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Abstract 
 
To study the temporal and spatial variability of downward particle fluxes in the Palamós 
Submarine Canyon, seven sediment traps were moored inside and in the vicinity of the 
canyon from March to November 2001. Total mass fluxes, major constituent (organic 
carbon, opal, calcium carbonate and lithogenics) contents and fluxes, and 210Pb activity 
of particulate matter were obtained from two consecutive deployments at intervals of 10 
and 12 days respectively. Downward particle fluxes measured at the Palamós Canyon 
head were 2 to 9 times higher than those measured in other northwestern Mediterranean 
canyons, and this relation increases drastically at 1200 m depth, where observed particle 
fluxes are 1 to 2 orders of magnitude higher than those reported in other surrounding 
canyons at similar depths. The highest near-bottom downward particle fluxes were not 
recorded in the canyon head but in the mid-canyon axis during late spring/summer, as a 
result of sediment gravity flows triggered by trawling activities at the canyon rims. In 
comparison to the adjacent open slope, Palamós Canyon is a prime site for the focusing 
and across-margin transference of total and organic matter. Off-shelf sediment transport 
was enhanced during a severe storm in November 2001, when a sharp increase in 
downward particulate fluxes was observed in the whole canyon both near the bottom 
and at intermediate waters. Despite the dominance of lithogenic particles all year round, 
a siliceous bloom affected the whole study area in March-April. An asymmetrical 
pattern was observed between the north and south canyon walls, with higher mean 
downward fluxes in the latter case, a fact related to the flow regime inside the canyon. 
The spatial-temporal distribution of total mass fluxes and major constituents defined 
two domains in the Palamós Canyon: an "inner" domain (up to 1200 m depth) 
constricted by the canyon topography and mainly influenced by a lateral transport of 
particles resuspended from the adjoining shelf and upper slope, and an “outer” domain, 
where slope dynamics and seasonal trends are more important in determining the 
composition and amount of downward particulate fluxes. 
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1. Introduction  

Continental margins represent one of the highest primary production zones of the ocean 

and receive large organic inputs from the continents. As a consequence, organic matter 

fluxes on the shelf and slope are generally higher than in the open ocean, which confers 

to margins the role of preferential sink areas for organic carbon (Etcheber et al., 1996). 

In fact, it has been claimed that continental margins might function as a significant sink 

for atmospheric CO2 (Walsh et al., 1981). The continental shelves have limited capacity 

to store absorbed CO2 and river-discharged carbon. If they are to be maintained as CO2 

sinks, the received carbon must be buried in sediments or exported to the open sea (Liu 

et al., 2000). In comparison to the open continental slopes, submarine canyons represent 

an abrupt discontinuity that facilitates across-margin fluxes of water and particles. Some 

canyons act as passive depocentres for the particles leaving the shelf break (Hickey et 

al., 1986) but others can also convey the particulate matter deeper, acting as preferential 

conduits for matter transfer from the shelf to the deep basins (Gardner, 1989; Puig and 

Palanques, 1998; Hung et al., 2003). Inside canyons, the suspended matter can be 

transported through nepheloid layers (Gardner, 1989; Puig and Palanques, 1998), but 

turbidity currents, episodes of axis-flushing, slumping from the walls, and other 

gravitational processes also occur in submarine canyons (e.g. Xu et al., 2002; Puig et 

al., 2003) and may constitute an important process in the effective transfer of matter to 

the open ocean. 

Numerical studies (Klinck, 1996; Ardhuin et al., 1999), laboratory simulations (Boyer et 

al., 2000) and in situ measurements (Durrieu de Madron, 1994; Puig et al., 2000; 

Petrenko, 2003) have shown that an along-slope current encountering a steep submarine 

canyon may undergo important modifications, causing different flow regimes on the 

upstream and downstream sides of the canyon. This asymmetry in water flow may also 

cause an asymmetry in particulate matter fluxes and composition between the two sides 

of the canyon system, but this point has been scarcely explored.  

 

To advance understanding of the dynamics and composition of particulate matter inside 

one of the most prominent canyons of the NW Mediterranean, 6 moorings equipped 

with 7 sediment traps were deployed in the Palamós submarine canyon and adjacent 

slope within the “CANYONS” project. The locations of moorings and sediment traps 
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were selected to cover the three-dimensional variability of the particulate matter fluxes 

in the canyon with high spatial-temporal resolution, in order to discern the different 

processes taking place along and across the canyon, as well as on the nearby open slope.  

The major objective of this paper is to evaluate the fluxes, composition and variability 

of downward particulate matter inside the Palamós Canyon, along the axis and on the 

walls, testing our results against the general trends and patterns from previous studies, 

and analyzing the sources and processes governing the downward fluxes inside the 

canyon. 

 

1.1. Regional background 

The Palamós Submarine Canyon, also known as La Fonera Canyon and Llafranc 

Canyon (Serra, 1981), has a total length of 40 km and a maximum depth of 2200 meters 

at its mouth (Figure 1). Its bifurcated head incises the continental shelf by the 90 m 

depth contour, 3 km from the coastline. The canyon head, roughly oriented along a 

north-south direction, leads to a narrow V-shaped axis oriented in a WNW-ESE 

direction, which gradually broadens towards the open sea. The steep canyon walls are 

indented by numerous tributaries (gullies). The most important river in the nearby coast 

is the Ter River, located 15 km northwest and having a mean annual water discharge 

(averaged over the period 1998-2004) of 10.3 m3 s-1. 

Hydrography in the area is mainly characterized by a shelf/slope permanent density 

front, which separates continental waters from denser Mediterranean waters. This front 

approximately follows the continental shelf break of the Iberian Peninsula, and its 

density gradient is primarily due to salinity differences (Font et al., 1988). The general 

circulation is governed by a baroclinic current that follows the continental slope, in 

geostrophic equilibrium with the shelf/slope density front (Castellón et al., 1990). This 

current flows from northeast to southwest as part of the Northern Current (Fig. 1), 

which flows along the slope from the Gulf of Genoa to at least as far as the Gulf of 

Valencia (Millot, 1999).  
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2. Methods 

2.1. Field Work and Instrumentation 

The geographical location of the mooring lines is illustrated in Figure 1. Three 

moorings were deployed along the canyon axis at 470, 1200 and 1700 m depth (M2, M3 

and M5) respectively; two more below the canyon walls at 1300 m depth (M4 and M6); 

and another one on the adjacent slope (M7), 15 km upstream of the canyon axis, at 1300 

m depth. Each mooring was equipped with one sediment trap 22 meters above the 

bottom (mab), except for mooring M3, which in addition to the 22 mab trap, had 

another one in intermediate waters (400 m depth; 800 mab), hereafter referred to as 

M3B (bottom trap) and M3I (intermediate trap). The sampling period lasted from March 

to November 2001 and was divided into two deployments: 20/March-06/July and 

17/July-25/November respectively. 

