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We present a detailed computer simulation and integral equation study of the phase behavior of a nemato-
genic system composed of hard spheres with embedded three-dimensional Maier-Saupe spins. For this well-
known system, we map the gas-liquid equilibrium, which is coupled to a first-order isotropic-nematic transi-
tion. The anisotropic integral equation theory is found to yield excellent agreement with the simulation data
within the fluid regime. Additionally, we determine the fluid-solid equilibrium transition by means of computer
simulation.
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I. INTRODUCTION

The phase behavior of systems composed of nonspheri-
cally symmetric particles, which undergo standard first-order
gas-liquid and liquid-solid phase changes coupled to order-
disorder transitions, continues to attract a great deal of inter-
est. In these systems, the interplay between orientational and
translational order �either local or long-range� plays the key
role in modeling their phase diagrams. Among the simplest
systems that are known to participate in this rich phenom-
enology are the ferromagnetic fluid models �1–14�, in most
cases composed of particles whose magnetic interaction is
modeled via Heisenberg �1–3,7–9,11� or Ising �4,12,13�
spins, embedded in either hard or soft spheres and with or
without dispersive interactions. Recently, a three-
dimensional XY spin system �14� has also been studied using
an anisotropic integral equation approach. In all these cases,
one typically encounters a second-order paramagnetic-
ferromagnetic transition coupled with a gas-liquid equilib-
rium, with the second-order transition line meeting the gas-
liquid equilibrium curve either at a tricritical point or at a
critical endpoint, depending on the ratio between anisotropic
and dispersive components of the interaction.

In addition to these magnetic models, another group of
simple systems characterized by order-disorder transitions is
composed of nematogenic fluids in which the orientational
component of the interparticle interaction is essentially a
Maier-Saupe term �15�. These systems exhibit isotropic-
nematic transitions that might also be coupled to a gas-liquid
transition if the range of attractive interactions is sufficiently
large. The isotropic-nematic transition for Maier-Saupe par-
ticles with added dispersive interactions has been studied in
some detail by means of computer simulation �16� and den-
sity functional theory �17�. In the latter case, a full picture of
the phase diagram was obtained indicating that, when deal-
ing with Maier-Saupe interactions coupled with dispersive
forces, one finds a continuous change from a first-order gas-
liquid transition to a first-order isotropic-nematic transition.
Recently, the present authors �18,19� examined a simple
model of Maier-Saupe fluid in which the decay of the aniso-
tropic interaction is determined by a Yukawa functional form
with no attractive component in the interparticle potential

and having the peculiarity that the three-dimensional spins
are embedded in hard spheres whose centers are constrained
to lie in a plane. This model, which is a continuum version of
the RP2 model �20�, was found to undergo a Berezinskii-
Kosterliz-Thouless �BKT� continuous order-disorder transi-
tion �21� coupled to a condensation transition at low tem-
peratures in which the ordered phase lacks a true long-range
order.

A simpler natural extension of the BKT work of Ref. �21�
is the study of a Maier-Saupe hard sphere fluid in three di-
mensions, the model we take up here. From the studies per-
formed in Refs. �16,17�, one should expect the BKT order-
disorder transition in this case to shift into a first-order
transition, the nematic order now being truly long ranged.
According to the anisotropic mean spherical approximation
calculations of Sokolovska et al. �22� for this model, a first-
order isotropic-nematic transition is to be found in the liquid
regime, although these authors do not present results for
the complete phase diagram. In fact, aside from the density
functional theory calculations of Ref. �17�, we are not aware
of any work in which the complete phase diagram for Maier-
Saupe fluids without dispersive interactions has been
determined.

In this paper, then, we focus on the phase behavior of a
simple three-dimensional hard sphere Maier-Saupe fluid,
which is, so to speak, the unconstrained version of the planar
model previously studied by us �18,19�. The potential energy
of this system is prescribed by

U = �
j

uz�� j� + �
i�j

uHS�rij� + �
i�j

u�rij,�i,� j� , �1�

where �= �� ,�� specifies the orientation of a molecular
nematic axis. Here the one-body interaction

uz��� = − W0P2�cos ��, with W0 � 0, �2�

arises from an external field which defines the z axis. To this
one adds the hard sphere pair potential, uHS�r�, for spheres of
diameter � and an orientation-dependent potential between a
pair of molecules that tends to align their mutual nematic
axes,
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u�r,�1,�2� = − Ku0�r�P2�cos �12�, with K � 0, �3�

where

u0�r� =
e−��r/�−1�

r/�
−

e−��R/�−1�

R/�
, � 	 r 	 R, = 0, r � R .

