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Abstract: This paper reports the procedure used in creating a homogeneous database of daily 

precipitation in northeast Spain. The source database comprised 3106 daily precipitation 

observatories, with data ranging from 1901 to 2002. Firstly, a reconstruction of the series was 

performed. Data from adjacent observatories were combined to provide long temporal coverage. 

Data gaps were filled using values from nearest neighbor observatories. A distance threshold was 

set to avoid the introduction of spurious information in the series. Secondly, the reconstructed series 

were subjected to a quality control process. Empirical percentiles corresponding to each 

precipitation observation were compared to the percentiles corresponding to the closest neighbor 

observatory, and a threshold difference was set to identify questionable extremes. After careful 

inspection of each case, 0.1% of the data was rejected and replaced with information from the 

nearest neighbor. Thirdly, the homogeneity of the series was checked using the standard normal 

homogeneity test. This allowed detection of inconsistencies present in the original database or 

introduced by the reconstruction process. Four parameters were assessed at a monthly level: amount 

of precipitation, number of rainy days, daily maxima, and number of days above the 99th percentile. 

A total of 43% of the series had some periods of inhomogeneity and were discarded. The final 

database comprised 828 series with varying time coverages. The greatest number of stations existed 

during the 1990s, but more than 300 series contained information from the 1960s, and 34 series 

contained a complete record since 1920. Comparisons of the spatial variability of several 

parameters describing the daily precipitation characteristics were made. The results showed that the 
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final database had improved spatial coherence. The process described here is proposed as a model 

for developing a standard procedure for the construction of databases of daily climate data. 

Key-words: Daily precipitation, database, quality control, homogenization, SNHT, extreme events, 

climatic variability, climatic change, Spain.  

 
 
1. Introduction 
 
Climate hazards cause human and economic impacts on a global scale. Floods and droughts in 

particular have major human and economic effects (Bruce, 1994; Obasi, 1994), and both are closely 

related to precipitation intensity, frequency and duration. An increase in precipitation-related 

natural hazards and consequent economic loss have been reported by several authors (Karl and 

Easterling, 1999; Meehl et al., 2000; Peterson et al., 2002; Aguilar et al., 2005; Hundecha and 

Bardossy, 2005; Moberg and Jones, 2005), and can be attributed to an increase in the vulnerability 

of society to these events (Kunkel et al., 1999). Climate change models indicate that the frequency 

and magnitude of extreme precipitation events could increase markedly in a number of regions 

during this century (e.g. Boronenat et al., 2006; Frei et al., 2006; Pall et al., 2007). This is likely to 

be accompanied by changes in the frequency distribution of precipitation (Katz and Brown, 1992; 

Easterling et al., 2000), affecting both the intensity and duration of precipitation-related extreme 

events, such as drought and floods. 

Accurate estimates of the risk of extreme precipitation events and droughts are needed for 

agricultural and water management, land planning, public works programs and in other sectors. 

Extreme value analysis techniques are normally used to obtain frequency estimates of dangerous 

phenomena, and to enable the probability of occurrence and the return period of extreme events of a 

given magnitude and/or duration to be assessed (e.g. Smith, 1989 and 2003).  

The analysis of precipitation-related processes requires spatially dense databases with high 

frequency precipitation records (daily or sub-daily). The vast majority of available information is at 
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a daily time scale, and sub-daily information is not widely available. Long time series datasets are 

the most valuable, as the reliability of frequency estimations is closely related to the sample size 

used during the analysis process (Porth et al., 2001). Long time series are also necessary in analysis 

of the temporal variability and trends of extreme events, and to estimate the risk and probability of 

these events. 

Long-term, dense and reliable daily precipitation databases are uncommon for several reasons. 

Changes in the location of observatories within the same locality are frequent, resulting in 

fragmented or inconsistent data series. Human error can occur during the process of observation, 

and in the transcription and digitization of data (Reek et al., 1992). In addition, measurements at a 

meteorological station can vary as a consequence of instrument deterioration or replacement, 

variations in the time of observations, and changes in the surrounding environment. These factors 

increase noise in the data, and can lead to inhomogeneities that make the data unusable (Peterson et 

al., 1998; Beaulieu et al., 2007). 

To overcome these problems, and to construct a reliable database for extreme value analysis, a 

process of reconstruction, quality control and homogenization of precipitation data is needed. This 

approach is common for monthly precipitation series, and several complete and homogeneous 

precipitation databases have been created (e.g. González-Rouco et al., 2000; González-Hidalgo et 

al., 2004; Brunetti et al., 2006). Several homogeneous databases of temperature series have also 

been generated at a daily time resolution (e.g. Brunet et al., 2006), and some approaches have been 

developed for homogenizing this variable (Allen and DeGaetano, 2000; Vincent et al., 2002; 

Brandsma and Könen, 2006).  

However, despite its importance no complete protocols are available for processing daily 

precipitation datasets. Various procedures have been developed for filling data gaps in daily 

precipitation series (Karl et al., 1995; Eischeid et al., 2000), and for automatic (Feng et al., 2004) 

and manual (Griffiths et al., 2003; Aguilar et al., 2005) quality control of the datasets. These 
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procedures are widely applied before analysis of daily precipitation data. Nevertheless, testing for 

inhomogeneities in daily precipitation datasets is not common, and although some reports exist (e.g. 

Schmidli and Frei, 2005; Tolika et al., 2007) they have usually been in relation to precipitation 

volume and not precipitation frequency, which is also crucial for guaranteeing the homogeneity of 

daily precipitation datasets (Wijngaard et al., 2003; Viney and Bates, 2004). Although there have 

been some recent advances in the creation of quality-controlled and homogenized daily 

precipitation datasets (e.g. Peterson et al., 2008), complete procedures for optimizing all the 

available information are lacking, as typically only the longest and most complete series are used. 

This suggests inefficient use of the available data, and the possibility of obtaining spatially dense 

information, particularly in countries where highly fragmented series not fulfilling the standard 

criteria of length and completeness exist among neighboring areas.  

Some studies in the Iberian Peninsula have focused on the creation of daily precipitation databases 

for spatial and temporal studies of climate change and climatic hazards. Romero et al. (1998) 

created 410 complete daily precipitation series for the Spanish Mediterranean provinces, using 

information derived from 3366 individual series. This analysis was mainly focused on filling gaps, 

and the homogeneity of the resultant series was not checked. Moreover, the final dataset is 

temporally limited, covering only the period from 1964 to 1993. Lana et al. (2004) developed a 

daily precipitation database for 1950−2000 from 75 rain gauges in Catalonia (northeast Spain). 