Six of the sediment traps used in this study were Technicap model PPS3/3, which has a 

cylindrical collecting hull with an upper aperture of 0.125 m2 and an aspect ratio = 2.5 

(1 m / 0.4 m). A set of 12 sampling cups are attached to a rotating system that replaces 

the collecting cup at programmed intervals. In this study, the sampling period was set to 

9 days in the first deployment and 11 days in the second deployment. The sediment trap 

installed on the open slope was an earlier Technicap model (PPS3), equipped with only 

6 cups. Therefore, this unit was programmed with half the resolution of the rest of the 

traps (18 days first deployment; 22 days second deployment) to cover the same period 

with comparable data. The aspect ratio and collecting area were the same for both 

models. Following the recommendations of Knauer and Asper (1989), the moorings 

were designed to maintain vertical trap orientation, and properly instrumented with 

pressure and flow sensors at trap depths. This was accomplished by installing Aanderaa 

RCM9 current meters below each trap with a 10-minute sampling interval. There were 

no serious interruptions in the sediment trap time series during the sampling period, 

apart from a 10-days gap between deployments, due to maintenance and re-deployment 

tasks. However, some of the cups from M3I were contaminated with fishes (Notolepis 

sp; Domingo Lloris, pers. comm.). Analytical results from these contaminated samples 

showed a considerable bias and have been discarded for this paper. Two traps were 

overfilled with sediments due to natural causes (a severe storm), but fortunately this 

happened during the last sampling interval, so it did not further impair the time series. 
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2.2. Sample treatment 

Prior to deployment the cups were filled with a 5% (v/v) formalin solution, which acts 

as both a poison and a preservative. This solution was prepared by mixing 37% Merck 

Formaldehyde and sea-water filtered through a 0.45 m filter, in a proportion of 1/7. 

The solution was buffered with analytical-grade sodium borate in order to avoid the 

dissolution of calcium carbonate. After recovery, the cups were kept at 4 ºC in the dark 

until they were processed in the laboratory. Before the sample treatment, two kinds of 

filters were prepared: 47 mm diameter glass microfiber Whatmann GF/F filters of 

approximately 45 m mesh (GFF) and 47 mm, 45 m mesh nitro-cellulose white 

HAWP Millipore filters (NF). Before use, the GFF were rinsed with distilled water, 

placed for 24 hours in an oven at 550 ºC, and then allowed to cool for another 24 h. 

Finally they were pre-weighed after 24 h more in a desiccation bowl. The NF filters 

were rinsed with distilled water and dried at 40 ºC for 24 h, and pre-weighed after 24 h 

in a desiccation bowl. Swimmers (those organisms deemed to have actively entered the 

trap) were removed from the samples to avoid errors in the measured fluxes. They were 

separated by wet-sieving the sample through a 1-mm nylon mesh, and stored in 5% 

formalin solution for further analysis. Following the procedures described by Heussner 

et al. (1990), samples were divided into successive aliquots with the aid of a peristaltic 

dispenser (Jencons Ltd.), in order to get fractions of about 50 mg (dry weight) for 

elemental analysis. Other fractions were also obtained and stored at 4 ºC for different 

analysis. Subsamples for total and organic carbon were filtered onto GFF filters, while 

those for biogenic silica analysis were filtered onto NF filters.  

 

2.3. Laboratory analysis 

Total dry mass was determined gravimetrically. Several replicates were filtered onto 

pre-weighed Millipore cellulose acetate membrane filters, rinsed with distilled water 

and dried to constant weight at 40 ºC. Total Mass Flux, expressed as mg m-2 d-1, was 

calculated as follows: 

T.M.F. = Sample dry weight (mg) / (collecting area (m2) · sampling interval (days)). 

Total carbon was measured by high-temperature combustion and detection of the 

gaseous by-products in a LECO CN-2000 analyzer. Inorganic carbon was measured 

with a LECO CC-100 analyzer attached to the CN-2000. The CC-100 consists of a 

sealed chamber with a stirred bath of HCl 6M where the sample is placed. The gases 

produced are transferred to and analyzed by the CN-2000, which calculates the 
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percentage of inorganic carbon in the sample from the CO2 released. Organic carbon 

was then calculated as the difference between total and inorganic carbon. 

Several conversion factors have been used in published studies to calculate organic 

matter from organic carbon: for example, 1.8 (Gordon, 1970), 2.0 (Puig and Palanques, 

1998; Monaco et al., 1999; Heussner et al., 1996, 1999), 2.5 (Wollast and Chou, 2001), 

or 2.85 (Honda et al., 1997). Moreover, the OM/OC ratio, often assumed as a constant, 

may instead become an indicator of the degree of alteration of marine particles 

(Masuzawa et al., 2003). We have adopted a conversion factor of 2 (organic matter = 2 · 

organic carbon), the most commonly used in NW Mediterranean studies, in order to 

ensure consistency with published data.  

Calcium carbonate content was calculated from inorganic carbon using the molecular 

mass ratio 8.33, assuming that all inorganic carbon was in the form of calcium 

carbonate. Biogenic silica was analyzed using a wet-alkaline extraction with sodium 

carbonate using the method described by Mortlock and Froelich (1989).  

Finally, the lithogenic fraction was obtained as the difference between the total mass 

and the rest of the main components (i.e. opal + organic matter + carbonates). The term 

“lithogenic” can be misleading, since we suspect that contribution from detritic 

carbonates may occur in the sediment trap samples. However, the other widely-used 

term “aluminosilicates” is not a better choice, because it does not include common 

minerals without aluminum in their composition, like quartz (SiO2).  
210Pb (T1/2 = 22.3 y) activity was determined indirectly by analyzing its alpha-emitting 

effective daughter, 210Po (T1/2 = 128 d), following a method modified from Nittrouer et 

al. (1979). 210Po was chemically released from samples by leaching in HCl 6N and 

HNO3 15.8N. Previously, a known amount of 209Po was added to each sample as an 

internal tracer. After digestion, 209Po and 210Po were electrodeposited onto silver 

planchets for 24 h. 210Pb was calculated from 210Po activity measured in the planchets in 

an EG&G/Ortec Octete Alpha Spectrometer. The elapsed time span (2 years) between 

sampling and analysis allowed 210Pb to be in radioactive equilibrium with 210Po in the 

samples. 

Mean fluxes and mean concentrations were estimated as time-weighted mean fluxes and 

flux-weighted mean concentrations, which is equivalent to what had been collected by a 

single cup during the entire mooring deployment time. 

