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Abstract

We study the radiative decay into γ and a baryon of the SU(3) octet and decuplet
of nine and ten resonances that are dynamically generated from the interaction of
vector mesons with baryons of the octet and the decuplet respectively. We obtain
quite different partial decay widths for the various resonances, and for different charge
states of the same resonance, suggesting that the experimental investigation of these
radiative decays should bring much information on the nature of these resonances.
For the case of baryons of the octet we determine the helicity amplitudes and compare
them with experimental data when available.

1 Introduction

In a recent paper [1], the ρ∆ interaction was studied within the local hidden gauge for-
malism for the interaction of vector mesons. The results of the interaction gave a natural
interpretation for the ∆(1930)(5/2−) as a ρ∆ bound state, which otherwise is extremely
problematic in quark models since it involves a 3hω excitation and appears with much
higher mass. At the same time two states with JP = 1/2−, 3/2− were obtained, degenerate
with the 5/2−, which could be accommodated with two known ∆ states in that energy
range. Also, three degenerate N∗ states with 1/2−, 3/2−, 5/2− were obtained, which were
more difficult to identify with known resonances since that sector is not so well established.
The work of [1] was extended to the SU(3) sector in [2] to account for the interaction of
vectors of the octet with baryons of the decuplet. In this case ten resonances, all of them
also degenerate in the three spin states, were obtained, many of which could be identified
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with existing resonances, while there were predictions for a few more. At the same time
in [2] the poles and residues at the poles of the resonances were evaluated, providing the
coupling of the resonances to the different vector-baryon of the decuplet components.

One of the straightforward tests of these theoretical predictions is the radiative decay of
these resonances into photon and the member of the baryon decuplet to which it couples.
Radiative decay of resonances into γN is one of the observables traditionally calculated
in hadronic models. Work in quark models on this issue is abundant [3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13, 14, 15, 16, 17, 18]. For resonances which appear as dynamically generated
in chiral unitary theories there is also much work done on the radiative decay into γN
[19, 20, 21, 22, 23]. Experimental work in this topic is also of current interest [25, 26, 27].

In the present work we address the novel aspect of radiative decay into a photon and a
baryon of the decuplet of the ∆, since the underlying dynamics of the resonances that we
study provides this as the dominant mode of radiative decay into photon baryon. This is so,
because the underlying theory of the studies of [1, 2] is the local hidden gauge formalism for
the interaction of vector mesons developed in [28, 29, 30, 31], which has the peculiar feature,
inherent to vector meson dominance, that the photons couple to the hadrons through the
conversion into a vector meson. In this case a photon in the final state comes from either
a ρ0, ω, φ. Thus, the radiative decay of the resonances into γB is readily obtained from
the theory by taking the terms with ρ0B, ωB, φB in the final state and coupling the γ
to any of the final ρ0, ω, φ vector mesons. This procedure was used in [32] and provided
good results for the radiative decay into γγ of the f0(1370) and f2(1270) mesons which
were dynamically generated from the ρρ interaction within the same framework [33]. This
latter work was also extended to the interaction of vectors with themselves within SU(3),
where many other states are obtained which can be also associated with known resonances
[34]. The radiative decay of the latter resonances into γγ or a γ and a vector has been
studied in [35], with good agreement with experiment when available. Given the success
of the theory in its predictions and the good results obtained for the γγ decay of the
f0(1370), f2(1270) and f ′

2(1525) mesons, the theoretical framework stands on good foot
and the predictions made should be solid enough to constitute a test of the theory by
contrasting with experimental data. The extension of the work of [1, 2] to the interaction
of vector mesons with baryons of the octet of the proton has also been successful [36] and
nine resonances, degenerated in spin-parity 1/2− and 3/2−, appear dynamically generated
in the approach, many of which can be naturally associated to know resonances in the PDG
[37]. We also extend the present work to study the radiative decay of these resonances into
a photon and a baryon of the octet. In this case we can also evaluate helicity amplitudes
and compare them with experimental results when available.

The experimental situation in that region of energies is still poor. The PDG [37] quotes
many radiative decays of N∗ resonances, and of the A1/2, A3/2 helicity amplitudes for decay
of resonances into γN , with N either proton or neutron. However, there are no data to our
knowledge for radiative decay into γB, with B a baryon of the decuplet. The reason for it
might be the difficulty in the measurement, or the lack of motivation, since there are also
no theoretical works devoted to the subject. With the present work we hope to reverse the
situation offering a clear motivation for these experiments since they bear close connection
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with the nature invoked for these resonances, very different to the ordinary three quark
structure of the baryons.