Homogeneity was checked using monthly totals, but there were gaps in the dataset. Although some 

global daily precipitation databases exist (e.g. Peterson et al., 1997; Gleason, 2002), the spatial 

density of data is very poor in most regions. For example, the Global Daily Climatology Network 

(GDCN; http://www.ncdc.noaa.gov/oa/climate/research/gdcn/gdcn.html#precip) includes only 19 

precipitation observatories for the Iberian Peninsula, which is inadequate for capturing the large 

spatial variability that characterizes precipitation in this region. Klein-Tank et al. (2002) also 
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developed a database for daily precipitation in Europe, but the spatial density is too low (10 

observatories in Spain) to enable adequate spatial analysis.  

This paper presents a process for reconstruction of a spatially dense database of daily precipitation 

records for the northeast part of Spain, using data since 1900 from the archives of the Spanish 

National Institute of Meteorology. The process included selection of suitable observatories for the 

reconstruction, gap filling, identification of anomalous and questionable records, and homogeneity 

testing. The objective was to construct a spatially dense, continuous, long and reliable database for 

climate studies, reducing as much as possible the noise-to-signal ratio and eliminating all likely 

inconsistencies. 

 
 
2. Database 
 
The original database comprised 3106 daily precipitation observatories in the study area, whose 

activities spanned the period of existence of the Spanish National Institute of Meteorology 

(1900−2002). The boundaries of the database correspond to administrative limits, and include 18 

provinces in the northeast of Spain with a total area of 159,423.7 km2 (Figure 1). The spatial density 

is very high (one observatory per 51.3 km2), although variation in the density among regions is also 

high. 

Normalization of instruments is very important to ensure the temporal homogeneity of the data. 

Pluviometers used in the Spanish observation network are approved and normalized by the National 

Institute of Meteorology, which provides the instruments and guarantees their uniformity. The 

Hellmann pluviometer was officially adopted in 1911 for the Spanish precipitation network. This 

device is characterized by a hollow cylinder with a funnel formed at one end, and is placed on a 

pole at a height of 1.5 m. The opening of the pluviometer has a surface area of 200 cm2, and it has a 

brass ring with a beveled edge to ensure the surface area remains constant and to avoid splash. 

Measurements are taken twice daily, at 9:00 h and 14:00 h. Since 1911 the measurement protocol 
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has remained unchanged. Only two of the data series used in this study contained precipitation data 

prior to 1911. Therefore, the database was not affected by changes in instrumentation or 

measurement protocol. 

The original database series were highly variable in terms of record lengths and the quantity and 

duration of data gaps. No information was available about data acquisition and the history of each 

observatory (metadata), including changes in location, measurement conditions, observers, and 

observation times. Metadata are very useful for assessing the quality of a series and to identify 

possible errors, but are frequently missing in raw climate databases. 

The data collection periods for the majority of observatories were very short (374 had less than 60 

months of complete records, and 1723 had 240 months or less). Only 286 stations had more than 

600 months of records (50 years of data). The database was also very fragmented, with several 

observatories located in the same locality, but covering different periods. 

 
 
3. Methodology 
 

The method comprised three main steps. The first involved reconstruction of the precipitation series 

with the objective of deriving continuous and long-term series by combining short duration series 

from nearby observatories, and the filling of gaps by using auxiliary information obtained from 

nearby observatories. The second step was a quality control assessment of the reconstructed series 

to identify and substitute anomalous and questionable records in the database (negative 

precipitation, extreme precipitation events, some zero values, and records that differed markedly 

from values recorded in neighboring observatories). The third step tested the homogeneity of the 

reconstructed series using four parameters of the series. This enabled identification of complete 

series and removal of periods for which data were not homogeneous; the latter was carried out to 

avoid the presence of spurious information in the final dataset. The three steps, the decisions taken 

and the products obtained are described in detail below. 

 6



 
3.1. Reconstruction and gap filling 
 
The reconstruction of a single long time series from a number of shorter series from neighboring 

observatories enabled optimization of the highly fragmented daily precipitation data typical of many 

datasets. Reconstruction relied on the assumption that the cessation of data recording at one 

observatory, and the establishment of one or more new observatories close to the previous one, 

results in two or more data series which are usually not useful for climate analysis as a consequence 

of their short duration. Nevertheless, if the observatories are sufficiently close the differences in 

precipitation records are usually very small, so data from the shorter series can be combined into a 

single series, which is ascribed to the last observatory that collected data. It is important to note that 

this approach is only valid where observatories are separated by short distances, and it is assumed 

that the combined series can exhibit inhomogeneities due to the reconstruction process. These 

inhomogeneities need to be identified and removed from further analyses. 

A review of the literature showed that no general criterion exists for the selection of observatories 

suitable for reconstruction.  Lana et al. (2004) considered a minimum of 31 years of data in a 50-

year period was necessary for a series to be included in a daily precipitation database for Catalonia. 

In a study involving the Spanish Mediterranean coast, Romero et al. (1998) used only those series 

with less than 10% of data missing in a 30-year period. Similarly, Eischeid et al. (2000) set a 

maximum of 48 months of missing data in a 40-year period as the criterion for rejecting a data 

series in western USA. From a set of 181 series, Haylock and Nicholls (2000) used only those that 

had less than 10 days missing per year for at least 80 years in the 88-year period they considered. 

Moberg and Jones (2005) were more restrictive in a trend analysis for the whole of Europe, 

selecting only those series with less than 3 years with data gaps in a total of 89 years. 

We followed different criteria to select suitable data series for reconstructions as a function of 

temporal duration, the period covered and the data gaps. Data series that covered a period of less 

than 15 years were considered too short to be suitable for reconstruction. This group of 
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observatories (1106; labeled Z) were reserved for use in reconstructions of data from other 

observatories. The exception was where Z observatories included data from 2000−2002; these series 

were considered of high value as they could complement long-term data from nearby observatories 

that had ceased data collection in previous years. A total of 37 series matched this criterion. The 

remaining series (1963) were divided into two groups. Series A included those series (1094) 

covering a period of more than 25 years with less than 10 years of data gaps. Series B included 

those series (869) covering a period of 15 to 25 years, or a period of more than 25 years but with 

more than 10 years of data gaps. Series A and B were considered suitable for reconstruction. 

