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Abstract

We analyze the so-called pinched weights, that are generally thought to reduce
the violation of quark-hadron duality in Finite-Energy Sum Rules. After showing
how this is not true in general, we explain how to address this question for the
LR correlator and any particular pinched weight taking advantage of our previous
work [1], where the possible high-energy behavior of the LR spectral function was
studied. In particular we show that the use of pinched weights allows to determine
with high accuracy the dimension six and eight contributions in the operator product
expansion, O6 =

(

−4.3+0.9
−0.7

)

· 10−3 GeV6 and O8 =
(

−7.2+4.2
−5.3

)

· 10−3 GeV8.
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1 Introduction

In a recent work [1] we have analyzed the violation of quark-hadron duality (DV) of a given

QCD Sum Rule with the non-strange LR correlator Π(q2) ≡ Π
(0+1)
ud,LR(q

2) defined by

Πµν
ud,LR(s) = i

∫

d4x eiqx 〈0|T
(

Lµ
ud(x)R

ν
ud(0)

†
)

|0〉

= (−gµνq2 + qµqν) Π
(0+1)
ud,LR(q

2) + gµνq2 Π
(0)
ud,LR(q

2) , (1)

where Lµ
ud(x) ≡ uγµ(1− γ5)d and Rµ

ud(x) ≡ uγµ(1 + γ5)d.
A QCD Sum Rule [2] takes advantage of the analytic properties of the correlator to

relate its imaginary part in the positive real q2-axis (where hadrons lie) with its value in
the rest of the complex plane, where the Operator-Product Expansion (OPE) allows us
to calculate it in terms of quarks and gluons: ΠOPE(s) =

∑

k O2k/(−s)k. The DV comes
from the fact that this OPE breaks down in the vicinity of the positive real q2-axis. We
can write a general QCD Sum Rule for the LR correlator in the following form

∫ s0

sth

ds w(s) ρ(s) +
1

2πi

∮

|s|=s0

ds w(s) ΠOPE(s) + DV[w(s), s0]

= 2f 2
π w(m

2
π) + Res

s=0
[w(s) Π(s)] , (2)

where ρ(s) ≡ 1
π
ImΠ(s) and w(s) is an arbitrary weight function that is analytic in the

whole complex plane except in the origin (where it can have poles). The violation of
quark-hadron duality is formally defined as [1, 3–7]

DV[w(s), s0] ≡
1

2πi

∮

|s|=s0

ds w(s)
(

Π(s)− ΠOPE(s)
)

. (3)

Using analyticity one can write the DV in the following form [3, 6–8]

DV[w(s), s0] =

∫ ∞

s0

ds w(s) ρ(s) , (4)

that shows how the DV is nothing but the part of the integral of the spectral function
that we are not including in the sum rule. In Ref. [1] we have studied the DV from this
perspective, using the following parametrization

ρ(s ≥ sz) = κ e−γs sin(β(s− sz)) , (5)

for the spectral function beyond sz ∼ 2.1 GeV2 and finding the region in the 4-dimensional
parameter space that is compatible with the most recent experimental data [9] and the
following theoretical constraints: first and second Weinberg Sum Rules [10] (WSRs) and
the sum rule of Das et al. [11] that gives the electromagnetic mass difference of pions (πSR).
The parametrization (5) emerges naturally in a resonance-based model [3, 12, 13] that has
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been used recently to study the violation of quark-hadron duality [6, 7, 14, 15], although
without imposing the previously explained theoretical constraints in the numerical analysis.

In Ref. [1] we used this parametrization to calculate the DV associated to Finite-Energy
Sum Rules (FESRs) with the weights w(s) = sn (n = −2,−1,+2,+3), but it can be used
to analyze any other QCD Sum Rule with the LR correlator. In this letter we would like to
apply the results of [1] to the so-called pinched-weight FESRs, where the standard weight
sn is substituted by a polynomial weight that vanishes at s = s0 (or near this point).