�4�

Here, P2�x�= �3x2−1� /2 is the Legendre polynomial of order
2, �12 is the angle between the axes of molecules 1 and 2, �
is a dimensionless range parameter, and K determines the
strength of the coupling interaction. The potential u0�r� is
truncated and shifted at R=4� for computational conve-
nience in the simulation. In the calculations, we define the
reduced temperature as T*=kBT /K= �
K�−1 and the reduced
external field as W0

*=W0 /K, where T is the absolute tempera-
ture and kB is Boltzmann’s constant. We have set the range
parameter at �=1.

As the main tools of our study, we use extensive NVT and
NpT Monte Carlo simulations in conjunction with the aniso-
tropic Ornstein-Zernike integral equation, the latter in a
manner that has been successfully exploited to describe
Heisenberg spin fluids �8,9�. We determine in this way the
complete phase diagram of our model, which is shown to
exhibit an isotropic-nematic transition that is weakly first
order at high temperatures and couples smoothly to a
gas-liquid transition as the temperature is lowered. We
find that the net attraction produced by the anisotropic inter-
action is sufficiently long ranged to induce the condensation
of the liquid. Finally, for the sake of completeness, we also
determine the fluid-�fcc�solid equilibria.

The remainder of the paper is organized as follows. In the
next section we summarize key aspects of the integral equa-
tion calculations, while specific details of the calculation of
phase equilibria using computer simulation are presented in
Sec. III. Finally, in Sec. IV we discuss our most significant
results.

II. THE ANISOTROPIC ORNSTEIN-ZERNIKE EQUATION

Integral equations provide a computationally efficient
route to the thermodynamics of the Maier-Saupe fluid in an
external field, at the cost of an approximation �23,24�. For
example, once the one-body distribution function, f���, and
the two-body distribution function, g�r ,�1 ,�2�, have been
determined the internal energy U and pressure p are given by
quadratures


U

N
= − 
W0�P2�cos ��� +

1

2

�

�4��2 � dr d�1d�2

 f��1�f��2�g�r,�1,�2�
u�r,�1,�2� , �5�


p

�
= 1 −

1

6

�

�4��2 � dr d�1d�2f��1�f��2�

 g�r,�1,�2�r
d

dr
�
uHS�r� + 
u�r,�1,�2�� . �6�

Other quadratures yield the magnetic susceptibilities, Helm-

holtz free energy, and chemical potential used in the sequel.
The goal then is to find f��� and g�r ,�1 ,�2�.

A. Tailored Legendre functions

We note first that pair functions such as g�r ,�1 ,�2�
=g�r ,�1 ,�2 ,�1−�2� depend on four independent variables,
so that as a practical matter an expansion in some orthogonal
basis set is needed to make them computationally tractable.
For molecular fluids, this normally means the spherical
harmonics

Ylm��� =
�− 1�m

	4�
eim�P̂lm�cos �� , �7�

where the P̂lm�cos �� are the familiar Legendre functions, but
here normalized so that

1

2
�

−1

1

d�cos ��P̂lm�cos ��P̂l�m�cos �� = �ll�. �8�

Under the anisotropic conditions created by the external
field, however, the orthogonality of Eq. �8� is no longer
useful, since now the molecular orientation angle � is
nonuniformly distributed according to some distribution
f���= f�cos ��. Thus we introduce new, tailored Legendre
functions Plm�cos �� that are explicitly constructed to be
orthogonal with weight function f�cos ��,

1

2
�

−1

1

d�cos ��f�cos ��Plm�cos ��Pl�m�cos �� = �ll�. �9�

Now with the corresponding generalized spherical harmonics

Ylm��� =
�− 1�m

	4�
eim�Plm�cos �� , �10�

we can expand pair functions such as g�r ,�1 ,�2� in the form
�m̄
−m�

g�r,�1,�2� = 4� �
l1,l2,m

gl1l2m�r�Yl1m��1�Yl2m̄��2� . �11�

In this work, the generalized spherical harmonics �10� follow
the Condon-Shortley phase convention �25�. Construction of
the generalized Legendre functions Plm�cos �� is described in
Ref. �9�.