The numbers obtained for the radiative widths are well within measurable range, of the
order of 1 MeV, and the predictions are interesting, with striking differences of one order
of magnitude between decay widths for different charges of the same resonance.

The work will proceed as follows. In the next two Sections we present the framework for
the evaluation of amplitudes of radiative decay. In Section 4 we show the results obtained
for the different resonances generated with the baryon decuplet. Section 5 introduces the
equations for the baryon octet, which are used in Section 6 to obtain results for the deacy
width of the resonances dynamically generated with a vector and the baryon octet. In
Section 7 we present the results for the helicity amplitudes of some resonances used in the
previous section, and in Section 8 we finish with some conclusions.

2 Framework

In Ref. [1, 2], the scattering amplitudes for vector-decuplet baryon V B → V ′B′ are given
by

tV B→V ′B′ = t ~ǫ · ~ǫ′ δms,m′

s

, (1)

where ~ǫ, ~ǫ′ refer to the initial and final vector polarization and the matrix is diagonal in
the third component of the baryons of the decuplet. The transition is diagonal in spin of
the baryon and spin of the vector, and as a consequence in the total spin. To make this
property more explicit, we write the states of total spin as

|S,M〉 =
∑

ms

C (3/2, 1, S;ms,M −ms,M) |3/2, ms〉|~ǫM−ms
〉 (2)

and
〈S,M | =

∑

m′

s

C (3/2, 1, S;m′
s,M −m′

s,M) 〈3/2, m′
s|〈~ǫ ∗

M−m′

s

|, (3)

where C (3/2, 1, S;ms,M −ms,M) are the Clebsch-Gordan coefficients and ǫµ the polar-
ization vectors in spherical basis

~ǫ+ = − 1√
2
(~ǫ1 + i~ǫ2) , ~ǫ− =

1√
2
(~ǫ1 − i~ǫ2) , ~ǫ0 = ~ǫ3. (4)

We can write Eq. (1) in terms of the projectors |S,M〉〈S,M | as

tV B→V ′B′ = t 〈~ǫ′|〈3/2, m′
s|
∑

S,M

|S,M〉〈S,M |3/2, ms〉|~ǫ 〉. (5)

Since the Clebsch-Gordan coefficients satisfy the normalization condition

∑

S

C (3/2, 1, S;ms,M −ms,M)C (3/2, 1, S;m′
s,M

′ −m′
s,M

′) = δmsm′

s

δMM ′ , (6)
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we have then
∑

S,M

|S,M〉〈S,M | =
∑

M

∑

ms

|3/2, ms〉〈3/2, ms| |~ǫM−ms
〉〈~ǫ∗M−ms

| (7)

=
∑

M ′

∑

ms

|3/2, ms〉〈3/2, ms| |~ǫM ′ 〉〈~ǫ∗M ′| ≡ 1.

We can depict the contribution of a specific resonant state of spin S to the amplitude
described by means of Fig. 1. Then the amplitude for the transition of the resonance

~ǫ ~ǫ ′

Figure 1: Diagram contributing to the vector-baryon interaction via the exchange of a
resonance.

to a final vector-baryon state is depicted by means of Fig. 2. As shown is Ref. [1, 2],

~ǫ ′

S,MS ms

Figure 2: Diagram on the decay of the resonance in a decuplet baryon and a vector meson.

the V B → V ′B′ scattering amplitudes develop poles corresponding to resonances and a
resonant amplitude is written as Eq. (1) with t given by

tij =
gigj√

s−M + iΓ/2
(8)

with gi and gj the couplings to the initial and final states. Accordingly, the amplitude for
the transition from the resonance to a final state of vector-baryon is given by

tSM→V ′B′ = gi〈~ǫ|〈3/2, ms|S,M〉
= giC(3/2, 1, S;ms,M −ms,M)〈~ǫ |~ǫM−ms

〉. (9)
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When calculating the decay width of the resonance into V B we will sum |t|2 over the vector
and baryon polarization, and average over the resonance polarization M . Thus, we have

1

2S + 1

∑

M,ms,~ǫ

|tSM→V ′B′ |2 (10)

= |gi|2
1

2S + 1

∑

M,ms,~ǫ

C(3/2, 1, S;ms,M −ms,M)2〈~ǫ∗M−ms
|~ǫ〉〈~ǫ|~ǫM−ms

〉

= |gi|2
1

2S + 1

∑

M ′

∑

ms

2S + 1

3
C(3/2, S, 1;ms, ms +M ′,−M ′)2〈~ǫ∗M ′ |~ǫM ′〉

= |gi|2
1

3

∑

M ′

δM ′M ′

= |gi|2,

where in the first step we have permuted the two last spins in the Clebsch-Gordan coeffi-
cients and in the second we applied their orthogonality condition.