 

 



J. Martín et al. 7

2.4. External data 

The Ter daily river discharge was supplied by the “Agència Catalana de l'Aigua”, 

comprising the sum of the daily flow of the river in Girona and its main tributary, the 

River Onyar. Wave data was provided by the REMRO net of oceanographic buoys of 

“Puertos del Estado” (Ministerio de Fomento). This buoy is located at 41º49.8'N, 

3º11.2'E, 6 km southeast of Palamós, over the 90 m isobath. Since there were important 

interruptions in the wave height time series from the buoy, a WANA point (daily wave 

forecast output from the fourth generation WAve Model, WAM used by “Puertos del 

Estado” along the NE Spanish coast) was also used. We chose the WANA point at 

41º52.5’N, 3º15.0’E due to its proximity to both the oceanographic buoy and the 

canyon. 

 

 

3. Results 

Depths and locations of sediment traps in each deployment period, along with relevant 

hydrodynamic data, are presented in Table 1.  

Water motion around the trap (Gardner, 1980) and tilt of the mooring line (Gardner, 

1985) can affect the collecting efficiency of sediment traps. Among users of PPS3 

sediment traps (e.g. Carbonne, 1991; Heussner et al., 1999) it is common to adopt a 15 

cm s-1 limit for PPS3 trap collecting efficiency. Other authors, such as Fabres et al. 

(2002), cut it down to a more conservative 12 cm s-1 threshold.  

Current speed values above the selected thresholds (expressed as percentages of the 

total data) were uncommon (Table 1), the maximum value being 3.5% (>12 cm s-1 

criterion) at M3I, and 0.02-1.26% for near-bottom traps. The pressure transducers 

installed below the traps did not exhibit depth changes (resolution limit 2 m) except for 

trap M3I, which experienced oscillations <8 m during short periods (Table 1). We can 

therefore assume that the effect of tilt on trap efficiency can also be discarded. 

Given the implicit limitations and uncertainties of sediment traps in quantifying 

downward matter fluxes, which has been and still is a matter of controversy (e.g. 

Thomas and Ridd, 2004, and references therein), and especially when sampling near the 

bottom, the results obtained from the traps and hereafter presented should be regarded 

as semiquantiative data. 

 



J. Martín et al. 8

3.1. Forcing conditions 

Time series of river discharge, significant wave height and wave peak period during the 

period of study are presented in Figure 2. Runoff from the Ter River was relatively low 

all the time, ranging between 2 and 8 m3 s-1. The most notable meteorological feature 

during the study period took place from November 10th to 16th, when two consecutive 

severe storms struck the northwest Mediterranean, each one lasting for two days. Main 

wind directions were NNE-E and the peak of the storm occurred on November 11th 

(Gracia et al., 2003). The oceanographic buoy located over the shelf (90 m depth) close 

to Palamós Canyon recorded maximum wave heights above 6 m and Tp ~ 9 s at the 

beginning of the storm, before ceasing to function due to the harsh weather conditions. 

The WANA model predicts HS >11 m at a point close to the oceanographic buoy 

(Figure 2c). The recurrence period for an event like this is estimated to be 20 years 

(Ibarra Damiá and Medina, 2003). 

The mean circulation in the canyon is described in Palanques et al. (2005a). Briefly, 

near surface currents follow the mean direction (NE-SW) of the Northern Current; at 

intermediate depths, the currents are also aligned along the regional circulation, but in 

the inner part of the canyon (M3) the currents are more variable, suggesting a closed 

circulation. Near-bottom currents are more constrained to the local bathymetry, they are 

mainly up/downcanyon along the axis and more scattered near the canyon walls.  

  

3.2. Total mass fluxes (TMF) 

A general overview of time series of total particulate matter fluxes and major 

constituents fluxes measured by sediment traps is shown in Figure 3. Mean values of 

total mass fluxes and major constituents contents and fluxes for the whole study period 

are presented in Table 2.  

Total downward mass fluxes varied by more than three orders of magnitude inside the 

canyon, from 40 mg m-2 d-1 below the northern wall in summer to more than 94000 mg 

m-2 d-1 in the canyon axis at both 470 m (trap M2) and 1200 m (trap M3B) depths, 

during the severe storm that took place in November 2001. The maximum flux is 

unknown since these two traps overfilled, but we can say that the TMF yielded during 

the storm at 470 m and 1200 m depth were at least 94571 and 94045 mg m-2 d-1 

respectively. On the open slope, mean TMF for the study period was 4 to 70 times 

lower than those recorded inside the canyon.  
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Near-bottom TMF at the canyon head (M2) were quite steady from March to October, 

discounting the November overfilling (Fig. 3).  

Near the bottom at 1200 m depth in the canyon axis (M3B), TMF displayed a wider 

range, from 8898 to more than 94000 mg m-2 d-1 when it overfilled in the November 

storm. The mean value for the study period was 44284 mg m-2 d-1, which is 

considerably higher than that recorded by the trap located upcanyon (M2). Maximum 

variability, along with important peaks as high as 91120 mg m-2 d-1, occurred during 

summer at M3B (Fig. 3). During the first four sampling intervals (March-April), TMF 

had the same variability and were slightly lower than those from M2. However, from 

May through August, the referred high peaks and strong variability at M3B were not 

mirrored in the rather steady fluxes of M2 or in any other of the deployed sediment 

traps. From September to early November, before the storm, TMF at M3B decreased 

close to spring values.  

At the same 1200 m depth mooring, the sediment trap M3I (400 m depth) showed 

downward fluxes much lower (mean 10507 mg m-2 d-1) than those observed near-

bottom. During the storm, however, total downward flux reached a distinct maximum of 

65940 mg m-2 d-1, which accounted for 45.38% of the total material collected by that 

trap during the whole study (Table 2). 

At 1700 m (M5), near-bottom TMF in the canyon axis did not show trends related to the 

upper canyon near-bottom fluxes, except for the November storm period, when a total 

mass maximum of 57720 mg m-2 d-1 was attained in concomitance with the overfilling 

of M2 and M3B. Mean total flux at M5 was 8484 mg m-2 d-1, with TMF ranging from a 

minimum of 870 mg m-2 d-1 to values up to 66 times higher. A marked relative 

maximum of 38390 mg m-2 d-1 occurred in mid-August. 

Below the northern canyon wall (M4), near-bottom TMF were relatively low, with a 

mean downward flux of 1514 mg m-2 d-1, while variability was considerably high (see 

Fig. 3). A maximum of 7751 mg m-2 d-1 was obtained in the last sampling interval, 

coinciding with the November storm. During summer, this trap exhibited TMF as low 

as 41 mg m-2 d-1, the lowest found in this study.  