The next step was to fill data gaps in the time period covered by each series. Approaches to gap 

filling in daily climate series (Eischeid et al., 2000) involve consideration of only the data in the 

series, or involve use of the data from nearby observatories. Karl et al. (1995) and Brunetti et al. 

(2001) filled missing values by generating random rainfall amounts, based on the probability 

distributions of the variables studied. The goal of this procedure was not to give a realistic estimate 

of the unknown daily values, but to obtain a data series of equal length without changing the 

probability distributions of rainfall amounts. Nevertheless, for other applications it is more reliable 

to use methods based on the values recorded at nearby observatories (Paulhus and Kohler, 1952; 

Eischeid et al., 2000). We focused on methods based on the information from neighboring 

observatories, and tested three different procedures: the nearest neighbor, inverse distance weighted 

interpolation, and linear regression methods.  

To compare the methods, artificial data gaps were created by randomly removing 1% of the 

available observations from the A and B observatories. A total of 1963 series were tested, involving 

creation of 181,861 artificial data gaps using the nearest neighbor, inverse distance weighted 

interpolation, or linear regression method. After applying the three methods to these data, the root 

mean square error (RMSE) of the reconstructed gaps was used to choose the best method. 
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i) In the nearest neighbor method data gaps were filled directly with data from the closest 

observatory that had information. To apply this method, two criteria were established: 

the nearest neighbor had to be within a radius of 15 km of the target observatory, and the 

correlation (Pearson's R) between the daily precipitation series from both observatories 

had to be higher than 0.5, with a minimum of 3 years of common data. These criteria 

were based on the average distance among observatories for the complete dataset, and 

the average correlations among observatories at different distances. Descriptive statistics 

showed that the average number of neighboring observatories within a radius of 5 km  

was very small (3), but increased to nine with a 10 km radius (Fig. 2). However, the 

availability of observatories was highly variable across regions. Thus, 25% of the 

observatories has less than six neighbors within a radius of 10 km. To overcome this 

problem we selected a threshold radius of 15 km, for which only 5% of the observatories 

had less than 10 neighbors. This threshold was not large enough to lead to important 

differences in the precipitation conditions among observatories.  

As a distance of 15 km may not have ensured similarity in precipitation conditions 

between two sites (e.g., in the case of strong elevation differences), we established an 

additional criterion in fixing the distance threshold, based on the correlation between the 

two series. The average correlation in daily precipitation between pairs of observatories 

with a minimum of 3 years of common data decreased rapidly as a function of distance 

from 1 to 50 km (average R from 0.78 to 0.45, Fig. 3). At greater distances the decrease 

was slower but sustained. At a distance of 15 km the average correlation was R = 0.62, 

but for greater distances (e.g. 25 km) the correlations were lower (average R = 0.57) in 

order to achieve a higher number of neighbors. In contrast, for shorter distances (e.g. 10 

km, R = 0.67) the number of neighbors decreased markedly, as indicated above. Thus, a 

threshold distance of 15 km appeared to be a good compromise. 
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ii) For interpolation from neighboring data series we selected a local method based on the 

inverse distance weighting (IDW): 
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where z(xj) is the predicted value according to the weighted average of the data at points 

z(x1), z(x2),…,z(xn). The distance (d) between z(xi) and z(xj) is the weighting factor, and 

we used an r value of 2. We fixed a maximum distance of 15 km for the interpolation. 

iii) In the linear regression method, missing data were obtained by determining the most 

correlated single independent series. To avoid negative values and to retain the zeros, the 

regression line was forced to pass through the origin, providing a model only with a 

slope coefficient. This approach has been used to reconstruct daily temperature series 

(e.g. Allen and DeGaetano, 2001), as this variable is not affected by abrupt spatial 

changes, and varies gradually in space. Linear regression is very suited to obtaining 

reliable dependence models among a candidate observatory and auxiliary observatories 

used in the reconstruction. Additional problems arise with daily precipitation series, as 

these usually show lower correlations even among close observatories (Auer et al., 

2005). 

Of the three methods the nearest neighbor method provided the best results, with an average RMSE 

of 1.05 mm (with a range of 0.23−5.7 mm between stations). The IDW approach had an average 

RMSE of 1.23 mm (range 0.31−7.2), and the linear regression method had an average RMSE of 

1.31 mm (range 0.30−6.9). 

The performance of the three methods could not be evaluated solely on the basis of the RMSE, 

because a high RMSE value can mask important changes in the frequency of rainy days and 

extreme values. The series from the Fabra observatory in Barcelona illustrates this problem (Fig. 4). 
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This series was of good quality, had complete records (see details about the observatory in 

Rodríguez et al., 1999), and had a large number of neighboring observatories. The entire series was 

reconstructed between 1913 and 2002. The conclusions derived from the Fabra observatory can be 

generalized to the other observatories. Among the three methods, the IDW and regression methods 

reduced the frequency of extreme values, and increased the frequency of events less than 50 mm. 

The nearest neighbor method more accurately reconstructed the frequency of the most extreme 

events in the series. In comparison with the original series, the IDW reconstruction noticeably 

decreased the total number of dry days and increased the number of rainy days, affecting the 

number and duration of dry and wet spells and the average precipitation per day. This was a direct 

consequence of neighbor averaging, as a single neighboring series with a daily record above zero 

resulted in the reconstructed series changing from a dry to a wet day. The IDW method included 

contributions from poorly correlated series, as all the observatories within 15 km were included. An 

alternative strategy may have been to weight the neighboring data according to the correlation 

coefficient rather than the distance. However, this would not have avoided a decrease in the number 

of rainy days, as this is intrinsic to the averaging nature of the method, and independent of the 

weighting criterion chosen. In contrast, the regression method overestimated the number of dry days 

and underestimated the number of wet days. The nearest neighbor method provided statistics closest 

to the original record, and also maintained the distribution characteristics of the original series 

better than the other methods. This evidence favored the nearest neighbor method over more 

sophisticated procedures involving several neighbors, and we therefore chose this method for gap 

filling in the dataset. For this purpose we used the Z series within a 15 km radius of the target A 

series, and with a correlation coefficient higher than 0.5. If some gaps remained in the A series after 

this process, we also used the B series (lacking information until 2000−2002) within the 15 km 

radius. The B series used to fill gaps in some A series were discarded in subsequent reconstructions. 

