dynamical mass generation, a difference in the gauge

may lead to a vastly different IR behavior. In order to gain a quantitative understanding

of how the difference in the gauge used may cause a significant disparity in the infrared

values of the corresponding effective charges, we consider a model where the gauge bosons

are endowed with a mass at tree-level. This will allow us to calculate, at one-loop level, the

deviation between the two propagators, and the discrepancy that it induces to α(0) and

αPT(0). The model in question is simply the electroweak sector of the Standard Model,

with the electric charge set to zero, or, equivalently, with sin θW = 0, where θW is the

electroweak mixing (Weinberg) angle. In this limit the three gauge bosons (two W s and

one Z) are degenerate.

At one-loop, the SU(2) gluon self-energy, or equivalently, the Z-boson self-energy, may

be obtained from the results of [80], for any value of ξQ. Specifically, one has (in Minkowski

space)

Π̂ξQ
(q2) = ΠF(q2) +

g2

4(4π)2
q2 −m2

(1 − d)m4
HξQ

(q2),

HξQ
(q2) =

2m2

q2
[
m2 + (9 − 4d) q2 −

(
q2 +m2

)
ξQ

] [
A0(ξQm

2) −A0(m
2)

]

−
[
4 (5 − 2d)m4 − 8 (2 − d)m2q2 +m2q2 + q4

]
B0(q

2;m2,m2)

+2
q2 +m2

q2

[
(1 − ξQ)2m4 − 2 (3 − 2d+ ξQ)m2q2 + q4

]
B0(q

2;m2, ξQm
2)

−
(
q2 + 5m2

) (
q2 − 4ξQm

2
)
B0(q

2; ξQm
2, ξQm

2), (4.1)

where ΠF(q2) ≡ Π(ξ=1)(q
2) is the conventional gluon self-energy in the Feynman gauge, m
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denotes the effective gauge boson mass, and A0 and B0 are given by

A0(m
2) = 16π2

∫

k

1

k2 −m2
,

B0(q
2;m2

1,m
2
2) = 16π2

∫

k

1

(k2 −m2
1)[(k + q)2 −m2

2]
. (4.2)

Setting ξQ = 1 in the above formula we recover the standard PT result for the one-loop

self-energy of the Z-boson [81, 82] , to be denoted by Π̂F(q2), namely

Π̂F(q2) = ΠF(q2) −
g2

4π2
(q2 −m2)B0(q

2;m2,m2) . (4.3)

Let us now take the difference R(q2) between Π̂ξQ
(q2) calculated in the Landau and Feyn-

man gauges (ξQ = 0, and ξQ = 1, respectively); denoting the former by Π̂L(q2), one has in

the limit q2 → 0 and d = 4,

R(0) ≡ Π̂L(0) − Π̂F(0)

=
g2

(4π)2

{
m4

6

∂

∂q2
B0(q

2;m2, 0) + 3
[
B0(q

2;m2, 0) −B0(q
2;m2,m2)

]}∣∣∣∣
q2=0

.(4.4)

We next extend the one-loop expression given in (4.4) to the non-perturbative regime,

by introducing the following approximations: (i) we replace the (tree-level) massive propa-

gators appearing in the function B0 by their fully dressed counterpart ∆ (in Landau gauge),

and (ii) the “hard” mass m by its running counterpart. Then we find (in Euclidean space)

∂

∂q2
B0(q

2;m2, 0)

∣∣∣∣
q2=0

→ −
1

π2

∂

∂q2

∫

k

∆(k2)

(k + q)2

∣∣∣∣
q2=0

=
1

2
∆(0),

B0(q
2;m2, 0) −B0(q

2;m2,m2)
∣∣
q2=0

→
1

π2

∫

k

m2(k2)∆2(k2)

k2
. (4.5)

Thus, in the SU(3) case one obtains the final result (with y = k2)

R(0) =
3

2

α(µ2)m2
0

4π

[
m2

0

12
∆(0) + 3

∫
dym2(y)∆2(y)

]
, (4.6)

where the multiplicative factor of 3/2 corresponds to the ratio of the Casimir eigenvalues

for the adjoint representations of the gauge groups SU(3) and SU(2).