Below the southern canyon wall (M6), mean TMF were about three times higher than 

those below the northern wall. At this site, although an important TMF increase took 

place during the storm event, the absolute maximum occurred in early spring (March-

April), with a TMF of 12498 mg m-2 d-1. 
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On the open slope (M7), the maximum downward flux occurred in spring (1069 mg m-2 

d-1). TMF decreased by up to an order of magnitude in summer. During the November 

storm, TMF at this slope site increased slightly, reaching 592 mg m-2 d-1.  

 

Major constituents contents and fluxes are depicted in Figures 4-7: Lithogenics (Figure 

4), carbonates (Figure 5), organic carbon (Figure 6) and biogenic silica (Figure 7). 

 

3.3. Lithogenics 

This fraction dominated the composition of the settling particles at all sites, and 

therefore lithogenic fluxes closely matched those of total mass at all sites. Contents 

were higher and more constant in traps M2 and M3B (Fig. 4), where lithogenic 

percentages were quite stable around values from 71 to 73%. Maximum variability and 

lower percentages were recorded on the open slope, ranging from 43.77% in April to 

65.85% in June-July. The rest of the traps (M3I, M4, M5, M6) exhibited an intermediate 

behavior, with mean values between 68 and 71% and a higher variability in spring. At 

all sites, lithogenic content peaked during the November storm. 

 

3.4. Carbonates 

At all sites, this constituent increased from spring to summer, peaked over August-

September, and decreased again in October-November (Fig. 5). Inside the canyon, the 

time-averaged values showed a general trend of increasing carbonate content with trap 

depth (Table 2), from 22.95% at 400 m depth (M3I) to 25.70% at 1700 m depth (M5). 

At M2 and M3B variability was lower whereas at the rest of the canyon sites the 

variability was higher, with minima occurring in spring. M4 showed the widest range, 

with 17.28% in early-April and 33.98% in August. The rest of the near-bottom traps, 

despite the described temporal variability, rarely recorded values below a background 

level of about 22%. On the open slope, carbonate contents were slightly higher than 

those in the canyon during most of the time, and a strong peak took place in August 

(33.46%). Maximum carbonate contents were recorded between August and September 

at all sites, concurrently with a notable occurrence of pteropod shells in the sediment 

trap samples. The relative contribution of coccolithophorids to the carbonate fluxes is 

unknown (because only optical observations were made on the samples). Planktonic 

foraminifera were frequent in the samples throughout the sampling period. 
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3.5. Organic carbon and opal 

Almost all sites showed a similar temporal trend for both constituents: maximum values 

in spring (March-April) and lower ones from May through September, followed by a 

slight increase in October-November and depletion by mid-November (major storm). 

The only exception to these tendencies is M4, which showed some shifts from general 

tendencies when TMF was very low. 

Values were almost always higher on the open slope for both components, with 

maximums in April of 20.05 and 4.29% of opal and organic carbon content respectively 

(Figs. 6 and 7). Inside the canyon, temporal variability and contents of both components 

were lower at M2 and M3B than at the rest of the sites (Table 2). 

In the M5 trap (1700 m depth) at the canyon axis, opal content gave a mean percentage 

of 3.61%, varying from maximum values of around 10.30% in April to a minimum of 

0.31% (the lowest recorded value) in mid-August, concurrent with a strong peak of 

TMF. In the southern wall trap and the open slope trap, maximum fluxes of both opal 

and carbon were attained during early spring. In a global view, however, the strikingly 

high TMF at M2 and especially at M3B caused their organic carbon and opal fluxes to 

overwhelm the fluxes of the rest of sites in a quantitative sense, no matter how wide the 

differences in content were. Moreover, there were also lower, albeit noteworthy, peaks 

of organic carbon and opal fluxes at M3I and M5 by mid-November, and a strong 

organic carbon flux at M5 coinciding with the local August peak of TMF. 

In most traps, despite the evident seasonality, opal values never fell below a background 

level of about 1%. This could be attributable to the method used, which loses accuracy 

for opal contents <3% and also assumes a certain clay contamination error (Mortlock 

and Froelich, 1989). Rebound of biogenic debris could be an alternative explanation. 

 

3.6. 210Pb activity 
210Pb total activities and fluxes are available only for the traps deployed along the 

canyon axis (M2, M3B, M3I, and M5) and are shown in Figure 8. Table 3 shows mean 
210Pb activities and fluxes in the sediment trap samples. Values ranged from 105.30 to 

757.24 Bq kg-1. At M2, 210Pb activities showed very low fluctuations around a mean of 

253.05 Bq kg-1. At M3B 210Pb activity ranged from 429.67 Bq kg-1 in March to 110.45 

Bq kg-1 during the November storm, and presented a mean value of 238.13 Bq kg-1. At 

M3I, 210Pb mean activity was only slightly higher than in the previous traps, yielding a 

mean of 266.40 Bq kg-1. In the deepest trap (M5), both the range and the temporal 
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variability of 210Pb activities were distinctly higher than in the other 3 shallower traps 

(Fig. 8). 210Pb activities at M5 ranged from 141.10 Bq kg-1 at the November TMF 

maximum to 757.24 Bq kg-1 in the preceding sample.  

The whole pool of data is graphed against TMF in Figure 9, showing an overall 

tendency for 210Pb activity to decrease with TMF.  

 

3.7. Main compositional trends 

In Figure 10, major constituents from the whole pool of samples are represented versus 

TMF. In Figure 11, some relationships between pairs of major constituents are tested. 

Carbonates contents were not clearly related to any of the other major constituents. 

Contents of opal and organic carbon showed a positive and significant relationship at all 

sites (R2 = 0.77 for the whole data set).  

As expected, near-bottom sediment traps showed lower values of lithogenics with 

distance seaward. Biogenic components were more abundant on the open slope, 

especially in early spring, when lithogenics attained a minimum of 46.37% of the total 

mass, and maximum opal and organic carbon contents of 20.05 and 4.29% respectively. 

The traps at 470 m (M2) and 1200 m (M3B) depth along the canyon axis showed a 

relatively constant composition throughout the experiment (Figs. 3-7), whereas the rest 

of the sites displayed higher variability, to some extent following similar temporal 

trends to that of the open slope. However, fluxes of constituents tended to match the 

trends of TMF in each trap. For this reason, despite the lower biogenic percentages at 

M2 and M3B, biogenic fluxes (as well as all constituent fluxes) became higher there 

than at the rest of the mooring sites. 