If no data were available within a 15 km radius, we rejected all the data prior to the gap so as to 
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avoid potential inaccuracies introduced by using data far from the target observatory. The unique 

exception to this was the 1936−1939 period, during which the instability caused by the civil war 

markedly reduced the number of observatories. In the few observatories for which gaps remained 

during these years, the earlier information was not deleted. A total of 862 observatories from the 

1094 original A series were filled following this criterion. The remaining observatories (232) had 

the data removed before the gaps. 

The remaining B series were also completed using the Z series and neighboring B series, always 

located within a radius of 15 km. The Z series were used first, and the remaining gaps were 

completed using the B series. To avoid redundant information we gave preference to the B series 

with data until 2000−2002. If both series did not reach this date, the shorter series was used to 

complete the longer series. The series used for gap filling were subsequently discarded. The data 

gaps in the remaining 37 Z series with data until 2000−2002 were filled following the same 

procedure. 

After the gap filling procedure there were 1663 complete series comprising 1094 (A), 532 (B) and 

37 (Z, until 2000−2002). Many of the completed series covered different periods. As the objective 

was to obtain a complete and reliable series up to the present, we performed a reconstruction 

procedure to create new series updated from near-complete series that covered different periods. As 

this procedure was a key issue for the creation of the database, the reconstruction process was done 

manually with the aid of a geographical information system in which the location, the data period 

and the topography were available. This was a unique step in the creation of the database. Although 

an automatic procedure would be desirable for performing this step, we were unable to find an 

optimal approach that allowed merging of the series. The topographical diversity (including 

elevation, topographic barriers, different atmospheric influences among neighboring valleys and 

other factors), and the need to avoid redundant information, necessitated use of a manual process 

for this reconstruction. 
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Long series from observatories without data up to 2000−2002 were assigned to observatories with 

data updated to 2000−2002, which were located in the same or nearby municipalities (always within 

a radius of 15 km) and had similar topographic conditions (less than 100 m difference in elevation), 

using the nearest neighbor method. Those series that finished before 2000 and lacked neighbors 

meeting these criteria were eliminated from the final dataset. When daily information was 

coincident among two or more observatories for the same day, data of the observatories containing 

data up to 2000−2002 were preferred. The spatial location of the reconstructed series was assigned 

to the location of the observatory with data updated to 2000−2002.  

The result of this manual reconstruction process was 934 observatories with complete records until 

2000−2002. Therefore, of the 3106 original observatories, 2172 were used in the reconstruction 

process and thereafter discarded according to the criteria described above. Of the 934 observatories 

with complete records, 383 (41%) were reconstructed or combined with other observatories to 

provide data covering more than 20 years; 229 (24.5%) were reconstructed with 5−20 years of data; 

and 322 (34.5%) had data gaps less than 5 years. The spatial distribution of the reconstructed series 

(Fig. 5) showed a homogeneous distribution in the study area, although a higher density of data 

series was present in some areas, such as in the south of the Lérida, Barcelona and Castellón 

provinces, and the center of Huesca and Álava provinces. The spatial density was lower than in the 

original series (170.7 km2 per observatory, compared to 51.3 km2 for the original dataset). All the 

provinces are well covered, and the presence of bias in the spatial distribution of the observatories 

used in reconstructions was discounted. 

The number of data series available varied with respect to the starting date. Only two series were 

available with complete data from 1901. For 1920 onwards there were 68 series, and after 1940 

there was a progressive increase from 206 series to a maximum of 934 in 1988. After 2000 there 

was a decrease in the number of available series until 2002 (December 2002 = 834 series). 
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3.2. Quality control 
 
The objective of quality control was to identify erroneous or questionable records in the climate 

datasets. Errors in climate series are a common problem arising from sources such as the condition 

of instruments, and in data processing including collection, transcription and digitizing (Reek et al., 

1992). As a consequence of the simplicity of rain gauges, very few instrument errors were expected 

in the databases used for this work. Nevertheless, errors arising from the data processing are 

equivalent to other climatic variables such as temperature. 

Several criteria have been proposed for identifying erroneous data in climate series. As most errors 

are due to outliers (exceptionally high or low spurious values), some authors identify questionable 

values from a fixed threshold derived from the average and standard deviation of the series. The 

data of the previous and following day can also be used to identify anomalous spikes in variables in 

a series, such as temperature (Gleason, 2002). However, this approach cannot be applied to 

precipitation series due to its high temporal and spatial variability. A better approach to identifying 

outliers is comparison of daily values among neighboring observatories. Several procedures can be 

followed for this spatial comparison. Feng et al. (2004) used linear regression for daily precipitation 

data among each observatory and the 5 most correlated observatories. The regression residuals were 

used to identify questionable values. Griffiths et al. (2003) identified major outliers in the rainfall 

records, and manually assessed whether the values were related to real meteorological events such 

as flooding or heavy rainfall events. They also checked for internal consistency against records 

from nearby localities. A similar manual approach was followed by Manton et al. (2001) in the 

South Pacific, Brunetti et al. (2001) in Italy, and Aguilar et al. (2005) in Central America. 

Due to the high density of data available, we were able to follow an approach based on comparison 

of the rank of each data record with the average rank of the data recorded in adjacent observatories. 

The original daily precipitation series were converted to percentiles, after eliminating the zero 

values; this accounted for more than 60% of the data. Each precipitation value was replaced by its 
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corresponding percentile, according to the complete series. After transformation the zero values 

were assigned a zero percentile. For each data series we selected the observatories located within a 

radius of 20 km, and set a criterion of a minimum of four observatories as a condition for 

performing the test. Where this criterion was not met, the daily value of the target observatory was 

not compared.  

Only records above the 99th percentile were checked in the first stage. The maximum allowed 

difference between a candidate observation and the average values of the percentiles in the 

neighboring observatories was set at 60 percentile units. If the difference was higher than this the 

candidate observation was considered questionable. These values were flagged and substituted with 

data from the closest series. In the second stage, the records below the 99th percentile were 

compared to the average of the neighboring series. In this case a difference of 70 percentile units 

was set as the threshold for identifying questionable data, and values exceeding this were flagged 

and substituted with data from the closest observatory. 

Another common source of error is the inclusion of false zero values (Viney and Bates, 2004). 

Hence, zero values coinciding with substantial precipitation in nearby observatories were flagged 

following a similar approach, and if the average percentile in the neighboring observatories was 

higher than 50, the zero value of the target observatory was substituted with data from the closest 

observatory. 

The thresholds described above were set after analyzing a number of series and showing that these 

values optimized the identification of questionable data. Different thresholds may be required in 

places where the climate characteristics are different. 

