reva by Dialcsic

Probing the Majorana nature of the neutrino with neutrinoless double beta decay

Stefano Morisi
Institut de Física Corpuscular - C.S.I.C./Universitat de València Edificio Institutos de Paterna, Apt 22085, E-46071 Valencia, Spain
E-mail: morisi@ific.uv.es

Abstract

Neutrinoless double beta decay $(0 \nu \beta \beta)$ is the only experiment that could probe the Majorana nature of the neutrino. Here we study the theoretical implications of $0 \nu \beta \beta$ for models yielding tri-bimaximal lepton mixing like A_{4} and S_{4}.

1. Introduction

Neutrinoless double beta decay $(0 \nu \beta \beta)$ is the only experiment that can probe the Majorana Nature of the neutrino. $0 \nu \beta \beta$ is a $\Delta L=2$ lepton number violating decay that can occur if the neutrino is a Majorana particle. For an introduction see for instance [1]. The generic effective Majorana mass term can be write as

$$
\begin{equation*}
\mathcal{L}_{d 5}=\frac{\lambda_{i j}^{\nu}}{\Lambda} L_{i} \phi L_{j} \phi, \tag{1}
\end{equation*}
$$

where ϕ is the standard model higgs doublet and Λ is an effective scale. When ϕ takes a vev $\langle\phi\rangle=v$, the operator in eq. (1) gives the Majorana mass term $m_{i j}^{\nu}=\lambda_{i j}^{\nu} v^{2} / \Lambda$. In general m^{ν} is an arbitrary 3 by 3 symmetric complex matrix. It has been observed [2] that neutrino data are in very good agreement with zero a rector angle $\sin \theta_{13}=0$, maximal atmospheric angle $\sin ^{2} \theta_{23}=1 / 2$ and large but not maximal solar angle $\sin ^{2} \theta_{12}=1 / 3$. A Leptonic mixing mixing matrix with such a values is called tri-bimaximal (TBM). The most generic neutrino mass matrix yielding to TBM mixing is invariant under exchanged the second family with the third family ($\mu \leftrightarrow \tau$ symmetry) and the sum of the elements each row of m_{ν} is constant, namely $\sum_{j} m_{1 j}^{\nu}=\sum_{j} m_{2 j}^{\nu}=\sum_{j} m_{3 j}^{\nu}$. We call a neutrino mass matrix of such type tri-bimaximal form mass matrix.

We can extend the standard model by means of a flavor symmetry G_{f} that yields a tribimaximal form mass matrix. Examples are the group of even permutation of four objects A_{4} [3, 4] or the group of all the permutation of four objects S_{4} [5, 6]. We observe that A_{4} is the smallest non-Abelian group with a triplet representation allowing to arrange in one multiplet the three families. For now on we focus on A_{4} flavor symmetry. We assume three Higgs doublets transforming as a triplet $\left(\phi_{1}, \phi_{2}, \phi_{3}\right) \sim 3$ and the lepton doublets L_{e}, L_{μ}, L_{τ}, transforming as a triplet of A_{4}. The most generic A_{4} invariant dimension five operators are given as

$$
\mathcal{L}_{5 d}=\frac{c_{1}}{\Lambda}\left(L_{i} \phi\right)_{1}\left(L_{j} \phi\right)_{1}+\frac{c_{2}}{\Lambda}\left(L_{i} \phi\right)_{1^{\prime}}\left(L_{j} \phi\right)_{1^{\prime \prime}}+\frac{c_{3}}{\Lambda}\left(L_{i} \phi\right)_{3}\left(L_{j} \phi\right)_{3}+
$$

Figure 1. Allowed range of $m_{e e}$ as a function of the lightest neutrino mass for A_{4} based model.

Figure 2. Allowed range of $m_{e e}$ as a function of the lightest neutrino mass for S_{4} based model.

$$
\begin{equation*}
+\frac{c_{4}}{\Lambda}\left(L_{i} L_{j}\right)_{1}(\phi \phi)_{1}+\frac{c_{5}}{\Lambda}\left(L_{i} L_{j}\right)_{1^{\prime}}(\phi \phi)_{1^{\prime \prime}}+\frac{c_{5}^{\prime}}{\Lambda}\left(L_{i} L_{j}\right)_{1^{\prime \prime}}(\phi \phi)_{1^{\prime}}+\frac{c_{6}}{\Lambda}\left(L_{i} L_{j}\right)_{3}(\phi \phi)_{3} . \tag{2}
\end{equation*}
$$

The resulting neutrino mass matrix is of tri-bimaximal form if and only if $c_{5}=c_{5}^{\prime}=0$. Such a condition can naturally be explained by adding Higgs doublets or flavons carrying extra Abelian symmetries, see for instance [4].

Differently the most generic S_{4} invariant dimension five operators

$$
\begin{align*}
\mathcal{L}_{5 d} & =\frac{\lambda_{1}}{\Lambda}\left(L_{i} \phi\right)_{1}\left(L_{j} \phi\right)_{1}+\frac{\lambda_{2}}{\Lambda}\left(L_{i} \phi\right)_{2}\left(L_{j} \phi\right)_{2}+\frac{\lambda_{3}}{\Lambda}\left(L_{i} \phi\right)_{3_{1}}\left(L_{j} \phi\right)_{3_{1}}+\frac{\lambda_{3}^{\prime}}{\Lambda}\left(L_{i} \phi\right)_{3_{2}}\left(L_{j} \phi\right)_{3_{2}}+ \\
& +\frac{\lambda_{4}}{\Lambda}\left(L_{i} L_{j}\right)_{1}(\phi \phi)_{1}+\frac{\lambda_{5}}{\Lambda}\left(L_{i} L_{j}\right)_{2}(\phi \phi)_{2}+\frac{\lambda_{6}}{\Lambda}\left(L_{i} L_{j}\right)_{3_{1}}(\phi \phi)_{3_{1}}, \tag{3}
\end{align*}
$$

give neutrino mass matrix of tri-bimaximal form. In S_{4} we do not need to introduce extra scalars or add symmetries in order to have tri-bimaximal in the neutrino sector. The resulting neutrino mass matrix is diagonalized by the tri-bimaximal matrix.