In a broad view, main constituent contents showed a temporal trend closely related to 

the changes in TMF. The lithogenic fraction was positively related to TMF, while opal 

and organic carbon showed a negative relationship. Carbonates were not so clearly 

related to TMF and seemed to increase slightly with depth. Above certain values of 

TMF (around 30 g m-2 d-1, see Figure 10) the different constituents maintained the 

following approximate values: lithogenics: ~ 72.3%; carbonates ~ 24%; organic matter 

(organic carbon x 2) ~ 1.9%; and opal ~ 1.8%. These high TMF values belonged mainly 

to samples from M2 and M3B traps, but also to TMF peaks at M3I and M5.  
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4. Discussion 

4.1. Sediment gravity flows in the canyon 

Results from the M3B trap violate at least two of the general trends expected from 

previous works and literature. The first is the general tendency for TMF to decrease 

with distance to the shoreline, a rather common feature in submarine canyons and 

continental margins in general (e.g. Puig and Palanques, 1998; Heussner et al., 1999). 

More particularly, Heussner et al. (1996) described this topic in three submarine 

canyons of the NW Mediterranean. This trend is apparently broken in the M3B trap, 

which shows much higher fluxes than M2 (located upcanyon) during many sampling 

intervals. Secondly, the seasonal variability of total fluxes is expected to show a 

minimum during summer in this area (Heussner et al., 1996), when the processes that 

propitiate enhanced fluxes (wave resuspension, river discharge, vertical mixing, current 

intensification) are less important. Instead, in the Palamós canyon axis at 1200 m we 

found strikingly higher fluxes from May to late-August, which were only comparable in 

magnitude to the November storm.  

Furthermore, TMF measured at M3I was insufficient to account for the particle fluxes 

recorded near the bottom at the same mooring (M3B trap), so the main part of the 

particles that produced these TMF increases in the spring-summer period were 

transported laterally near the bottom. 

In Figure 12, TMF of M2 have been subtracted from those of M3B. The graph shows a 

close agreement of fluxes during the first months of the experiment and also—to some 

extent—from September to the end of the experiment, which is linked to the closed 

circulation in the inner part of the canyon, as proposed by Palanques et al. (2005a). 

During the summer season, the previous situation is disrupted by a marked excess of 

fluxes at M3B in comparison with M2 (Fig. 12). Current meter and turbidimeter data 

(Palanques et al., 2005b) proved that these anomalous fluxes were associated with 

short-lived episodes of high turbidity and high current speed that were identifiable as 

sediment gravity flows. These episodes were not detected at any of the other mooring 

sites. Furthermore, current direction indicated that most of these gravity flows were not 

flowing along the canyon axis but coming from the northern wall, probably channeled 

from the shelf and upper slope through the gullies that incise the canyon walls. The 

hydrographic and meteorological data available proved to be useless for unveiling the 

triggering mechanisms of these sediment flows. On the other hand, turbidimeter data 
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and data from log books provided by the local trawling fishery matched closely, 

suggesting an anthropogenic triggering mechanism (fishing gears) for these gravity 

flows.  

During this period of sediment gravity flows, main constituents did not change greatly 

at this 1200 m site. There was just a slight increase in lithogenic content and 210Pb 

activity coherent with the increase in TMF. This constancy suggests a common source 

for the particles reaching this trap (being mainly resuspended material transported 

laterally), no matter whether they arrive as a consequence of human-induced or natural 

processes. Figures 3-7 show how deeply those high turbidity events impacted total mass 

and component fluxes at M3B.  

Local, short-lived episodes of high turbidity and current speed also took place at 1700 m 

depth. The two strongest events occurred almost simultaneously (7 days apart) and were 

reflected in the sharp increase of TMF recorded in August by the M5 trap (Fig. 3). The 

sediment collected during this relative maximum had the lowest opal content found in 

the whole set of sediment trap samples of this study. This near-absence of opal is 

indicative of reworked sediments, since the relatively high pH and temperature of the 

Mediterranean deep water promotes an intense dissolution of the particulate opal that 

reaches the sea floor (Emelyanov and Shimkus, 1986; Cros, 1995), and bottom 

sediments are thus very poor in this constituent (Masqué et al., 2003). This opal marked 

minimum was also accompanied by low values of organic carbon and 210Pb, suggesting 

resuspension of old sediments. This event was not detected in any of the other sediment 

traps. Whether or not the triggering mechanism for the gravity flows at M5 was fishing 

activities, as at M3B, remains unknown. In any case, the apparent isolation of these 

noteworthy events at M5 expresses the deep and local nature of some major transport 

processes taking place in the Palamós Canyon.  

 

4.2. Effects of a major storm over downward particulate fluxes 

Turning back our attention to Figure 12, the resemblance of the M2 and M3B fluxes is 

apparent again during fall, and definitely during the November storm, when both traps 

overfilled. Just prior to the storm, there was a notorious negative balance in Fig. 12 (that 

is, much higher fluxes at M2). We attribute this to the fact that the storm had begun at 

the time of the last scheduled rotation of the trap carousel. Thus, the penultimate cup of 

the shallower M2 trap could have collected the first increase in particle fluxes generated 
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by the storm, whereas when it affected the M3B trap it had already turned to the last 

sampling cup.  

During the storm, the increment in particle fluxes took place in the entire canyon, with 

especial strength along the canyon axis, and not only near the bottom but also at 

intermediate depths (Fig. 3). However, at the open slope site (M7), the recorded TMF 

values were lower during this storm than during spring, so the material transferred from 

the shelf to the slope during the storm was preferentially channeled through the Palamós 

Canyon. 

Low biogenic contents were recorded in almost all traps inside the canyon during the 

storm, due to strong dilution by terrigenous and resuspended material that caused the 

trap samples to tend towards the bulk composition of the bottom sediments transported 

into the canyon.  

 

4.3. General trends of total mass fluxes 

Enhanced particle fluxes inside submarine canyons relative to adjacent open slopes have 

been previously reported in continental margins world-wide (e.g. Puig and Palanques, 

1998; Monaco et al., 1999; Hung et al., 2003). This difference is very noteworthy in 

Palamós Canyon, where channeling and focusing effects are not restricted to storm 

periods. During the whole 8-month experiment, the fluxes were several tens of times 

higher in the canyon axis than on the open slope at similar depths. In addition, in storm 

periods the role of the canyon as a preferential path for across-slope matter transfer was 

further heightened. Compared with other studied northwestern submarine canyons, the 

Palamós Canyon seems to be more active. Downward particle fluxes measured at the 

canyon head were 2 to 9 times higher than those measured in the other canyons such as 

Lacaze-Duthiers, Planier, and Foix (Monaco et al., 1990a; Heussner et al., 1996; Puig 

and Palanques, 1998; Monaco et al., 1999), but this relation increased drastically at 

1200 m depth, where near-bottom particle fluxes show peaks that are one to two orders 

of magnitude higher than in the other canyons at similar depths. Even if the presumed 

effect of sediment gravity flows and the storm at M3B are discounted, mean total flux 

(our tentative estimate is around 21000 mg m-2 d-1) are still far higher than in the other 

canyons. These high TMF at Palamós Canyon may be mainly related to its 

morphological characteristics. This submarine canyon indents the continental shelf 

deeply, with its head cutting the shelf up to the 90 m isobath, 3 km away from the 

coastline. This may propitiate focusing and direct transfer of particulate matter from the 
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bottom nepheloid layer, not only through the canyon head but also through and from the 

steep canyon walls incised across the shelf and upper slope. This transference of 

particles into the canyon may be enhanced and channeled by the numerous gullies that 

indent the canyon walls. Furthermore, the particulate matter collected in traps M2 and 

M3B (and to some extent M3I, see Table 2), was fairly homogenous and similar in 

composition between them through time, suggesting a common origin of the particles, 

probably the shelf and upper-slope.  