We observe that the normalization of the amplitudes is done in a way such that the
sum and average of |t|2 is simply the modulus squared of the coupling of the resonance to
the final state. The width of the resonance for decay into V B is given by

Γ =
MB

2πMR
q |gi|2, (11)

where q is the momentum of the vector in the resonance rest frame andMB, MR the masses
of the baryon and the resonance. We should note already that later on when the vector
polarizations are substituted by the photon polarizations in the sum over M ′ in Eq. (10) we
will get a factor two rather than three, because we only have two transverse polarizations,
and then Eq. (11) must be multiplied by the factor 2/3.

3 Radiative decay

Next we study the radiative decay into Bγ of the resonances dynamically generated in
Ref. [2] with B a baryon of the decuplet. Recalling the results of [2] we obtained there ten
resonances dynamically generated, each of them degenerated in three states of spin, 1/2−,
3/2−, 5/2−. As we have discussed in the former section, the radiative width will not depend
on the spin of the resonance, but only on the coupling which is the same for all three spin
states due to the degeneracy. This would be of course an interesting experimental test of
the nature of these resonances.

In order to proceed further, we use the same formalism of the hidden gauge local
symmetry for the vector mesons of [28, 29, 30, 31]. The peculiarity of this theory concerning
photons is that they couple to hadrons by converting first into a vector meson, ρ0, ω, φ.
Diagrammatically this is depicted in Fig. 3. This idea has already been applied with success
to obtain the radiative decay of the f2(1270), f0(1370), f

′
2(1525) and f0(1710) resonances
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γ

ρ0 , ω, φ

R BD

Figure 3: Diagram on the radiative decay of the resonance in a decuplet baryon and a
photon.

into γγ in Ref. [32, 35]. In Ref. [32] the question of gauge invariance was addressed and it
was shown that the theory fulfills it. In Ref. [38], it is also proved in the case of radiative
decay of axial vector resonances.

The amplitude of Fig. 3 requires the γV convertion Lagrangian, which comes from
Refs. [28, 29, 30] and is given by (see Ref. [38] for practical details)

LV γ = −M2
V

e

g̃
Aµ〈V µQ〉 (12)

with Aµ the photon field, Vµ the SU(3) matrix of vector fields

Vµ ≡





1√
2
ρ0 + 1√

2
ω ρ+ K∗+

ρ− − 1√
2
ρ0 + 1√

2
ω K∗0

K∗− K̄∗0 φ





µ

, (13)

and Q the charge matrix

Q ≡





2/3 0 0
0 −1/3 0
0 0 −1/3



 . (14)

In Eq. (12), MV is the vector meson mass, for which we take an average value MV =
800MeV , e the electron charge, e2 = 4πα, and

g̃ =
MV

2f
; f = 93MeV.

The sum over polarizations in the intermediate vector meson, which converts the polariza-
tion vector of the vector meson of the R → BV amplitude into the photon polarization of
the R → Bγ amplitude, leads to the equation

− itγV DV = − iM2
V

e

g̃

i

−M2
V

Fj (15)

with

Fj = {
1√
2

for ρ0,
1

3
√
2

for ω,

−1
3

for φ.

(16)
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Thus, finally our amplitude for the R → Bγ transition, omitting the spin matrix element
of Eq. (9), is given by

tγ = − e

g̃

∑

j=ρ0, ω, φ

gjFj . (17)

As discussed in the former section, the radiative decay width will then be given by

Γγ =
1

2π

2

3

MB

MR
q |tγ|2. (18)

The couplings gj for different resonance and V B with V = ρ0, ω, φ and B different
baryon of the decuplet can be found in Ref. [2] and we use them here for the evaluation of
Γγ. The factor 2

3
in eq. (18) additional to eq. (11) appears because now we have only two

photon polarizations and the sum over M ′ in eq. (10) gives 2 instead of 3 for the case of
vector mesons.