It has been often assumed that the use of pinched-weights (PWs) minimizes the DV1

[4, 5, 16–23], since they suppress the contribution from the most problematic region in the
contour integral of Eq. (3), close to the real axis [24]. However the alternative expression for
the DV given in Eq. (4) shows that things are more subtle [1,6,7] and that the assumption
is not necessarily true, since a PW function will indeed suppress the first part of this
hadronic integral but at the same time may enhance the high-energy tail that can become
important. If the final balance is positive and the weight function does its job minimizing
the DV contribution is something that depends on the particular weight used and on how
fast the spectral function goes to zero, something that is not known theoretically.

This question about the convenience of the use of these PWs is very entangled with the
more general question of how to estimate the duality violation of a given sum rule. The
observation of a more stable plateau in the final part of the data range is the standard
requirement to check if the weight improves the situation, and the deviations from the
plateau the standard way of estimating the remaining DV. However it is important to
notice that the existence of the plateau is a necessary but not sufficient condition, because
it could be temporary. This is particularly plausible because the PWs produce curves that
have derivative zero in the second duality point2 (s0 ∼ 2.6 GeV2), which is very near of
the end of the data. That is, they produce a fake plateau, that can induce to the possibly
wrong conclusion that the DV is negligible for that weight and that value of s0.

Here fake means that the correlations between the experimental points of the plateau
are extremely high and such that we do not have several points indicating the same value,
but just one point drawn several times. In principle, a fit of these points to a straight
line is sensitive to the correlations and would tell us if the plateau is real or it has been
artificially created by the weight function, but in practice this is not always possible, since
the high correlations among points prevent us from using the standard χ2-fit, as explained
in [25]3.

The results obtained in our previous analysis [1] allow to address these issues in a
quantitative way. In particular, we will study the PW versions of the QCD Sum Rules of
Ref. [1], i.e. those that give an estimation of the hadronic parameters Ceff

87 ,L
eff
10 ,O6 and O8.

1It must be emphasized that the PW functions are also useful because they are expected to minimize
the experimental errors, since they suppress the region near the kinematical end point.

2The duality points are two particular points (located at s0 ∼ 1.5 GeV2 and s0 ∼ 2.6 GeV2) where
both the first and second WSRs happen to be satisfied, i.e. where their DV contributions vanish.

3This situation was found e.g. in the determination of the V-A condensates in Ref. [4, 5].
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2 Numerical analysis

We are interested in PW functions that do not introduce new unknown quantities (con-
densates of higher dimension), since in that case a clean analysis is not possible anymore,
and more specifically we will work with pinched-weights w(s) that have a double zero in
s = spw, that is

∫ sz

sth

ds
ρ(s)

s2

(

1−
s

spw

)2(

1 +
2s

spw

)

= 16 Ceff
87 − 6

f 2
π

s2pw
+ 4

f 2
πm

2
π

s3pw
− DV[w−2, sz] , (6)

∫ sz

sth

ds
ρ(s)

s

(

1−
s

spw

)2

= −8Leff
10 − 4

f 2
π

spw
+ 2

f 2
πm

2
π

s2pw
− DV[w−1, sz] , (7)

∫ sz

sth

ds ρ(s) (s− spw)
2 = 2f 2

πs
2
pw − 4f 2

πm
2
πspw + 2f 2

πm
4
π + O6 − DV[w2, sz] , (8)

∫ sz

sth

ds ρ(s) (s− spw)
2 (s+ 2spw)

= −6f 2
πm

2
πs

2
pw + 4f 2

πs
3
pw + 2f 2

πm
6
π − O8 −DV[w3, sz] . (9)

The results depend on the point spw where the weight is pinched. In order to suppress
the experimental error it is convenient to pinch the weight at the left of the matching point
sz, whereas in order to suppress the DV-error (dispersion of the histograms) it is convenient
to pinch it at the right of sz. We have scanned the region finding that the optimal choice
of spw, that is, where the errors are minimized4, is spw ∼ sz ∼ 2.1 GeV2.

A careful comparison between these PWs and the standard weights sn shows that in
the case of the condensates the former are smaller (in absolute value) than the later for
any s ≥ spw, and therefore are expected to generate a smaller DV5, although the question
of how large is the remaining DV is not clear at all. In the case of the chiral parameters
Leff
10 and Ceff

87 , the convenience of the PW is not known a priori and it depends essentially
on how fast the spectral function goes to zero, in order to suppress the enhancement that
the PWs produce in the high-energy region (see Eq. (4)). In other words, the key point is
the value of the γ parameter, that is around one [1]. We will show that this value is large
enough to suppress the high-energy tail and so to benefit from the use of the PW.