B. Ornstein-Zernike equation
and closure

Pair functions such as g�r ,�1 ,�2�
1+h�r ,�1 ,�2� are
obtained as numerical solutions of two coupled nonlinear
equations: the anisotropic Ornstein-Zernike equation and a
closure equation �23,24�. Using the generalized spherical
harmonics, one quickly reduces the anisotropic Ornstein-
Zernike equation to a sequence of matrix equations for
coefficients �9�,

�̃m�k� = �− 1�m�C̃m�k�C̃m�k��I − �− 1�m�C̃m�k��−1, �12�

where �̃m�k� and C̃m�k� are symmetric matrices with
elements, respectively, �̃l1l2m�k� and c̃l1l2m�k�, for
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l1 , l2�m=0,1 ,2 , . . ., and I is the unit matrix. The most no-
table feature of Eq. �12� is that it is identical to that of an
isotropic system with no external field. All of the anisotropy
is built into the basis functions.

In Eq. �12� we have introduced Fourier transforms of the
direct correlation function c�r ,�1 ,�2� and the indirect corre-
lation function ��r ,�1 ,�2�=h�r ,�1 ,�2�−c�r ,�1 ,�2�. Be-
cause the orientations of spins 1 and 2 and that of r12 are
decoupled in the Maier-Saupe model, the Fourier transforms
may be performed holding the former fixed. A transform pair
is then

�̃�k,�1,�2� = 4��
0

�

dr r2��r,�1,�2�
sin�kr�

kr
, �13�

��r,�1,�2� =
1

2�2�
0

�

dk k2�̃�k,�1,�2�
sin�kr�

kr
, �14�

and the transformed functions may themselves be expanded,

�̃�k,�1,�2� = 4� �
l1,l2,m

�̃l1l2m�k�Yl1m��1�Yl2m̄��2� , �15�

with expansion coefficients �̃l1l2m�k� that are individually the
transforms of �l1l2m�r�.

The second, or closure, equation �23,24� is

c�r,�1,�2� = exp�− 
uHS�r� − 
u�r,�1,�2� + ��r,�1,�2�

+ b�r,�1,�2�� − 1 − ��r,�1,�2� . �16�

This relation must be supplemented with an approximation
for b, the so-called bridge function, which is formally de-
fined in terms of a diagram summation �23� that offers little
practical benefit. In this work, we have used the reference
hypernetted-chain �RHNC� equation �26�, which consists in
approximating b with the known bridge function bRef of
some reference system. If the Helmholtz free energy is also
sought within the RHNC scheme, as is the case here, then in
practice only a hard sphere reference is currently well
enough known for this substitution, so we put

b�r,�1,�2� � bHS�r;�Ref� , �17�

where �Ref is the reference sphere diameter that may be var-
ied �27� to attain a minimized free energy �28�. For the mod-
eled hard sphere functions we use the parametrizations of
Verlet-Weis �29� and Henderson-Grundke �30�.

C. Equations for f„cos �…

The unperturbed one-body distribution function is
given by ln f0�cos ��=const+
W0P2�cos ��, where const is
determined by the normalization

1

2
�

−1

1

d�cos ��f0�cos �� = 1. �18�

We find then

f0�cos �� =
	3

2
W0

D�	3
2
W0�

exp� 3
2
W0�cos2� − 1�� , �19�

where D�x� is Dawson’s integral,

D�x� 
 e−x2�
0

x

es2
ds . �20�

There are now two exact equations that can be used to find
f�cos �� for an interacting system: the Triezenberg-Zwanzig-
Lovett-Mou-Buff-Wertheim �TZLMBW� equation �31� and
the first member of the Kirkwood-Yvon-Born-Green
�KYBG� equation �23�.

The TZLMBW equation reads

�̂1
d

d�1
ln� f�cos �1�

f0�cos �1� =
�

4�
� dr d�2f�cos �2�

c�r,�1,�2��̂2
d ln f�cos �2�

d�2
;

�21�

where �̂i is the azimuthal unit vector. Dotting �̂1 into �21�
converts it into a scalar equation. If we now put

ln f�cos �� = �
l=0

�

AlPl0�cos �� �22�

and expand c�r ,�1 ,�2� as in Eq. �11�, we get first

�
l

Al

dPl0�cos ��
d�

= − 3
W0sin � cos �

+ �
l1,l2,l3

Pl11�cos ���c̃l1l21�0�Bl2l3
Al3

,

�23�

where

Bl1l2

 −

1

2
�

−1

1

d�cos ��f�cos ��Pl11�cos ��
dPl20�cos ��

d�
.