 

In many continental margins, particles produced or introduced in the shelf only reach 

the deep environment after experiencing successive deposition/resuspension periods. 

After several of these cycles the greater amount of organic matter is mineralized, and 

thereby the organic input to the deep ecosystems is limited. This scenario of limited 

shelf-slope organic matter export has been described for the Mid-Atlantic Bight 

(Biscaye et al., 1994) and other continental margins of the world (de Haas et al., 2002), 

and also for the Cap Ferret Canyon (Heussner et al., 1999). This pattern of sluggish 

transport of organic matter to the deep ocean may be by-passed in the presence of a 

submarine canyon as deeply incised in the shelf as Palamós Canyon, allowing for a 

more direct and rapid transport of organic and total particulate matter to the lower slope 

and deep sea, especially during storms. The NW Mediterranean has a great biodiversity 

and faunal abundance at great depths, which has previously been related to the influence 

of submarine canyons (Cartes, 1998; Gili et al., 2000). Being an oligotrophic system 

overall, the Mediterranean Sea must have mechanisms for the efficient recycling of 

energy at different scales (Margalef, 1997), and rapid across-margin transport of labile 

organic matter could be one of those mechanisms.  

 

4.4. 210Pb activity on settling particles  

On the continental shelf, the supply of 210Pb is dominated by the steady-state input from 

the atmosphere, which is removed by particle scavenging and sedimentation. This 

radionuclide can therefore be used to quantify particle fluxes and especially exports 

from the shelf to the open ocean (Bacon et al., 1994). Besides, it has been claimed that 
210Pb activity in marine particles can be related to some of the major particulate 

constituents in open ocean waters (Legeleux et al., 1996; Moore and Dymont, 1998). In 

contrast, 210Pb activities and the major constituents of the flux measured in trap 

experiments on continental margins usually have poor correlations (Biscaye and 
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Anderson, 1994; Radakovitch and Heussner, 1999; Radakovitch et al., 2003). In the 

present study, these correlations were also quite poor for each trap and considering all 

data together (Table 4), with the exception of the lithogenic fraction, which showed a 

negative relationship derived from its close affinity to TMF (which is in turn negatively 

related to 210Pb). 

In the light of the published studies, it seems that the processes and sources leading to 

scavenging of 210Pb by particles are more important than particulate composition itself 

in determining the 210Pb activity of particulate matter. This may be attributable to lateral 

transport of particles with a lower 210Pb content derived from shallower areas 

(transported from far away or resuspended old sediments, in which 210Pb has already 

suffered a substantial decay). Particles with a higher residence time in the water column, 

or aggregates falling all the way from the photic layer to the sea floor (and scavenging 

suspended matter in their path), are more likely to accumulate radionuclides. Therefore, 

we have used here 210Pb activity of particles as an indicator of the relative importance of 

vertical settling versus lateral advection processes, considering that, when lateral 

advection of resuspended sediments is important, 210Pb activities will decrease towards 

the 210Pb activity of the surficial sediments in the areas acting as particle sources. 

Despite the different radionuclide ranges among sediment traps (Figure 8), when all 

data are considered together (Figure 9), there is a threshold TMF value of approximately 

30 g m-2 d-1, above which the scatter of 210Pb activities decreases regardless of the trap 

considered, tending to an asymptotic value of around 220 Bq kg-1 (Figure 9). This 

suggests a common source of particles for all the 4 considered traps (canyon axis) 

during high downward flux events. During these events, 210Pb activities were between 

100 and 200 Bq kg-1. Masqué (1999) reported 210Pb activities in the range 64-108 Bq 

kg-1 in shelf sediments near the Foix Canyon (located southwards of Palamós Canyon, 

along the same continental margin). 

In a general view (see Fig. 8), two patterns are clearly visible: traps M2, M3B and M3I 

show relatively narrow ranges and low values of 210Pb activities, while the opposite is 

true for M5, the deepest sediment trap and the farthest offshore. Looking at the 210Pb 

time series of M5 in detail, it can be seen that this trap represents an intermediate 

situation between a “near shelf break” case (e.g. M2, M3B, and M3I) and what would 

be expected for an “oceanic” case, i.e. higher levels all the time. Instead, at M5 the time 

evolution of 210Pb activities is very variable and closely related to TMF, exhibiting two 

opposite regimes, one of low TMF and high 210Pb activity, suggesting a predominance 
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of vertical transport, and one of high TMF and low 210Pb activity, suggesting an input of 

laterally advected/resuspended material.  

It is also noteworthy that 210Pb activities in the M3B and M3I traps were quite similar 

throughout the experiment, despite the fact that TMF were much higher in the former. 

This further supports the existence of a closed circulation in this (inner) part of the 

canyon (Palanques et al., 2005a). Most particles are derived from a common source 

(most probably the shelf and upper slope upstream of the canyon) and can be 

recirculated inside the canyon.  

Carbonates showed the poorest correlation with the radionuclide. When considering all 

data together, or trap by trap, the correlation coefficients of 210Pb with both opal and 

organic carbon are rather poor (Table 4). However, if the data are divided into 

consecutive periods of time (Table 5), the correlation coefficients reveal a strong 

correlation between 210Pb and both opal and organic carbon (R2 = 0.81 and 0.71 

respectively) during early spring, and a weaker to inexistent one from then on (Table 5). 

We attribute this to the effective scavenging caused by settling particles arising from 

primary production, enriched in organic carbon and biogenic silica, which is probably 

indicative of a diatomaceous bloom.  

 

4.5. Composition of settling particles 

The dominance of lithogenics in the sediment trap samples suggests a dominant 

resuspended origin of the particles transported into the canyon. This was especially true 

for the sites at 470 m (M2) and 1200 m (M3B) depth in the canyon axis. Nevertheless, 

the biological signal was recognizable in almost all traps and in some cases contributed 

for a significant part of the downward particle fluxes. 