Following Reek et al. (1992), we also checked series for the occurrence of identical values 

(excluding zeros) on at least seven consecutive days. These data were also flagged and substituted.  

On average the proportion of data substituted using the above criteria was 0.1% in each observatory 

(range 0−1.04%) (Fig. 6). Only 47 series from a total of 934 had more than 0.4% of the data 
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replaced. The highest proportion of data rejected in any one series using the described process was 

1.04% (Fig. 6). Most of the replacements (63.8%) corresponded to zero values (Fig. 6). These 

values are similar to those reported in other studies. For example, Feng et al. (2004) found an 

average of 0.03% of the data questionable, while Reek et al. (1992) reported a figure of 0.04%.  

As the methodology described can affect the probability distribution of the most extreme records in 

a series, a test was performed using standard methods for extreme value analysis. For this purpose 

we calculated the L-coefficients of skewness and kurtosis of the data series before and after the 

quality control process. Partial duration series (PDS) or series of peaks over a threshold were 

extracted in order to isolate only the extreme values (Beguería, 2005). Given a precipitation series X 

= {x1, x2,..., xi}, where xn is the observation on a given day, the PDS Y = {y1, y2,..., yj} consists of the 

exceedences of the original series over a predetermined threshold, x0: 

0iij x>xxx=y     0 ∀− .  

Therefore, the size of the series obtained depends on the value of the threshold, x0. For each series, 

the values corresponding to the 90th and 95th percentiles before and after the quality control 

process were used as thresholds for constructing the PDS. 

The L-coefficients of skewness (τ3) and kurtosis (τ4) were calculated as follows: 

2

3
3 λ

λ=τ  

2

4
4 λ

λ=τ , 

where  λ2, λ3 and λ4 are the L-moments of the PDS series. These were obtained from the 

probability-weighted moments (PWMs) of the series, using the formulae: 

0α=λ1  

12 2α−0α=λ  
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3214 203012 αα+αα=λ 0 −− . 

The PWMs of order s were calculated as: 
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where Fi is an empirical frequency estimator corresponding to the data xi. Fi was calculated 

following Hosking (1990): 

N
i=Fi

0.35− , 

where i is the range of xi in the PDS arranged in ascending order, and N is the number of data 

records. 

We found that the relationship between the values of τ3 and τ4 before and after the quality control 

process was approximately linear, and noticeable changes were observed in only a few series (Fig. 

7). This provides evidence that the quality control process did not significantly affect the statistical 

characteristics of the extremes, with the exception of a few observatories that had greater 

differences from the surrounding series. 

 
3.3. Homogeneity testing 
 
A common problem in climate data series is the presence of inhomogeneities. The majority of these 

appear as abrupt changes in the average values, but also appear as changes in the trend of the series 

(Alexandersson and Moberg, 1997). Inhomogeneities in climate series can result in substantial 

misinterpretation of the behavior and evolution of climate. Inhomogeneities can arise from human 

causes such as changes in the location of the observation station, alteration of the surrounding 

environment, observer changes and instrumental replacement (Karl and Williams, 1987). 

Accumulation of daily precipitation over several days is another important problem that can 

introduce inhomogeneity into daily precipitation series (Viney and Bates, 2004), and the 
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reconstruction of time series through the union of two or more series (the approach followed in this 

study) is a common source of inhomogeneities (Lanzante, 1996; Peterson et al., 1998). If a series is 

identified as non-homogeneous, use of the data for trend and variability analysis becomes 

questionable, and it is usually discarded. 

A variety of methods have been developed to identify inhomogeneities in climate data series (see 

reviews in Peterson et al., 1998 and Beaulieu et al., 2007). There are two general types of 

homogenization procedure: i) absolute, which considers only the information in the time series 

being tested; and ii) relative, in which data from other observatories are also used. The latter 

procedure is more reliable as it involves comparison of the temporal evolution of a candidate series 

with that of a reference series created from correlated series nearby. 

The majority of methods are focused on monthly, seasonal and annual data (Peterson et al., 1998). 

There is no standard approach for daily precipitation series because of the high spatial and temporal 

variability of this variable, and the difficulties in correcting the series if inhomogeneities are found. 

For this reason, the homogeneity tests applied to daily precipitation series can only identify the 

temporal inhomogeneities in the series enabling elimination of the periods and/or series which are 

not homogeneous. 

Given the lack of methods for directly testing the homogeneity of daily precipitation series, the 

most common approach is to apply the techniques used for monthly precipitation series, after 

transformation of the daily series to a monthly equivalent (e.g. Brunetti et al., 2000; Feng et al., 

2004; Lana et al., 2004; Schmidli and Frei, 2005; Tolika et al., 2007). 

While this approach is valid only if the volume of precipitation is analyzed, inhomogeneities in 

daily precipitation can be much more complex, as inhomogeneities can affect other parameters. For 

example, attributing multi-day rainfall accumulations to a single day is a common problem in daily 

data series (Viney and Bates, 2004). This practice reduces the number of rainy days and increases 

the average precipitation per rainy day, and may cause significant changes in the recorded 
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frequency distribution of daily precipitation series, and the length of dry and wet spells. For series 

with many multi-day accumulations, Suppiah and Hennessy (1996) found an effect on temporal 

trends in percentiles when accumulations were either distributed or ignored. Changes in the 

observation protocol (e.g. through a change of observer) can produce inhomogeneities in the 

frequency of rainy days without causing an inhomogeneity in the monthly precipitation record. 

Therefore, there is a need to test the precipitation volume, and also the precipitation frequency and 

intensity. Wijngaard et al. (2003) tested the homogeneity of daily precipitation records by means of 

wet day count series rather than precipitation amounts. They argued that wet day counts have lower 

variability than series comprising annual amounts, and hence the former facilitate easier detection 

of inhomogeneities. 

In this study we tested the homogeneity of the reconstructed and quality-controlled daily 

precipitation series using four monthly parameters: i) monthly precipitation amount, ii) monthly 

average number of rainy days above 1 mm, iii) monthly maximum precipitation, and iv) number of 

days above the 99.5th percentile. Following Wijngaard et al (2001), we adopted a 1 mm threshold 

for the second criterion because using a lower threshold (e.g. any precipitation) usually leads to a 

high rate of false inhomogeneities, caused solely by errors in measuring very low amounts. 

Calculation of the 4th criterion at a monthly time scale would have yielded a sequence of mostly 

zeros, but as we describe below, the homogeneity testing was performed seasonally and annually. 