4 Results for radiative decays into γ and baryon de-

cuplet

The couplings of the resonances to the different V B channels are given in Ref. [2] in the
isospin basis. For the case of ωB and φB, there is no change to be done, but for the case
of ρB, one must project over the ρ0B component. Since this depends on the charge of the
resonance R, the radiative decays will depend on this charge, as we will see. We recall that
in our phase convention |ρ+ 〉 = − |1, 1〉 of isospin. The information on the resonances
and their couplings to different baryons of decuplet and vector mesons ρ,ω, φ for different
channels is listed in Table 1. We detail the results below.

4.1 S = 0, I = 1/2 channel

A resonance is obtained at zR = 1850+ i5MeV which couples to ∆ρ. We have in this case

|∆ρ,
1

2
,
1

2
〉 =

√

1

2
|∆++ρ−〉 −

√

1

3
|∆+ρ0〉 −

√

1

6
|∆0ρ+〉 (19)

and

|∆ρ,
1

2
,−1

2
〉 =

√

1

6
|∆+ρ−〉 −

√

1

3
|∆0ρ0〉 −

√

1

2
|∆−ρ+〉, (20)

The coupling of the resonance to ρ0 is obtained multiplying the coupling of Table 1
by the corresponding Clebsch-Gordan coefficient for ∆ρ0 of Eqs. (19, 20). Then by means
of Eqs. (17, 18), one obtains the decay width. In this case since the ∆ρ0 component is
the same for I3 = 1/2 and I3 = −1/2, one obtains the same radiative width for the two
channels, which is Γ = 0.722MeV .
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S, I Channel
zR = 1850 + i5

0, 1/2 ∆ρ 4.9 + i0.1
zR = 1972 + i49

0, 3/2 ∆ρ 5.0 + i0.2
∆ω −0.1 + i0.2
∆φ 0.2− i0.4

zR = 2052 + i10
-1, 0 Σ∗ρ 4.2 + i0.1

zR = 1987 + i1 zR = 2145 + i58 zR = 2383 + i73
-1,1 Σ∗ρ 1.4 + i0.0 −4.3− i0.7 0.4 + i1.1

Σ∗ω 1.4 + i0.0 1.3− i0.4 −1.4− i0.4
Σ∗φ −2.1− i0.0 −1.9 + i0.6 2.1 + i0.6

zR = 2214 + i4 zR = 2305 + i66 zR = 2522 + i38
-2, 1/2 Ξ∗ρ 1.8− i0.1 −3.5− i1.7 0.2 + i1.0

Ξ∗ω 1.7 + i0.1 2.0− i0.7 −0.6− i0.3
Ξ∗φ −2.5− i0.1 −3.0 + i1.0 0.9 + i0.4

zR = 2449 + i7
-3, 0 Ωω 1.6− i0.2

Ωφ −2.4 + i0.3

Table 1: The coupling gi of the resonance obtained dynamically to the ρB, ωB and φB
channels.

4.2 S = 0, I = 3/2 channel

One resonance is obtained at zR = 1972+ i49MeV which couples to ∆ρ, ∆ω and ∆φ. The
isospin states for ∆ρ can be written as

|∆ρ,
3

2
,
3

2
〉 =

√

3

5
|∆++ρ0〉 +

√

2

5
|∆+ρ+〉, (21)

|∆ρ,
3

2
,
1

2
〉 =

√

2

5
|∆++ρ−〉 +

√

1

15
|∆+ρ0〉 +

√

8

15
|∆0ρ+〉, (22)

|∆ρ,
3

2
,−1

2
〉 =

√

8

15
|∆+ρ−〉 −

√

1

15
|∆0ρ0〉 +

√

2

5
|∆−ρ+〉, (23)

|∆ρ,
3

2
,−3

2
〉 =

√

2

5
|∆0ρ−〉 −

√

3

5
|∆−ρ0〉. (24)

Since all the Clebsch-Gordan coefficients to ∆ρ0 are now different, we obtain different
radiative decay width for each charge of the state. The results are Γ = 1.402MeV for
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I3 = 3/2, Γ = 0.143MeV for I3 = 1/2, Γ = 0.203MeV for I3 = −1/2 and Γ = 1.582MeV
for I3 = −3/2. It is quite interesting to see that there is an order of magnitude difference
between for I = 3/2 and I = 1/2, and it is a clear prediction that could be tested
experimentally.