In Ref. [1] we have used the parametrization (5) for the spectral function ρ(s) and
we have analyzed the allowed parameter space once the experimental and theoretical con-
straints are taken into account. In other words, we have generated a large number of
“acceptable” spectral functions, compatible with both QCD and the data. The differences
among them determine how much freedom is left for the behavior of the spectral function
beyond the kinematical end of the τ data. In particular we can calculate the value of the
parameters Ceff

87 ,L
eff
10 ,O6 and O8 obtained through the sum rules (6) - (9) for each of these

4Obviously the optimal point is different for every sum rule (6) - (9), but the differences are negligible
within errors.

5Notice that this is not a mathematical statement, but only a hand-waving estimate and can be altered
due to accidental cancellations.
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Figure 1: Statistical distribution of values of Ceff
87 (upper-left), Leff

10 (upper-right), O6 (lower-
left) and O8 (lower-right) for the accepted spectral functions, using the pinched-weight sum
rules (6) - (9) with spw = sz ∼ 2.1 GeV2. The parameters are expressed in GeV to the
corresponding power.

possible spectral functions. The results of this process are given in Fig. 1, which shows the
statistical distribution of the generated values. We can see that the histograms are much
more peaked around their central values than those obtained in Ref. [1] with standard
weights.

Let us remind that in addition to the error associated to the DV (estimated from the
dispersion of the histograms) we have the experimental ALEPH error, and both depend
on the used weight function. In principle one expects the PWs to minimize also the
experimental uncertainties, since they suppress the region near the kinematical end point6.

The associated numerical results are (we give the 68% probability region).

Ceff
87 =

(

8.168 +0.003
−0.004 ±0.12

)

·10−3 GeV−2 = (8.17± 0.12) ·10−3 GeV−2, (10)

Leff
10 =

(

−6.444 +0.007
−0.004 ± 0.05

)

· 10−3 = (−6.44± 0.05) · 10−3 , (11)

O6 =
(

−4.33 +0.68
−0.34 ± 0.65

)

· 10−3 GeV6 =
(

−4.3 +0.9
−0.7

)

· 10−3 GeV6 , (12)

O8 =
(

−7.2 +3.1
−4.4 ± 2.9

)

· 10−3 GeV8 =
(

−7.2 +4.2
−5.3

)

· 10−3 GeV8 , (13)

where the first error is that associated to the high-energy region (integral from sz to
infinity), that we compute from the dispersion of the histograms of Fig. 1, and the second
error is that associated to the low-energy region (integral from zero to sz), that we compute

6Notice below that in the case of O8 this does not happen. This is because the PW enhances the
low-energy region errors sizably.
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in a standard way from the ALEPH data. For the sake of comparison we show the analogous
results obtained in Ref. [1]: Ceff

87 = (8.17 ± 0.12) · 10−3 GeV−2, Leff
10 =

(

−6.46 +0.08
− 0.07

)

· 10−3,
O6 =

(

−5.4 +3.6
− 1.6

)

· 10−3 GeV6 and O8 =
(

−8.9 +12.6
− 7.4

)

· 10−3 GeV8, where we can clearly see
the improvement achieved with the PWs.

Since the first error in Eqs. (10)-(13) is not Gaussian we show also here the 95% prob-
ability results:

Ceff
87 =

(

8.168 +0.005
−0.008 ±0.24

)

·10−3 GeV−2 = (8.17±0.24) ·10−3 GeV−2, (14)

Leff
10 =

(

−6.444 +0.011
−0.011 ± 0.1

)

· 10−3 = (−6.4 ± 0.1) · 10−3 , (15)

O6 =
(

−4.33 +1.70
−0.68 ± 1.3

)

· 10−3 GeV6 =
(

−4.3 +2.1
−1.5

)

· 10−3 GeV6 , (16)

O8 =
(

−7.2 +6.3
−11.3 ± 5.8

)