As homogeneity testing was performed using averages of long time periods, this approach helped to 

identify changes in the frequency of the most extreme precipitation events, which could have been 

due to inhomogeneities in the dataset. 

Of the several methods for detecting inhomogeneities in climate series, we used the standard normal 

homogeneity test (SNHT) developed by Alexandersson (1986) for single breaks. This is the most 

widely used test for detecting inhomogeneities in climate series (e.g. Keiser and Griffiths, 1997; 

Moberg and Bergstrom, 1997; González-Hidalgo et al., 2002). Various comparative studies of 
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interpolation methods have shown that this method is better than other approaches, and facilitates 

detection of small breaks and multiple breaks in a series (Easterling and Peterson, 1992; Ducré-

Robitaille et al., 2003).  

As the reliability of inhomogeneity detection increased through the use of relative homogeneity 

methods based on information from neighboring stations, we calculated reference series for each 

observatory. Although a single neighboring series of good quality can be used as a reference (Keiser 

and Griffiths, 1997), it is very difficult to ensure that a series to be used as a reference to other 

series is completely homogeneous. In this study we used the approach of Peterson and Easterling 

(1994), as modified by González-Hidalgo et al. (2004), which uses several neighboring stations to 

create a reference series for each of the four parameters analyzed. The probability of 

inhomogeneities is therefore minimized, since all the series are considered as a whole. 

To create the reference series we considered all the observatories within a radius of 50 km from the 

candidate observatory, according to:  

∑

∑ ⋅

n

i=
x

n

i=
xix,

iR,

w

wP
=P

1

1 , 

where PR,i is the observation for the reference series in month i, Px,i is the observation at observatory 

x in month i, and wx is a weighting factor. Peterson and Easterling (1994) used the coefficient of 

correlation between the candidate series and each surrounding series as the weighting factor. 

However, they considered that the presence of discontinuities in the series could alter the 

coefficients of correlation, so they calculated the correlation from the series of differences 

according to: 

i1+ii PP=D − , 

where D is the difference between the two series for month i, and P is the observation 

corresponding to month i. 
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Correlations were calculated using monthly precipitation series; hence 12 coefficients of correlation 

were obtained for each observatory. We discarded those observatories with any month having a 

correlation coefficient lower than 0.6. Finally, the weighting factor used for each observatory was 

the average of the correlation coefficients obtained for the 12 monthly series. The ProClimDB 

software (Štepánek, 2007a) was used to automate calculation of the 3736 reference series (4 for 

each observatory). 

The AnClim software (Štepánek, 2007b) was used in the application of the SNHT to each 

observatory and parameter. The test was applied to seasonal and annual series of the four 

parameters, since this approach yields better results than using only monthly series. For each 

seasonal and annual series a T series was obtained using the SNHT. If the value of T in each month 

exceeded a certain threshold, the series was flagged as inhomogeneous. The threshold T value can 

be set to any given confidence level (α), and in this study a value of α = 0.05 was used (see values 

in Alexandersson and Moberg, 1997). As a consequence of the substantial length of some climate 

series, some short inhomogeneous periods could be hidden after testing. To avoid this problem a 

sequential splitting procedure was applied after each 30 years of data, to detect short 

inhomogeneous periods (Štepánek, 2004). 

As a consequence of the large quantity of information, we established an automatic criterion to 

accept or reject inhomogeneities. Flagged inhomogeneities were accepted only when they appeared 

in the annual series and a minimum of two seasonal series. Since the temporal location of the 

inhomogeneities can vary within a range of some years, a maximum difference of eight years was 

allowed between inhomogeneities found in the annual and seasonal series. Those data series with 

two or more inhomogeneities were removed from the dataset. In series in which one unique 

inhomogeneity was found, the period prior to the inhomogeneity was also removed, as correcting 

inhomogeneous periods in daily precipitation records is exceedingly difficult. We preferred to lose 

some information but retain the remaining high quality data for subsequent climatic studies. 

 21



As explained above, we tested for series homogeneity using four variables. Firstly we tested the 

homogeneity in the series of precipitation amounts. After removing the inhomogeneous series and 

periods, the remaining series were tested for inhomogeneities in the number of rainy days, and 

subsequently for inhomogeneities in the maximum values and the number of events above the 99.5 

percentile. A total of 260 inhomogeneous series were found using monthly precipitation amounts, 

and 74 of these were discarded because they contained two or more inhomogeneities (Table 1). A 

total of 157 inhomogeneous series were found at the second step, and 32 of these were discarded. 

Finally, 25 inhomogeneities were found in the extreme series, but no series were discarded. At the 

completion of the entire process, 407 series were found to be inhomogeneous, corresponding to 

43.6% of the total series. For 301 series, the period prior to the inhomogeneity was deleted, and 106 

series were completely discarded because they had two or more temporal inhomogeneities. We also 

analyzed the impact of data reconstruction on the homogeneity of the series, to determine if 

inhomogeneities were introduced in the process of reconstruction and data filling using data from 

nearest neighbors. Table 1 shows the number of inhomogeneous series detected in series with more 

than 20 years of reconstructed data, stations with a reconstructed period of 5−20 years, and series 

having less than 5 years with data gaps. Of the 383 stations with reconstructions exceeding 20 

years, 192 were inhomogeneous. Of the 229 stations with reconstructions of 5−20 years, 113 were 

inhomogeneous, and of the 322 non-reconstructed series filled only for periods less than 5 years, 

137 series were inhomogeneous. As expected, a larger percentage of inhomogeneous series was 

found for long reconstructions (50.1% of total) than for short reconstructions. However, there were 

no large differences between the series with reconstructions shorter than 20 years and the non-

reconstructed series (49.3 and 42.5% of the total, respectively). This result indicates that the data 

gap filling process can introduce inhomogeneities to the series. Nevertheless, with careful selection 

of neighbors using restrictive distance and correlation criteria, the number of artificial 

 22



inhomogeneities added during the process could be minimized. In any case, these inhomogeneities 

were identified and eliminated during the four-step homogeneity testing. 

The time evolution of the number of inhomogeneities showed an irregular distribution (Fig. 8). A 

higher number of inhomogeneities was found in the decades of the 1920s and 1930s, but also in the 

decade of the 1960s. Nevertheless, with the exception of the year 1968, the number of 

inhomogeneities per year from 1960 to 1990 was very regular, affecting 1−2% of the available 

series. 