4.3 S = −1, I = 0 channel

We get a resonance at zR = 2052 + i10MeV , which couples to Σ∗ρ. In this case

|Σ∗ρ, 0, 0〉 =

√

1

3
|Σ∗+ρ−〉 −

√

1

3
|Σ∗0ρ0〉 −

√

1

3
|Σ∗−ρ+〉, (25)

and the radiative decay obtained is Γ = 0.583MeV .

4.4 S = −1, I = 1 channel

Here we find three resonances at zR = 1987+ i1MeV , 2145+ i58MeV and 2383+ i73MeV ,
which couple to Σ∗ρ, Σ∗ω and Σ∗φ. The relevant isospin states are

|Σ∗ρ, 1, 1〉 =

√

1

2
|Σ∗+ρ0〉 +

√

1

2
|Σ∗0ρ+〉, (26)

|Σ∗ρ, 1, 0〉 =

√

1

2
|Σ∗+ρ−〉 +

√

1

2
|Σ∗−ρ+〉, (27)

and

|Σ∗ρ, 1,−1〉 =

√

1

2
|Σ∗0ρ−〉 −

√

1

2
|Σ∗−ρ0〉. (28)

The results obtained in this case are summarized in Table 2.

I3 (1987) (2145) (2383)
1 0.561 0.399 0.182
0 0.199 0.206 0.277
−1 0.020 2.029 0.537

Table 2: The radiative decay widths in units of MeV for the S = −1, I = 1 resonances
with different isospin projection I3.

4.5 S = −2, I = 1
2 channel

Here we also find three states at zR = 2214+ i4MeV , 2305+ i66MeV and 2522+ i38MeV ,
which couple to Ξ∗ρ, Ξ∗ω and Ξ∗φ. The isospin states for Ξ∗ρ are written as
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|Ξ∗ρ,
1

2
,
1

2
〉 =

√

2

3
|Ξ∗−ρ+〉 +

√

1

3
|Ξ∗0ρ0〉, (29)

|Ξ∗ρ,
1

2
,−1

2
〉 = −

√

1

3
|Ξ∗−ρ0〉 +

√

2

3
|Ξ∗0ρ−〉, (30)

The radiative decay widths in this case are shown in Table 3.

I3 (2214) (2305) (2522)
1/2 0.815 0.320 0.044
−1/2 0.054 1.902 0.165

Table 3: The radiative decay widths in units of MeV for the S = −2, I = 1/2 resonances
with the different isospin projection I3.

4.6 S = −3, I = 0 channel

Here we have only one state at zR = 2449 + i7MeV , which couples to Ωω and Ωφ. The
radiative decay width obtained in this case is Γ = 0.330MeV .

As one can see, there is a large variation in the radiative width of the different states,
which should constitute a good test for the model when these widths are measured.

In Table 4 we summarize all the results obtained making an association of our states
to some resonances found in the PDG[37].

5 Extension to the dynamically generated states from

vector meson - baryon octet interaction

In this section we take the states dynamically generated in [36] from the interacion of vector
mesons and baryons of the octet. The generalization of the equations is rather obvious:
eq. (9) becomes now (3/2 → 1/2)

tSM→V ′B′ = giC(1/2, 1, S;ms,M −ms,M)〈~ǫ |~ǫM−ms
〉. (31)

and equations (17) and (18), which determine the radiative decay width, are identical.
Once again one has to obtain the projection of the coupling from the isospin basis to the
ρ0N case, which we detail below.

6 Results for radiative decays into γ and baryon octet

The couplings of the resonances to the different V B channels are given in Ref. [2] in the
isospin basis. For the case of ωB and φB, there is no change to be done, but for the case

10



S, I Theory PDG data Predicted width (KeV ) for I3

pole position name JP −3/2 −1 −1/2 0 1/2 1 3/2

(MeV )

0, 1/2 1850 + i5 N(2090) 1/2− 722 722

N(2080) 3/2−

0, 3/2 1972 + i49 ∆(1900) 1/2− 1582 203 143 1402

∆(1940) 3/2−

∆(1930) 5/2−

−1, 0 2052 + i10 Λ(2000) ?? 583

−1, 1 1987 + i1 Σ(1940) 3/2− 20 199 561

Σ(2000) 1/2− 2029 206 399

2145 + i58 Σ(2250) ?? 537 277 182

2383 + i73 Σ(2455) ??