�24�

It follows then from Eq. �23� that

�
l3

Bl1l3
Al3

= 3
W0�m2 − m4�1/2�l12 − �
l2,l3

�c̃l1l21�0�Bl2l3
Al3

,

�25�

or, in matrix notation,

�I + �C̃1�0��Ba = 3
W0�m2 − m4�1/2u2. �26�

Here B is a bidiagonal matrix with nonzero elements Bll and
Bl,l+2 �l�1�, while a and u2 are column matrices with
elements �A1 ,A2 ,A3 ,A4 , . . . � and �0,1 ,0 ,0 , . . . �,
respectively. We have finally from �26�,

Al = 3
W0�m2 − m4�1/2Ql2, �27�

where Q
B−1�I+�C̃1�0��−1.
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The Al coefficients vanish for l odd. It will also turn out
that A2 is larger than A4 by at least two orders of magnitude,
so that we may ignore A4 and higher coefficients in the
analysis above to get the simpler form

A2 �
3
W0�m2 − m4�1/2

B22�1 + �c̃221�0��
,

�
3

2

W0

�m4 − m2
2�1/2

1 + �c̃221�0�
, �28�

where we have used B22=2��m2−m4� / �m4−m2
2��1/2. Then the

form of the angular distribution function remains unchanged
from the original unperturbed case,

ln f�cos �� � const + 
WP2�cos �� , �29�

but the effective field in the interacting system is now

W =
W0

1 + �c̃221�0�
. �30�

We find by calculation that Eq. �29� is essentially exact in the
context of the numerical solution.

In the equations above we have used some moments of
the one-body distribution function,

mk 

1

2
�

−1

1

dx f�x�xk, �31�

and the specific generalized functions

P20�cos �� =
cos2� − m2

�m4 − m2
2�1/2 , �32�

P21�cos �� =
sin � cos �

�m2 − m4�1/2 . �33�

Calculation of f�cos �� from the KYBG equation follows
closely the analysis in Ref. �18� and requires no further
elaboration here.

D. Thermodynamics

With expansions in the tailored orthogonal basis, the
fourfold integrals in Eqs. �5� and �6� immediately reduce in
each case to a final quadrature,


U

N
= − 
W0�P2�cos ���

+
1

2
� �

l1,l2,m
�

�

�

gl1l2m�r�
ul1l2m�r�4�r2dr , �34�


p

�
= 1 +

2

3
���3g000���

−
1

6
� �

l1,l2,m
�

�

�

gl1l2m�r�r
d
ul1l2m�r�

dr
4�r2dr , �35�

that is evaluated numerically with the trapezoidal rule.

The coefficients of the potential u�r ,�1 ,�2� are
ul1l2m�r�=−Ku0�r�Pl1l2m, with nonzero elements �18�

P000 = 1
4 �3m2 − 1�2, �36�

P200 = P020 = 3
4 �3m2 − 1��m4 − m2

2�1/2, �37�

P220 = 9
4 �m4 − m2

2� , �38�

P221 = P22−1 = − 3
2 �m2 − m4� , �39�

P222 = P22−2 = 3
8 �1 − 2m2 + m4� . �40�

Turning off the pair interactions, we readily find for the
ideal Helmholtz free energy


Fid

N
= ln���3� − 1 − ln� e
W0D�	3

2
W0�
	3

2
W0
 , �41�

where � is the thermal de Broglie wavelength. Then follow-
ing the analysis of Ref. �9� we get for the excess free energy,
Fex
F−Fid,


Fex

N
= �ln� f�cos ��

f0�cos ��� +

F1

N
+


F2

N
+


F3

N
, �42�

with


F1

N
= −

1

2
�� dr�c000�r� +

1

2 �
l1,l2,m

�cl1l2m
2 �r� − �l1l2m

2 �r��� ,

�43�


F2

N
= −

1

2�
� dk

�2��3�
m

�ln det�I + �− 1�m�H̃m�k��

− �− 1�mtr��H̃m�k��� , �44�


F3

N
=

1

2
�� dr�

0

1

d� �
l1,l2,m

gl1l2m�r���
�bl1l2m�r���

��
. �45�

The final integral over the “charging” parameter � in Eq.
�45� cannot be evaluated in closed form and this term must
be approximated. In the hypernetted-chain closure �32�, it is
simply neglected.