In general we found that for some significant inhomogeneities detected in monthly totals in some 

years it was very difficult to decide whether the temporal inhomogeneity in the series was real, and  

to which year it should be attributed. However, if seasonal and annual data were incorporated, 

inhomogeneities were more apparent. Therefore, we used the daily precipitation series aggregated 

in seasons and years to identify temporal inhomogeneities, which could be recognized in the 

variation of the T values (see the example in Fig. 9). Fig. 10 shows the results of applying the 

SNHT to the l’Ametlla de Mar series using the seasonal and annual precipitation amount series, and 

also the series of number of rainy days. This example shows the situation found in some 

observatories, whereby no inhomogeneities were found in the series of precipitation amount, but 

significant inhomogeneities were found in the series of the number of rainy days (the middle of the 

1970s in this example). Examination of the time evolution of the series and the associated T statistic 

did not provide any extra information. Comparison with the reference series clearly showed an 

accumulation of the same precipitation amounts in fewer days during the period 1950−1974. After 

this period the number of rainy days was again very similar to the reference series. This error is 

explained by the attribution of several days of rainfall to a single day, which could affect the 

frequency distribution of precipitation events, the average precipitation per event, and the duration 

of dry and wet spells, as discussed earlier. Therefore, the inhomogeneous period prior to the 
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detected break was removed from the final dataset. This inhomogeneity would not have been 

identified if only monthly amounts had been used. 

A final example shows a case in which an inhomogeneity was found in the series of monthly 

maxima for 1961 (Fig. 15). However, it was not detected in the series of precipitation amount or 

number of rainy days, and was attributed to errors in the rain gauge recording of the most extreme 

events. 

 
4. Results 
 
In this section we present some results of comparisons of the characteristics of the database at 

various stages of the process. The usefulness of the database for several types of climate analysis is 

discussed. Some basic analyses were also performed on the spatial distribution of precipitation in 

the study area, to illustrate the improved performance of the final database relative to earlier stages. 

As a tradeoff in establishing strict quality control criteria, a reduction in the spatial density of data 

occurred (Fig. 12). Of the original 3106 series, the final database consisted of 828 series covering 

the study area comprehensively. Some areas had lower data density, including the Pyrenean Range 

in the Lérida province, the north of the Castellón province, and the central areas of the Burgos 

province. 

The availability of data in the database varied greatly as a function of the length of the data series 

(Fig. 13). For example, after the reconstruction process a total of 207 series starting in 1940 were 

available. After homogeneity testing this was reduced to 117 series (i.e. 56%). More importantly, 

there was a decrease from 471 to 291 series in the 1960s. Although the amount of data discarded in 

the homogenization process was large, the remaining series were adequate in terms of the quality 

and temporal homogeneity of the database. The spatial coverage of the database was also affected 

by variation in the length of the series (Fig. 14). Although the number of series with records since 

1920 was very satisfactory (34), the majority of these were located in the Cataluña (24) and Aragón 

(8) regions. For series with data since 1935 (92) there was an increase in the number of provinces 
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represented, but the data density remained higher in the Cataluña region. This situation reduces the 

usefulness of the database for reliable spatial analysis, although long-term studies focused in the 

regions with good data density can still be undertaken. The number of series available from 1950 

increased noticeably to 190, providing good coverage of the study area at adequate density. This 

temporal coverage is sufficient for trend analysis, considering the spatial variation in this factor. 

From 1965 a total of 331 series were available, providing very good data density with few spatial 

gaps. This high spatial density enables detailed spatial analysis of precipitation fields, and the 

recording period is long enough for extreme events analysis. 

To assess how the quality control and homogeneity testing procedures affected the final database, 

we undertook several analyses using the series available between 1960 and 2000. The variables 

analyzed were: i) average precipitation per rainy day, ii) average duration of wet spells, iii) average 

duration of dry spells, iv) number of days with precipitation > 0 mm, and v) number of days with 

precipitation greater than 75 mm (extreme events). Preliminary statistical analysis showed that, in 

general, the range and variability of the precipitation parameters analyzed were reduced after the 

quality control process and homogeneity test, but the average values remained similar. This does 

not necessarily mean that the spatial average over large areas is unbiased. However, among close 

observatories the precipitation differences (over a few days or long periods) caused by erroneous 

measurements or inhomogeneities were removed during the process, making the data more 

consistent. The procedure avoids spurious results in temporal analysis of precipitation records, but 

can also reveal spurious differences among neighboring observatories in future climate studies. We 

performed a spatial analysis of the dataset at various steps in the process to assess their influence on 

spatial coherence of the precipitation parameters. For this purpose we used semivariance plots from 

daily precipitation series, which represent the spatial self-correlation of a variable (Fig. 15). The 

semivariance is half the variance of the differences between all possible points within a given 

distance. It is normally assumed that the semivariance increases with increasing distance lag, in 
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accordance with the basic geostatistical principle that closer objects are more similar. We 

additionally considered that high-quality series will have a lower semivariance than poor-quality 

series, especially over shorter distance lags. Both hypotheses were confirmed in our test. For all 

precipitation parameters the semivariance increased as a function of the distance lag, and the 

homogenous database consistently had a lower semivariance, especially with distance lags less than 

25 km. However, the difference among databases was less evident for some precipitation 

parameters, including the dry spell duration. The results of this analysis support the view that the 

spatial coherence of the homogeneous dataset is better than in the original and intermediate stages. 

This was also evident when correlation coefficients were calculated between pairs of daily 

precipitation observatories separated by various distances (spatial self-correlogram; Fig. 16). The 

relationship among neighboring series was noticeably improved after the homogeneity testing 

process, as shown by higher R-coefficients. This was a consequence of removal of those data series 

that differed markedly from adjacent series. Therefore, we believe that the quality control and 

homogeneity testing processes described in this paper improved the quality and spatial coherence of 

the dataset, especially in relation to future spatial and temporal regional analyses. 

 
5. Conclusions 
 
We have described a process for creating a spatially dense database of daily precipitation in 

northeast Spain. The main contribution of the research relates to effective use of available data 

through a combined process of reconstruction, quality control and homogeneity testing. This is 

significant as very few examples exist of the construction of quality-controlled databases with daily 

time resolution and regional coverage. The usual approach has been to select long-term and reliable 

series, and to discard fragmented or short-term data. This results in a significant loss of information, 

and detrimentally affects the spatial density of the data, reducing the usefulness of the dataset for 

spatially explicit analyses. Our approach involved reconstruction of spatially close data series to 

generate new and unique series. This substantially reduced the loss of data involved in the 
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alternative procedure, but introduced the risk of creating spurious and inconsistent data series. To 

ensure the quality of the final database, the reconstructed series were subjected to quality control 

and homogeneity testing processes, consisting of several stages. Analyses of the final database 

included single site and spatial analyses, and confirmed its coherence. 