−2, 1/2 2214 + i4 Ξ(2250) ?? 54 815

2305 + i66 Ξ(2370) ?? 1902 320

2522 + i38 Ξ(2500) ?? 165 44

−3, 1 2449 + i7 Ω(2470) ?? 330

Table 4: The predicted radiative decay widths of the 10 dynamically generated resonances
for different isospin projection I3. Their possible PDG counterparts are also listed. Note
that the Σ(2000) could be the spin parter of the Σ(1940), in which case the radiative decay
widths would be those of the Σ(1940).

of ρB, one must project over the ρ0B component. Since this depends on the charge of the
resonance R, the radiative decays will depend on this charge, as we will see. We recall that
in our phase convention |ρ+ 〉 = −|1, 1〉 of isospin. The information on the resonances and
their couplings to different baryons of octet and vector mesons ρ,ω, φ for different channels
is listed in Table 5. We detail the results below.

6.1 S = 0, I = 1/2 channel

Two resonances are obtained at zR = 1696MeV and zR = 1977 + i53MeV which couple
to ρN , ωN and φN . We have in this case
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S, I Channel
zR = 1696 zR = 1977 + i53

0, 1/2 ρN 3.2 + i0 −0.3− i0.5
ωN 0.1 + i0 −1.1− i0.4
φN −0.2 + i0 1.5 + i0.6

zR = 1784 + i4 zR = 1906 + i70 zR = 2158 + i13
-1, 0 ωΛ 1.4 + i0.03 0.4 + i0.2 −0.3 − i0.2

ρΣ −1.5 + i0.03 3.1 + i0.7 0.01− i0.08
φΛ −1.9 − i0.04 −0.6− i0.3 0.5 + i0.3

zR = 1830 + i40 zR = 1987 + i240
-1,1 ρΛ −1.6 + i0.2 −0.3 + i0.9

ρΣ −1.6 + i0.07 2.6 + i0.0
ωΣ −0.9 + i0.1 −0.2 + i0.5
φΣ 1.2− i0.2 0.2− i0.7

zR = 2039 + i67 zR = 2082 + i31
-2, 1/2 ρΞ 2.4 + i0.7 0.4 + i0.3

ωΞ 0.6− i0.08 1.1 + i0.3
φΞ −0.8 + i0.1 −1.6− i0.4

Table 5: The coupling gi of the resonance obtained dynamically to the ρB, ωB and φB
channels.

|ρN,
1

2
,
1

2
〉 = −

√

1

3
|ρ0p〉 −

√

2

3
|ρ+n〉 (32)

and

|ρN,
1

2
,−1

2
〉 =

√

1

3
|ρ0n〉 −

√

2

3
|ρ−p〉 (33)

The coupling of the resonance to ρ0 is obtained multiplying the coupling of Table 5 by
the corresponding Clebsch-Gordan coefficient for ρ0N of Eqs. (32, 33). Then by means of
Eqs. (17, 18), one obtains the decay width.

6.2 S = −1, I = 0 channel

We get three resonances at zR = 1784 + i4MeV , zR = 1906 + i70MeV and zR = 2158 +
i13MeV respectively, which couple to ρΣ,ωΛ and φΛ. In this case

|ρΣ, 0, 0〉 =

√

1

3
|ρ−Σ+〉 −

√

1

3
|ρ0Σ0〉 −

√

1

3
|ρ+Σ−〉. (34)
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6.3 S = −1, I = 1 channel

Here we find two resonances at 1830+ i40MeV and 1987+ i240MeV , which couple to ρΛ
ρΣ, ωΣ and φΣ. The relevant isospin states are

|ρΣ, 1, 1〉 = −
√

1

2
|ρ0Σ+〉 −

√

1

2
|ρ+Σ0〉, (35)

|ρΣ, 1, 0〉 = −
√

1

2
|ρ+Σ−〉 −

√

1

2
|ρ−Σ+〉 (36)

and

|ρΣ, 1,−1〉 = −
√

1

2
|ρ−Σ0〉 +

√

1

2
|ρ0Σ−〉. (37)

6.4 S = −2, I = 1
2 channel

Here we also find two states at zR = 2039 + i67MeV and 2082 + i31MeV , which couple
to ρΞ, ωΞ and φΞ. The isospin states for ρΞ are written as

|ρΞ, 1
2
,
1

2
〉 = −

√

2

3
|ρ+Ξ−〉 −

√

1

3
|ρ0Ξ0〉, (38)

|ρΞ, 1
2
,−1

2
〉 =

√

1

3
|ρ0Ξ−〉 −

√

2

3
|ρ−Ξ0〉. (39)

In Table 6 we summarize all the results obtained, making an association of our states
to some resonances found in the PDG[37].