Now we study the theoretical implications for $0 \nu \beta \beta$ in models based on the two flavor groups A_{4} and S_{4}. The allowed ranges of $m_{e e}$ as a function of the lightest neutrino are presented in Figures (11) and (21). The two bands correspond to the normal hierarchy and the inverse hierarchy with $\sin ^{2} \theta_{12}=1 / 3, \sin ^{2} \theta_{23}=1 / 2, \sin ^{2} \theta_{13}=0$ (tri-bimaximal). We call this bands the tribimaximal region for $0 \nu \beta \beta$.

In order to simplify the discussion and to show the difference between A_{4} and S_{4} based models, we assume $c_{1}=c_{2}=c_{3}=0$ and $\lambda_{1}=\lambda_{2}=\lambda_{3}=\lambda_{3}^{\prime}=0$. This could be the case if the dimension five operators arise from type-II seesaw mechanism only. We have already said that A_{4} gives tri-bimaximal mixing if $c_{5}=c_{5}^{\prime}=0$.

If $\lambda_{5}=0 A_{4}$ and S_{4} are phenomenologically equivalent since the operators proportional to c_{4} and c_{6} correspond to the operators proportional to λ_{4} and λ_{6} respectively.

If $\lambda_{5} \neq 0$, then A_{4} and S_{4} are not phenomenologically equivalent. For instance the S_{4} allowed range for $m_{e e}$ is the full tri-bimaximal region. When $\lambda_{4}=0$ the allowed $m_{e e}$ ranges for A_{4} and S_{4} are given respectively in Figures (1) and (2).

In particular, in Figure (11) we see that A_{4} is compatible only with normal hierarchy. The A_{4} case has a lower bound with $m_{e e}>3 \cdot 10^{-3}$, see [7]. In Figure (2) we see that S_{4} is compatible only with inverse hierarchy.
[8] and [9 have studied $0 \nu \beta \beta$ implications assuming respectively type-I and inverse/linear seesaw mechanisms with A_{4} flavor symmetry. An effective neutrino mass model with S_{4} flavor symmetry has been studied in [10. In [11] a model with type-I seesaw with S_{4} flavor symmetry has been studied.

Note that for values of the lightest mass bigger than $10^{-1} \mathrm{eV}$, namely when neutrino are quasi degenerate, A_{4} and S_{4} allowed ranges are well separated. Therefore it could be in principle possible to distinguish A_{4} from S_{4} in the quasi degenerate region.

In case of inverse hierarchy there is a lower limit for $m_{e e}$. In 1 the dependence of such a limit as a function of the solar angle has been studied. However, in case of normal hierarchy in general there is no lower limit. If $m_{\nu_{1}}=m_{e e}=0$ we have that the lower limit depends from the values of the solar and reactor angles,

$$
\begin{equation*}
\sin ^{2} \theta_{12} \cos ^{2} \theta_{13} e^{i \alpha} \sqrt{\Delta m_{12}^{2}}+\sin ^{2} \theta_{13} e^{i \beta} \sqrt{\Delta m_{13}^{2}}=0 . \tag{4}
\end{equation*}
$$

This equation gives a relation between the solar and the reactor angles and the allowed region is represented in Figure (3) with the blue band. The small red region is the range allowed by the data at 3σ and compatible with $m_{\nu_{1}}=m_{e e}=0$, namely eq. (4).

Figure 3. Relation between solar and reactor angles for normal hierarchy when $m_{\nu_{1}}=m_{e e}=0$.

Acknowledgments

We thank Martin Hirsch for useful comments. This work was supported by the Spanish grant FPA2008-00319/FPA and PROMETEO/2009/091.

References

[1] M. Hirsch, arXiv:hep-ph/0609146.
[2] P. F. Harrison, D. H. Perkins and W. G. Scott, Phys. Lett. B 530, 167 (2002) arXiv:hep-ph/0202074.
[3] K. S. Babu, E. Ma and J. W. F. Valle, Phys. Lett. B 552, 207 (2003) arXiv:hep-ph/0206292;
[4] G. Altarelli and F. Feruglio, Nucl. Phys. B 720, 64 (2005) arXiv:hep-ph/0504165.
[5] C. S. Lam, Phys. Rev. Lett. 101, 121602 (2008) arXiv:0804.2622 [hep-ph]].
[6] F. Bazzocchi and S. Morisi, arXiv:0811.0345 [hep-ph].
[7] G. Altarelli, arXiv:0711.0161 [hep-ph].
[8] M. Hirsch, S. Morisi and J. W. F. Valle, Phys. Rev. D 78, 093007 (2008) arXiv:0804.1521 [hep-ph]].
[9] M. Hirsch, S. Morisi and J. W. F. Valle, Phys. Lett. B 679, 454 (2009) [arXiv:0905.3056 [hep-ph]]. [10] F. Bazzocchi, L. Merlo and S. Morisi, Nucl. Phys. B 816, 204 (2009) arXiv:0901.2086 [hep-ph]].
[11] F. Bazzocchi, L. Merlo and S. Morisi, Phys. Rev. D 80, 053003 (2009) arXiv:0902.2849 [hep-ph]].