· 10−3 GeV8 =
(

−7.2 +8.6
−12.7

)

· 10−3 GeV8 . (17)

3 Beyond the dimension eight condensate

We can play the same game with higher-dimensional condensates, where using again
pinched weights w(s) that have a double zero in s = spw we have

∫ sz

sth

ds ρ(s) (s− spw)
2 (s2 + 2spws+ 3s2pw

)

= −8f 2
πm

2
πs

3
pw + 6f 2

πs
4
pw + 2f 2

πm
8
π + O10 − DV[w4, sz] , (18)

∫ sz

sth

ds ρ(s) (s− spw)
2 (s3 + 2spws

2 + 3s2pws + 4s3pw
)

= −10f 2
πm

2
πs

4
pw + 8f 2

πs
5
pw + 2f 2

πm
10
π − O12 − DV[w5, sz] , (19)

∫ sz

sth

ds ρ(s) (s− spw)
2 (s4 + 2spws

3 + 3s2pws
2 + 4s3pws+ 5s4pw

)

= −12f 2
πm

2
πs

5
pw + 10f 2

πs
6
pw + 2f 2

πm
12
π + O14 − DV[w6, sz] , (20)

∫ sz

sth

ds ρ(s) (s− spw)
2 (s5 + 2spws

4 + 3s2pws
3 + 4s3pws

2 + 5s4pws+ 6s5pw
)

= −14f 2
πm

2
πs

6
pw + 12f 2

πs
7
pw + 2f 2

πm
14
π − O16 − DV[w7, sz] . (21)

Working again with spw ∼ sz ∼ 2.1 GeV2 we find the results shown in Fig. 2. The
associated numerical values are (68% C.L.)

O10 =
(

+4.1 +1.8
−1.6

)

· 10−2 GeV10 , (22)

O12 =
(

−0.12 +0.07
−0.03

)

GeV12 , (23)

O14 =
(

+0.2 +0.1
−0.2

)

GeV14 , (24)

O16 =
(

−0.2 +0.5
−0.4

)

GeV16 , (25)

where all the errors come from the dispersion of our histograms since the experimental
error is very much smaller for these higher-dimensional condensates. The 95% probability
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Figure 2: Statistical distribution of values of O10,12,14,16 for the accepted spectral functions,
using the PW sum rules (18) - (21) with spw = sz ∼ 2.1 GeV2. The parameters are
expressed in GeV to the corresponding power.

results are:

O10 =
(

+4.1 +5.6
−3.1

)

· 10−2 GeV10 , (26)

O12 =
(

−0.12 +0.13
−0.16

)

GeV12 , (27)

O14 = (+0.2± 0.5) GeV14 , (28)

O16 =
(

−0.2 +1.8
−1.1

)

GeV16 . (29)

It is really impressive that the sign of the condensates can be established for O10 and O12

since the importance of the high-energy region in their determination is huge. One could
have expected that the differences between our possible spectral functions would generate a
huge error in these higher-dimensional condensates, but our conditions (WSRs+πSR+data)
have turned out to be very restrictive about the acceptable spectral functions allowing quite
precise extractions.

4 Comparisons and summary

We have used the method developed in Ref. [1] to analyze the error of different pinched-
weight Finite-Energy Sum Rules and to extract the value of different hadronic parameters.
Comparing the results obtained here with those of Ref. [1] we see that, as theoretically
expected, the use of the pinched weights is less beneficial to the determination of the low-
energy constants Leff

10 and Ceff
87 than to the determination of the condensates. Our final
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Figure 3: Comparison of our results for O6 (left) and O8 (right) with previous determina-
tions [4,5,9,19,20,27–40] (we show for every method the most recent determination). The
blue bands show our results at 65% C.L., while the 95% probability regions are indicated
by the dotted lines.

results for the former are in excellent agreement with the most precise determination of
them [26]: Ceff

87 = (8.18 ± 0.14) · 10−3 GeV−2 and Leff
10 = −(6.48 ± 0.06) · 10−3. Notice

that, even if these determinations are also based on the PW sum rules (6) and (7), the
estimation of the error presented here is obtained through a completely different method,
based on more solid grounds and represents a confirmation of them.