As one can see, there is a large variation in the radiative width of the different states,
which should constitute a good test for the model. For the case of the vector-baryon
octet states which decay into γ and a baryon of the octet, it is customary to express the
experimental information in terms of helicity amplitudes A1/2 and A3/2. We evaluate these
amplitudes below to facilitate the comparison with experiment.

7 Helicity amplitudes

Recalling eq. (31) for the dynamically generated states from a vector and a baryon of the
octet, we have the two cases JP = 1/2− and JP = 3/2−. The helicity amplitudes are
defined as

AN∗

1/2 =

√

2πα

k

1

e

〈

N∗, Jz = 1/2|ǫ(+)
µ Jµ|N, Jz = −1/2

〉

(40)

AN∗

3/2 =

√

2πα

k

1

e

〈

N∗, Jz = 3/2|ǫ(+)
µ Jµ|N, Jz = 1/2

〉

(41)
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S, I Theory PDG data Predicted width (KeV ) for I3

pole position name JP −1 −1/2 0 1/2 1

(MeV )

0, 1/2 1696 N(1650) 1/2− 334 253

N(1700) 3/2−

1977 + i53 N(2080) 3/2− 196 79

N(2090) 1/2−

−1, 0 1784 + i4 Λ(1690) 3/2− 65 (166)

Λ(1800) 1/2−

1907 + i70 Λ(2000) ?? 321 (21)

2158 + i13 0 (17)

−1, 1 1830 + i40 Σ(1750) 1/2− 363 69 (240) 7

1987 + i240 Σ(1940) 3/2− 307 27 (90) 426

Σ(2000) 1/2−

−2, 1/2 2039 + i67 Ξ(1950) ?? 400 89

2082 + i31 Ξ(2120) ?? 212 84

Table 6: The predicted radiative decay widths of the nine dynamically generated resonances
for different isospin projection I3. Their possible PDG counterparts are also listed. The
values in the bracket for I3 = 0 denote widths for the radiative decay into Λγ, while the
values outside the bracket denote widths for Σγ.

where α = 1/137, k is the CM photon momentum and e2 = 4πα. To acomodate these

amplitudes to our eq. (31) we rewrite them taking ǫ
(+)
µ Jµ = −~ǫ (+) ~J , as

A
J=1/2
1/2 = −tγ

1√
2k

C(1/2, 1, 1/2;ms,M −ms,M)〈~ǫM−ms
|~ǫ∗〉∗ (42)

14



where tγ is given by eq. (17), with ms = −1/2, ~ǫ = ~ǫ (+), which fixes M − ms = 1, and
similarly for the other amplitudes. Hence, we obtain

A
J=1/2
1/2 = −tγ

1√
2k

C(1/2, 1, 1/2;−1/2, 1, 1/2) =
1√
2k

√

2

3
tγ (43)

A
J=3/2
1/2 = −tγ

1√
2k

C(1/2, 1, 3/2;−1/2, 1, 1/2) = − 1√
2k

√

1

3
tγ (44)

A
J=3/2
3/2 = −tγ

1√
2k

C(1/2, 1, 3/2; 1/2, 1, 1/2) = − 1√
2k

tγ (45)

The ordinary formula to get the radiative decay width in terms of A1/2 and A3/2 is given
in the PDG [37] as

Γγ =
k2

π

2MB

(2JR + 1)MR

[

(A1/2)
2 + (A3/2)

2
]

(46)

One can see that using in eq. (46), the values of the helicity amplitudes obtained in eqs.
(43, 44, 45) one obtains the same result of eq. (18) for both spins of the resonances.

It is interesting to note that the values of A1/2 for J = 1/2, 3/2 and A3/2 for J = 3/2
are all related by the simple relations of eqs. (43, 44, 45) for these dynamically generated
states, something that could be contrasted with experiment. We compile in Table 7 all
the results obtained for the resonances that are likely to be associated to states in the
PDG for which there are data. The theoretical errors have been obtained by assuming
10% uncertainty in the largest coupling of the resonance to the different channels and 15%
in the other ones. This is only a rough estimate and the uncertainties can easily be double
this amount.