In general, organic carbon and opal contents decreased with increasing TMF, indicating 

dilution of primary production inputs by terrigenous and/or resuspended material inside 

the canyon. This dilution was more apparent near the bottom at M2 and M3B, probably 

because these sites were closer to the shelf break and therefore were more exposed to 

lateral advection of material resuspended from the shelf.  

The slope site (M7) was mainly characterized by a qualitative, seasonal variability, 

related to the seasonal cycle of biological production in the euphotic zone, whereas the 

inner part of the canyon showed an essentially quantitative variability. These two 

patterns complement what has been discussed above for the 210Pb activity of particles, 

and supports the hypothesis presented in Palanques et al. (2005a), that is, the existence 
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of two distinct domains in the canyon: an “inner” canyon domain up to about 1200 m 

depth in the canyon axis that corresponds to the zone where the canyon incises the 

continental shelf, and an outer canyon domain downcanyon from about 1200 m depth. 

The inner domain displays a closed circulation under the influence of a higher sediment 

load, whereas the outer domain incises the continental slope, the circulation is more 

related to the mean flow, and the sediment load is lower. 

The main difference between the two domains lies in the relative importance of lateral 

transport. Where this transport is lower, variability of TMF tends to match the seasonal 

primary production cycle. Taking M2 and M3B as true representatives of the inner 

domain, and M7 (open slope) as the extreme of outer domain characteristics, the rest of 

the traps show an intermediate behavior between the two extremes, i.e. between the 

dominance of resuspended particles, depleted in biogenic contents, and a seasonal 

pattern mainly governed by the seasonal pulses of primary production. 

At all sites, the higher contents of opal and organic carbon in March-April were 

coherent with the spring biological bloom (Figs. 6 and 7), as observed previously in the 

northwest Mediterranean over the same period (e.g. Monaco et al., 1990b; Miquel et al., 

1994; Puig and Palanques, 1998). Large organic carbon flux is more likely to be 

associated with a biogenic-SiO2 bloom than with a calcium-carbonate bloom (Honjo, 

1996).  

All traps reached the maximum values of carbonate content between August and 

September, which can be partly explained by the low total mass collected during these 

months in almost all traps (i.e. the lesser dilution by terrigenous resuspended particles). 

It is noteworthy however, that these maximums were accompanied by abundant 

pteropod shells. Incidence of pteropods in sediment traps is fairly common in the 

Mediterranean and other seas. In a 200 m depth trap in the open Ligurian Sea, Miquel et 

al. (1994) found that an important part of the TMF was composed of pteropods. Also, 

Honjo et al. (1982) reported an 8-12% contribution of pteropod shells to the total flux of 

carbonates at depth in several open ocean sites of the Atlantic and Pacific Oceans. The 

apparent blooms of pteropods in our study were observed from mid-August through 

September, in the entire canyon and the slope except at the southern wall site (M6).  

Having stated that a relative maximum of biogenic carbonate occurred in summer in the 

whole study area, we are forced to discuss the reliability of the absolute values of 

contents and fluxes for this constituent, if we are to call it “biogenic”. Despite the 

described seasonality in carbonates, values rarely fell below 20% of the total mass, and 
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ranges were relatively narrow even considering the relative maxima in summer (Fig. 5). 

This, along with the absolute lack of correlation with any other component, TMF or 
210Pb (Tables 4 and 5), suggest that a substantial part of the carbonates measured were 

not the result of vertical settling after production, as is presumed for most of the opal. 

Instead, two additional sources are proposed: 

1) Riverine input of carbonate particles could be taking place. SEM examination of 

particulate matter in continental margins has revealed before (e.g. Katayama and 

Watanabe, 2003) the occurrence of detritic carbonate particles together with carbonated 

shells from marine organisms. Carbonates derived from rock weathering are common in 

the Adriatic Sea (Ravaioli et al., 2003). It is sometimes assumed that all the carbonated 

particles collected by a sediment trap are of biogenic origin. This view was probably 

inherited from the pioneering studies on sediment traps, which were mainly devoted to 

measuring fluxes in the open ocean, where lithogenic particles are certainly scarce and 

mostly due to atmospheric deposition (Chester, 1990). This situation may not be true in 

coastal and continental margin settings, near the influence of river runoff and 

resuspension of previously settled riverine particles, especially if the river drains onto a 

carbonated basin (as is the case of the Ter River). To our knowledge, there is no 

analytical method for differentiating biogenic from detritic particulate carbonates.  

2) A significant amount of the carbonates produced biologically may be preserved in the 

sea bed long after their production, and eventually resuspended. Cros (1995) examined 

under SEM surficial sediments of the NW Mediterranean and observed high densities of 

coccoliths and other remains of carbonated shells. She noticed the rapid dissolution of 

siliceous shells, in contrast to the apparent accumulation of better-preserved calcareous 

shells. Therefore, the carbonate concentrations observed in the traps are the sum of 

shells recently produced in the photic layer plus a background of older biogenic 

carbonate, accumulated on the sea floor and transported laterally into the traps after 

resuspension.  

 

4.6. Across canyon variability of fluxes 

From the results yielded by the M4 (northern wall) and M6 (southern wall) traps, 

deployed at similar depths, two situations were observed. During the major storm in 

November, total downward fluxes were similar on both sides of the canyon. Instead, 

during the rest of the studied period, there was a clear asymmetry between the northern 

and southern canyon walls at similar (1300 m) depths. TMF were notably higher on the 
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southern than on the northern wall site, while current speed showed the opposite 

situation (Palanques et al., 2005a). As previously discussed, the southern wall was the 

most representative site of the “outer domain” inside the canyon, in terms of the 

temporal variability of fluxes. The maximum TMF were registered during the spring 

biological bloom instead of the major storm, as is the case of M7. However, fluxes are 

much higher on the southern wall (M6) than on the slope (Fig. 3, Table 2), indicating 

that slope dynamics alone can not justify these results, and thus evidencing the 

influence of the canyon.  

Through a modeling study, Klinck (1996) predicted that along-slope currents which 

encounter a submarine canyon at their right (as is the case of Northwestern 

Mediterranean canyons) will experience an onshore deflection on the upstream side and 

an offshore deflection on the downstream side of the canyon. This basic pattern has 

been observed in Palamós Canyon by hydrographic and satellite data (Masó et al., 

1990). Alvarez et al. (1996) calculated the flow of the geostrophic jet on the upstream 

and downstream sides of Palamós Canyon, resulting in a flow almost 3 times stronger 

on the upstream than on the downstream side. Thus, the slope current apparently exits 

the canyon with some deceleration in comparison with the entrance flow, and this may 

allow particles to settle out of the water column on the downstream side. Moreover, it is 

possible that as the current is deflected upcanyon from the upstream side, it encounters a 

higher load of particulate matter in the “inner region” of the canyon, so when it turns 

offshore along the south wall, the current transports a higher load of particulate matter 

than when it entered the canyon on the upstream side. This would explain the 

asymmetries observed between the TMF recorded near the northern and southern 

canyon walls. The possibility of local upwelling on the south canyon wall has also been 

suggested (Palanques et al., 2005a). 