The methodology described in this paper can be readily adapted for use worldwide with other 

databases having similar characteristics (high spatial density, daily temporal resolution), 

particularly in areas where long-term precipitation series are rare and fragmented series covering 

different periods in the same locality are common, as in Spain. Although the methodology involves 

several steps, the data filling and homogeneity testing processes are completely automated, and can 

be adapted to other regions without modification. For quality control purposes, some decisions must 

be made in advance, such as the optimum threshold values. It is likely that the values used in this 

work would yield good results with other datasets, but this should be assessed by users through a 

heuristic process. The only manual procedure in creating the database was during selection of the 

neighboring series to be merged in the reconstruction process. Although an automated process 

could have been used, with the aid of a geographical information system, we chose to oversee this 

crucial step directly. The experience of the researcher and a good knowledge of the regional climate 

could be very useful in developing an automated process, based on the distance between 

observatories and using other auxiliary information layers, such as elevation. In this paper we have 

detailed the decisions taken to construct a quality dataset in relation to problems which are typically 

encountered. It should not be assumed that all the decisions made have universal validity, as it is 

possible that some of the threshold values or the procedures adopted will need to be modified for 

application to other datasets, or according to the specific purposes of the research. We encourage 

other researchers to make similar assessments prior to undertaking any climate study, and we urge 

discussion of the specific problems associated with the use of high frequency climate databases. 
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The database described on this paper is available for use by scientists for research purposes. Anyone 

interested in using the data is encouraged to contact the authors at the following email addresses: 

sbegueria@eead.csic.es and svicen@ipe.csic.es. 
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Figure 1. Location of the study area and spatial distribution of the original daily precipitation 
observatories.
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Figure 2. Box plot of the number of neighbors at different distance lags. The 10th and the 90th 
percentiles are shown by the lower and upper whiskers, respectively. The 25th and 75th percentiles 

are shown by the lower and upper limits of the boxes, respectively. The line within the box 
represents the median.
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Figure 3. Average correlation between the series of daily precipitation at different distance lags for 
all possible pairs (left axis), and histogram of station separation (right axis). The arrows indicate the 
average correlation between observatories at a distance of 15 km. The bin size for the pair distance 

is 1 km.
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Figure 4. Histograms of the frequencies of the 200 highest records of the Fabra observatory 
(Barcelona). 1) original series, 2) nearest neighbor method, 3) IDW, and 4) regression method.
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Figure 5. Location of the data series available after the reconstruction process (black). The original 
observatories are shown in grey.



 

Figure 6: Frequency histograms of the data replaced in each series, and the percentage of total 
substituted data that corresponded to zero values.
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Figure 7. Relationship between the L-coefficients of skewness and kurtosis in the partial duration 
series at the 90th and 95th percentiles, before and after the quality control process. 



 

 

HOMOGENEITY TESTING PROCEDURE NUMBER OF 
INHOMOGENEITIES 

SERIES 
ELIMINATED 

Precipitation amount 260 74
Number of days with precipitation > 1 mm. 157 32
Monthly maxima and number of days with 
precipitation above 99.5 percentile 

25 0

RECONSTRUCTED PERIOD TOTAL INHOMOGEN
EOUS 

% 
TOTAL 

% 
INHOM

OGENE
OUS

> 20 years 383 192 41.0% 43.4%
> 5 years < 20 years 229 113 24.5% 25.5%
< 5 years 322 137 34.5% 30.1%
Total 934 442 100.0% 100.0%

Table 1. Results of homogeneity testing. The number and percentage of inhomogeneous series for 
reconstructed and non-reconstructed series are also shown.
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Figure 8. Percentage of inhomogeneous series with respect to the number of series available for 
each year: 1) precipitation amount, 2) number of rainy days, 3) monthly maximum and number of 

days above 99.5th percentile, 4) total.



 

Winter

P
re

ci
pi

ta
tio

n 
(m

m
.)

0

100

200

300

400

Candidate series
Reference series

1940 1950 1960 1970 1980 1990 2000 2010

T-
va

lu
e

0

10

20

30

Spring

P
re

ci
pi

ta
tio

n 
(m

m
.)

0

100

200

300

400

500

1940 1950 1960 1970 1980 1990 2000 2010

T-
va

lu
e

0

10

20

30

Summer

P
re

ci
pi

ta
tio

n 
(m

m
.)

0

50

100

150

200

250

300

350

1940 1950 1960 1970 1980 1990 2000 2010

T-
va

lu
e

0

10

20

30

Autumn

P
re

ci
pi

ta
tio

n 
(m

m
.)

0

50

100

150

200

250

300

350

1940 1950 1960 1970 1980 1990 2000 2010

T-
va

lu
e

0

10

20

30

Annual

P
re

ci
pi

ta
tio

n 
(m

m
.)

0

200

400

600

800

1000

1940 1950 1960 1970 1980 1990 2000 2010

T-
va

lu
e

0

10

20

30

40

 
 

Figure 9. Seasonal and annual series of monthly precipitation amounts at the El Burgo de Osma (La 
Rasa) observatory. The series of T-values and the limit of confidence (dotted line) are also shown.
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Figure 10. Annual series of precipitation amounts and number of rainy days at the l’Ametlla de Mar 
observatory. The series of T-values and the limit of confidence (dotted line) are also shown.
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Figure 11. Annual series of precipitation amounts, number of rainy days and the average maximum 
precipitation at the Cendejas de la Torre observatory. The series of T-values and the limit of 

confidence (dotted line) are also shown.
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Figure 12. Homogeneous daily precipitation observatories in the study area after reconstruction, the 

quality control process, and homogenization testing.
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Figure 13. Time variation of the number of data series at various stages in construction of the 
database and quality control process.
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Figure 14. Spatial distribution of homogeneous data series starting in or before: a) 1920, b) 1935, c) 
1950 and d) 1965.
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Figure 15. Semivariance  of several precipitation parameters in the reconstructed, quality-controlled 
and homogeneous datasets.
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Figure 16. Average Pearson's R correlations among the time series as a function of the distance lag 
after reconstruction and homogeneity testing (final series). 

 
  