The effect of the RHNC approximation is to replace Eq.
�45� with the corresponding integral of the reference system,
which is then evaluated as F3

Ref=FRef−F1
Ref−F2

Ref. With the
hard sphere system as a reference, we have then


FRHNC
ex

N
=


FHS
ex

N
+ �ln� f�cos ��

f0�cos ��� +

�F1

N
+


�F2

N
,

�46�

where �Fk=Fk−Fk
HS.

Finally, the chemical potential � is found as 
�=
F /N
+
p /�.
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E. Susceptibilities

To generate expressions for the susceptibility of our nem-
atogenic system, we temporarily introduce an external vector
field H such that W0=H2 and

W0P2�cos �� = 1
2 �3�ŝ · H�2 − H2� , �47�

where ŝ is a unit vector in the direction of the nematic axis.
The “magnetization” in the direction �=x ,y ,z is then

M� =
1




� ln Z

�H�

= ��
j

�3�ŝ j · H�sj� − H��� , �48�

where Z is the canonical partition function, while the
susceptibility tensor is

��
 

1

V

�M�

�H


=



V��
i

�3�ŝi · H�si� − H���
j

�3�ŝ j · H�sj


− H
�� −



V��
i

�3�ŝi · H�si� − H�����
j

�3�ŝ j · H�sj


− H
�� +
1

V��
j

�3sj�sj
 − ��
�� . �49�

Now set H along the z axis, so that Hx=Hy =0, Hz=H, and
sx=sin � cos �, sy =sin � sin �, and sz=cos �. Then we get
finally Mx=My =0 and Mz=M, with

M = 2N�P2�cos ���H , �50�

while the transverse and longitudinal susceptibilities are
�T
 1

2 ��xx+�yy� and �L
�zz, respectively. These yield con-
tributions from both one-body and two-body terms:

�T = �T
�1� + �T

�2�, �51�

�T
�1�/� = − �P2�cos ��� , �52�

�T
�2�/�
W0 = 9

2 �m2 − m4��1 − �h̃221�0�� , �53�

for the transverse susceptibility, and

�L = �L
�1� + �L

�2�, �54�

�L
�1�/� = 2�P2�cos ��� , �55�

�L
�2�/�
W0 = �3m2 − 1�2�1 + �h̃000�0�� + 6�3m2 − 1��m4

− m2
2�1/2�h̃200�0� + 9�m4 − m2

2��1 + �h̃220�0�� ,

�56�

for the longitudinal susceptibility. The off-diagonal elements
of � are zero.

III. SIMULATION METHODS
FOR PHASE EQUILIBRIA CALCULATIONS

The first problem one encounters when simulating a
system near critical conditions is the presence of large scale
fluctuations and critical slowing down. In this work we

employ the same efficient cluster algorithms �33� used in
Refs. �2,19� combined with the local update algorithm and
histogram reweighting techniques �34� used in Ref. �19�.

In order to compute the phase equilibria of our system we
have used different procedures. For the calculation of the
liquid-vapor equilibrium �i.e., fluid-fluid equilibrium at low
temperatures� and the fluid-solid coexistence we make use of
thermodynamic integration methods, while for the fluid-fluid
equilibrium at high temperatures we perform a finite-size
scaling analysis of a series of NpT simulations.

A. Thermodynamic integration techniques

The free energy of the gas phase for a given temperature
can be determined by carrying out NVT simulations at
several low densities and fitting the pressure results to a
virial equation of state,


p��,
� = � + �
k�2

Bk�
k. �57�

With the equation of state of the gas in hand, we can then
compute the Helmholtz free energy F as


F��,
�
N

=

F0�
�

N
+ ln���3� − 1 + �

0

�

d�

p��,
� − �

�2 ,

�58�

where F0, the kinetic contribution to the free energy, does not
depend on the density �see Eq. �41��. The free energy of the
high density phases �which exhibit nematic order� can be
evaluated using thermodynamic integration. In this case we
choose as a reference state a hard sphere fluid �or solid� at a
given density. We then perform thermodynamic integration
up to a corresponding hard sphere Yukawa system at a cer-
tain temperature. The free energy of the latter can easily be
connected to that of our Maier-Saupe fluid �or solid� when
both systems are under the influence of an external field.
Later on, one switches off the external field and the plain
Maier-Saupe system is recovered. The method we have fol-
lowed is similar to that used in Ref. �10� and is implemented
as follows. One first considers two related models: the
Maier-Saupe �MS� system, as described above, and a
Yukawa �Y� model which lacks spin-spin interactions, so
that the interparticle potential reduces to

uY�r,�1,�2� = − Ku0�r�, with K � 0. �59�

Note that the noninteracting spins still do couple with the
external field. Maier-Saupe and Yukawa models are equiva-
lent in the limit of very intense external fields �W0→ � �.
One can, therefore, compute the free energy difference
between the models at zero external field using