We have obtained quite precise measurements for the condensates O6 and O8 using the
PW sum rules (8) and (9). In this way we have checked that the PW succeeds in minimizing
the errors and we can conclude that the most recent experimental data provided by ALEPH,
together with the theoretical constraints (WSRs and πSR), fix with accuracy the value of
O6 and almost determine7 the sign of O8. Our results are compared in Fig. 3 with previous
determinations of O6 and O8. One recognizes in the figure the existence of two groups of
results that disagree between them. For O6 there is a small tension between a bigger or
smaller value, whereas in the case of O8 the disagreement affects the sign and is more
sizable. As can be seen in Table 1, these discrepancies also appear in higher-dimensional
condensates, that we have also extracted applying the same method.

Our results agree with those of Ref. [4, 5, 19, 20] since they also use pinched weights,
but we think ours are based on much more solid grounds, due to the completely different
approach followed. We see in fact that the DV error was underestimated in Refs. [4, 5],
especially in the determination of the higher-dimensional condensates8.

7One can see in our final result (17) that at 2σ a positive value of O8 is already allowed, but it must not
be forgotten that the distribution is highly non-Gaussian and we can see in the corresponding histogram
of Fig. 1 that the possibility of being positive is negligible.

8This is just an explicit case where we can see that even when the pinched weights generate less DV
than the standard weights sn, the observed plateau is in part artificially created and hides the DV. That
is why the errors of Ref. [5] are underestimated.
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O10 × 103 O12 × 103 O14 × 103 O16 × 103

This work +41+18
−16 −120+70

−30 +200+100
−200 −200+500

−400

Masjuan & Peris [39] −14 ± 12
Narison [35] −17.1± 4.4 +14.7± 3.7 −9.6± 3.1 +4.3± 1.9

Friot et al. [37] −13.2± 3.6 +13.3± 3.9 −12.8± 3.9 +11.9± 3.8
Zyablyuk [33] −4.5 ± 3.4

Almasy et al. [40] +66+40
−14

Bordes et al. [20] +72± 28 −240± 50
Latorre & Rojo [34] +78± 24 −260± 80
Cirigliano et al. [5] +48± 10 −160± 30 +430± 60 −1030± 140

Table 1: Comparison of our determination of O10,12,14,16 with other works. The condensates
are expressed in GeV to the corresponding power. The results shown for Ref. [5] are
those obtained with the old ALEPH data (with the OPAL data the numbers are not very
different), and the results shown for Ref. [37] are those obtained with the minimal hadronic
ansatz, that is, without the addition of the ρ′ resonance, that in any case modifies just
slightly the results.

We also agree with the results of Ref. [30] based on the use of the second duality point,
although that technique has a much larger error. It is remarkable also the agreement with
Ref. [34] that is the only one that follows a technique similar to ours, trying to analyze the
possible behavior of the spectral function but through a neural-network approach. Their
result has a bigger uncertainty, maybe only due to the fact they used the old ALEPH data.

Our analysis indicates that the DV error associated to the use of the first duality
point is very large and was grossly underestimated in Ref. [33, 35], where also higher-
dimensional condensates were neglected. In Ref. [37, 39, 41] the numerical values obtained
at this first duality point are supported through theoretical analyses based on the so-called
“minimal hadronic ansatz” (a large-NC-inspired 3-pole model) or Padè approximants. Our
results show however that the first duality point is very unstable when we change from the
WSRs to the O6,...,16 sum rules, indicating that the systematic error of these approaches
is non-negligible. Essentially the same can be said about Refs. [28, 29] where the last
available point s0 = m2

τ was used. The minimal hadronic ansatz [37,41] gives a reasonable
approximation to O6, but its accuracy seems not good enough to reproduce the signs of
the higher-order condensates (although an alternating-sign series is indeed predicted).

Summarizing, our results agree within two sigmas with the other estimates of O6, but
for condensates of higher dimension O8,10,12,14,16 they agree with Refs. [4, 5, 19, 20, 30, 34]
but not with Refs. [28, 29, 33, 35–37]. It is worth noting that in particular our method
shows that O6 and O8 are both negative, whereas it suggests that the sign alternates for
higher-dimensional condensates.
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