 

5. Conclusions 

 
Downward particle fluxes measured at the Palamós Canyon head were 2 to 9 times 

higher than those measured in other northwestern Mediterranean canyons, and this 

relation increases drastically at 1200 m depth, where near-bottom particle fluxes are 1 to 

2 orders of magnitude higher than those observed in other surrounding canyons at 

similar depths. After discounting the presumed contribution of sediment gravity flows 
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and a major storm, TMF at 1200 m are still an order of magnitude higher than in the 

other NW Mediterranean canyons studied. 

The downward fluxes of total and organic matter inside the canyon are much greater 

than those found on the open slope, indicating the importance of this canyon in the 

focusing and across-margin transference of total and organic matter.  

The whole canyon system acts as an efficient channel for off-shelf transport of total and 

organic particulate matter during severe storms like the one recorded in November 

2001. During that storm, the canyon axis and walls were affected by a sharp increase in 

downward particulate fluxes, indicating a general off-shelf sediment transport 

channeling in the canyon. This channeling effect is further stressed when compared to 

the fluxes recorded by a trap at similar depths on the adjacent slope, which was weakly 

affected by the storm in terms of total mass fluxes.  

The high sediment transport activity of the Palamós Canyon may be explained by the 

proximity of the canyon head to the coast and the fact that the canyon incises a wide 

sector of the continental shelf. All this may favor a direct transfer of particulate matter 

from the shelf, not only through the canyon head but also through and from the steep 

canyon walls incised across the shelf and upper slope. This transference of particles into 

the canyon may be enhanced and channeled by the numerous gullies that indent the 

canyon walls. 

Superimposed on the above processes, very high mass fluxes were detected during 

summer at 1200 m depth, and they were identified as sediment gravity flows triggered 

by trawling activities at the canyon rims. 

The spatial-temporal distribution of total mass fluxes and major constituents allowed 

two domains to be defined in the Palamós Canyon: an "inner" domain (up to 1200 m 

depth) constricted by the canyon topography and mainly influenced by a continuous, 

lateral transport of particulate matter from the adjoining shelf, and an “outer” domain, 

where slope dynamics and seasonal trends are more important in determining the 

composition and amount of downward fluxes.  

Compositional and radiochemical analysis led us to identify a clear imprint (in March-

April) of a siliceous bloom affecting the whole study area. Organic carbon and opal 

were closely associated in the particles, suggesting a rapid transport of particulate 

organic matter to the deep sea floor in the form of siliceous-organic aggregates, pellets 

and other fast-sinking particles. 
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This high resolution experiment conducted in the Palamós Canyon yielded a high 

variability in total mass fluxes. Important events like major storms can be detected in 

the whole canyon in concomitance, and there are other local and ephemeral processes 

that are also of major importance in the total transfer of particulate matter.  
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Table and Figure Captions 
 
 
Table 1. Locations and depths of sediment traps deployed in the Palamós submarine 
canyon and nearby open slope. Current meter and pressure transducer data relevant for 
trap efficiency assessment are also shown. 
 
Table 2. Time weighted mean fluxes (mg m-2 d-1) and flux weighted mean 
concentrations (% of dry weight) for each sediment trap. The Contribution (%) of the 
Storm on Fluxes (C.S.F.) is also shown. 
 
Table 3. Mean 210Pb concentrations (weighted by flux and time), time-weighted mean 
210Pb fluxes, and total mass fluxes from sediment traps deployed in the Palamós 
submarine canyon. 
 
Table 4. Correlation coefficients (R-squared) between 210Pb activity and major 
constituent contents (linear fit) and TMF (power function fit) from sediment traps M2, 
M3B, M3I and M5. 
 
Table 5. Correlation coefficients (R-squared, linear fit) between 210Pb activity and 
major constituent contents of sediment trap samples (M2, M3B, M3I and M5), divided 
in five consecutive time periods. Correlation coefficients between 210Pb activity and 
Total Mass Flux (linear fit) also shown. 
 
 
 
Figure 1. Top image, bathymetric map of the northwest Mediterranean margin. The 
area is incised by several submarine canyons, some of which, like Palamós canyon, cut 
the continental shelf at shallow depths. The mean path of the Northern Current is also 
outlined. Below, bathymetry of the Palamós Canyon and mooring positions. Each 
mooring sustained a near-bottom sediment trap. Mooring M3 had an additional 
sediment trap at intermediate depths. 
 
Figure 2. Hydrological and oceanographic background during the experiment, collected 
in surrounding sites: A. Hydrological station at the Ter River; B, C. Oceanographic 
Buoy near Palamós. Gaps in the buoy time series are filled with values predicted in a 
nearby WANA point (model). 
 
Figure 3. Bar graphs illustrate the time series of total mass and main constituents fluxes 
of particulate matter for each sediment trap during the study period. Note the different 
scaling of graphs. 
The left-bottom line graph shows the time series of total mass flux for all the sediment 
traps, merged together with the same scale. 
 
Figure 4. Lithogenic contents (dots) and fluxes (bars) of sediment trap samples during 
the study period. 
 
Figure 5. Carbonate contents (dots) and fluxes (bars) of sediment trap samples during 
the study period. 
 



 

Figure 6. Organic carbon contents (dots) and fluxes (bars) of sediment trap samples 
during the study period. 
 
Figure 7. Biogenic silica contents (dots) and fluxes (bars) of sediment trap samples 
during the study period. 
 
Figure 8. 210Pb total activity (dots) and fluxes (bars) of sediment trap samples during 
the study period. 
 
Figure 9. 210Pb activities plotted against versus total mass fluxes, for all the samples 
analysed. (Circles: Trap M2 ; Triangles: Trap M3B ; Squares: Trap M3I ; Crosses: Trap 
M5). A power function is used to fit all the data. 
 
Figure 10. Major particulate constituent contents versus total mass fluxes from 
sediment trap samples. 
 
Figure 11. Test of relationships between particulate main contents for all sediment trap 
samples. 
 
Figure 12. Difference between total mass fluxes of M3B and M2 traps. Positive values 
during summer represent an excess of fluxes in M3B (1200 m depth) in comparison to 
M2 (470 m depth) and has been related to sediment gravity flows triggered by human 
activities. The marked negative balance of the penultimate bar is the imprint of the first 
stages of the November storm (last bar). 
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