Since in Euclidean space R(q2) changes sign, we obtain2

∆̂F(q2) =
1

q2 + Π̂F(q2)
=

1

(q2 + Π̂L(q2))
(
1 + R(q2)

q2+bΠL(q2)

)

=
∆̂(q2)

1 +R(q2)∆̂(q2)
, (4.7)

2To go to Euclidean space, we set q2 = −q2
E, with q2

E > 0 the positive square of a Euclidean four-vector,

define the Euclidean propagator as ∆E(q2
E) = −∆(−q2

E), and the integration measure as
R

k
= i

R

kE
. To

avoid notational clutter we always suppress the subscript “E”.

– 17 –



J
H
E
P
0
7
(
2
0
1
0
)
0
0
2

∆(0) [GeV−2] µ [GeV] α(µ2) m0 [MeV] α(0) R(0) αPT(0)

5.51 2.5 0.467 600 6.40 0.31 0.47

7.00 4.0 0.309 600 6.40 0.33 0.30

5.51 2.5 0.467 500 4.45 0.15 0.62

7.00 4.0 0.309 500 4.45 0.16 0.40

Table 1. The gauge-invariant and universal IR fixed point αPT(0) obtained from the Landau gauge

α(0) one after applying eq. (4.8).

arriving at the following relation for the two couplings,

αPT(0) =
α(0)

1 +R(0)∆̂(0)
. (4.8)

In order to get an approximate estimate for αPT(0) we need to determine the value

of R(0) from (4.6). To that end, we use the lattice data for the ∆(y) appearing on the

rhs, and a mass m2(y) that displays power-law running, given by (2.5). The results of this

procedure are summarized in table 1; clearly, the values obtained for αPT(0) are indeed

much closer to the expectations based on phenomenological studies.

We emphasize that eq. (4.6) constitutes only a simplified estimate of the complete

answer, and our results are suggestive at best. Note in particular that, as is evident from

table 1, eq. (4.8) leads to the introduction of a spurious dependence on the renormalization

scale µ for the ostensibly RG-invariant quantity αPT(q2).

5 Conclusions and outlook

In this article we have shown how to extract effective QCD charges from the available

(quenched) lattice data for some of the fundamental Green’s functions of QCD. We use two

different definitions of the effective charge, whose construction follows a similar procedure,

relying on the construction of RG-invariant quantities out of the judicious combination

of the various field-theoretic ingredients. The effective charges obtained display the char-

acteristic feature of freezing at a common finite (non-vanishing) value in the deep IR, as

expected from a variety of theoretical and phenomenological considerations.

In addition, we have offered a plausible explanation for the observed discrepancy in

the freezing values of the effective charges obtained from the lattice and those derived from

the fitting of various QCD processes, sensitive to non-perturbative physics. Our claim is

that the underlying reason for the discrepancy is the difference in the gauges (Landau vs

Feynman) used in the two approaches. We have studied this issue in the context of a toy

model, which seems to corroborate this assertion.

It is clearly highly desirable to have available lattice results for the gluon and ghost

propagators in gauges other than the Landau. In fact, a new gauge-fixing algorithm that

may allow one to carry out lattice simulations in general Rξ gauges has been recently

proposed [83]. In addition, it is of considerable theoretical importance to obtain lattice

results in the Feynman gauge of the BFM [84], where, by virtue of the PT, quantities such
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as the gluon propagator acquire a gauge-invariant and universal status. Lattice results in

this class of gauges would allow not only a direct determination of the phenomenologically

relevant coupling αPT(0), but will furnish a stringent test of the SDE predictions for the

gluon [73] and ghost propagators [85].
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