By looking at the table we can see that the agreement with the data of Ap
1/2 for the

N∗(1650) is good. For the case of An
1/2 the results obtained are larger than experiment

but the sign is good. In the case of the N∗(1700), Ap
1/2 can be considered qualitatively fine

within theoretical and experimental errors, Ap
3/2 seems to be larger than experiment but

one can see that individual measurements, as the one of Barbour [39] diverge appreciably
from the PDG average values. Similarly An

1/2 would be compatible with experiment within
errors and An

3/2 seems also a bit larger, but not qualitatively too off account taken of the
large experimental uncertainties. This last magnitude is very relevant since the predictions
of the dynamically generated model have opposite sign to all the quark model calculations
mentioned in the table. Since a global sign is these nondiagonal transitions can always
appear, more relevant than the absolute sign is the relative one to An

1/2 which is the same

in our case and opposite in [41, 42]. In ref. [43] one has the same signs but there is one
order of magnitude difference between the two helicity amplitudes, while in our model the
ratio is

√
3. It is clear that precise measurements of these magnitudes are very useful to

discriminate among models and help us understand better the structure of these resonances.
The case of the N∗(2080) and N∗(2090) is more unclear. While for Ap

1/2 and An
3/2 we

would obtain apparently good agreement with experiment, this is not the case for Ap
3/2
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PDG data Helicity amplitudes 10−3(GeV −1/2)

name JP Decay Theory Exp.[37] Exp.[39] Exp.[40] Th.[41] Th.[42] Th.[43]

PDG Barbour Devenish

N(1650) 1/2− Ap
1/2 64± 7 53± 16 5 46 54

An
1/2 −74± 7 −15± 4 −16 −58 −35

N(1700) 3/2− Ap
1/2 −46± 5 −18± 13 −33± 21 −13 −3 −33

Ap
3/2 −79± 9 −2± 24 −14± 25 −10 15 18

An
1/2 52± 5 0± 50 50± 42 16 14 −3

An
3/2 91± 9 −3± 44 35± 30 −42 −23 −30

N(2080) 3/2− Ap
1/2 −21± 5 −20± 8 26± 52

Ap
3/2 −36± 8 17± 11 128 ± 57

An
1/2 −29± 5 7± 13 53± 83

An
3/2 −50± 8 −53± 34 100± 141

N(2090) 1/2− Ap
1/2 30± 6

An
1/2 41± 6

Table 7: Comparison with experiments and other theories

and An
1/2, although the experimental uncertainties are very large. We also show the exper-

imental results of Devenish [40] for the resonances to show that individual measurements
are very different from the PDG averages. Since under the umbrella of the N∗(2080) and
N∗(2090) there are apparently different states compiled, it would be possible that the av-
erages of the PDG were not done for different measurements on the same state but for
measurements on different states. The experimental situation is hence unclear but the
results obtained here should be a motivation for further reanalysis.

In the Table 8 we present the results of Table 7 to give a global view of how the results
compare with the data. With the coments expressed above in the detailed discussion one
could qualify as qualitatively fair the global agreement of the results with the data.

8 Conclusions

We have studied the radiative decay into γB, with B a baryon of the octet and decuplet of
SU(3), of the dynamically generated resonances obtained within the framework of the local
hidden gauge mechanism for vector interactions. The framework is particularly rewarding
for the study of such observable, since the photon in the final state appears coupling directly
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N∗(1650) N∗(1700)

N∗(2080) N∗(2090)

Table 8: Graphical view of the experimental data with the results of the theory. The units
of AN

λ are in 10−3GeV −1/2.

to the vector V = ρ0, ω, φ in the R → V amplitudes which are studied in previous works.
The rates obtained are large and the radiative widths are of the order of 1 MeV . On the
other hand, one of the appealing features of the results is the large difference, of about one
order of magnitude, that one finds between the widths for different charge states of the
same particle. These results are tied to details of the theory, concretely the coupling of
the resonances to V B, which sometimes produce large interferences between the different
contributions of the three vector mesons to which the photon couples. As a consequence,
the radiative decay widths that we have evaluated bear much information on the nature
of those resonances, which should justify efforts for a systematic measurement of these
observables.

We have studied the decay into γ-baryon octet and γ-baryon decuplet of the states
dynamically generated from the vector-baryon octet and vector-baryon decuplet interac-
tion. In the first case one can define the helicity amplitude A1/2 and A3/2 for the n and
p type states of the N∗, which makes the comparison with data more useful. We have
found good agreement with data in some cases and rough in others, but we have warned

17



about the large experimental uncertainties and the possibility that the PDG averages are
done over different states. What stands clear from the work and the discussion is that
these observables are very useful to help us understand better the nature of the resonances
discussed here. Further experimental work is most desirable. We hope the present work
stimulates work in this direction.
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