FMS = FY − �
0

�

dW0� �FMSF

�W0
−

�FYF

�W0
 , �60�

or
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FMS

N
=

FY

N
+ �

0

�

dW0�P̄2
MSF�W0� − P̄2

YF�W0�� , �61�

where MSF and YF refer, respectively, to the Maier-Saupe
and Yukawa models with an external field and

P̄2�W0� 

1

N��
j=1

N

P2�cos � j�� = −
1

N

�F

�W0
. �62�

In the YF model the interparticle interactions do not depend

on the orientation of the nematic axis, so P̄2
YF�W0� can be

directly evaluated as

P̄2
YF�W0� =

�
−1

1

dx e
W0P2�x�P2�x�

�
−1

1

dx e
W0P2�x�

. �63�

In order to minimize numerical inaccuracies in the evalua-
tion of �61�, it is convenient to replace the integration
variable W0 by

� =
W0

Wm + W0
, �64�

with Wm a const; we then have

FMS

N
=

FY

N
+ Wm�

0

1

d�
P̄2

MSF��� − P̄2
YF���

�1 − ��2 . �65�

With an appropriate choice of Wm we can get a smooth
integrand in �65�.

To study the liquid-vapor equilibrium of the system, we
evaluate the free energy of the Yukawa model for two sys-
tems, with a number of particles N=500, density ��3=0.80,
and temperatures T*=2.0 and T*=3.0, using the standard
thermodynamic integration from the hard sphere system
�10�. We then compute the free energy of the MS model in
the same thermodynamic states using the thermodynamic in-
tegration route as given in Eq. �65� and perform around 20
simulations of the MSF model at each temperature for dif-
ferent values of the parameter �. Finally, we carry out a
number of NVT simulations of the zero-field Maier-Saupe
system at the same density and different temperatures to pro-
duce the corresponding reference data to study the liquid-
vapor equilibrium along various isotherms. The use of two
temperatures lets us check the consistency of the procedure.

1. Liquid-vapor equilibrium

We have performed NVT Monte Carlo simulations along
selected isotherms, fitting the low density results to Eq. �57�.
The pressures at high density are fitted to a second-order
polynomial. With the corresponding equations of state
and the respective reference states at low and high densities,
we can then compute both the pressure and the chemical
potential as functions of the density and locate the phase
equilibrium conditions.

2. Liquid-solid equilibrium

We have assumed a face-centered-cubic �fcc� structure of
the solid near melting. In fact, the hexagonal close packing
could actually be the more stable phase. At a constant den-
sity, the potential energy of the hexagonal close-packing
structure is somewhat lower than that of the fcc structure.
Nevertheless, the differences in free energy between the two
close-packing structures are expected to be so small that the
overall solid-liquid diagram should hardly be affected. We
have again performed a thermodynamic integration from the
hard sphere fluid and solid phases, following the strategy
sketched above. Because of the potential range of the model,
we chose systems with N=864. The reference densities were
chosen to be ��3=0.80 for the fluid and ��3=1.05 for the
solid. As before, we performed the calculations for the tem-
peratures T*=2.0 and T*=3.0. We have also run a number of
simulations at several temperatures for the reference densi-
ties in order to compute the reference free energies of both
phases in a wide range of temperatures. Then we selected a
number of temperatures and ran several simulations at a se-
ries of densities for both phases. The values of pressure were
used to fit the equations of state to second order polynomials
and then we searched for the phase equilibrium.

B. High-temperature fluid-fluid equilibrium

At high temperature the fluid undergoes a weak first-order
orientational transition from an isotropic to a nematic phase.
In order to locate this transition, simulations in the
isothermal-isobaric �NpT� ensemble were performed for dif-
ferent system sizes, pressures, and temperatures. For a given
temperature, we first performed some preliminary short runs
with a small system size to get rough estimates of the
equilibrium densities and pressures; we then carried out
longer simulations around the expected transition point for
several values of the pressure and various system sizes. With
these results, for each system size N we made use of the
histogram reweighting techniques �19,34� to compute the
value of the pressure p0�N ,T� that maximizes volume
fluctuations,

��v�2 = �v2� − �v�2, �66�

where v denotes volume per particle. Let v0�N ,T� and
�v0�N ,T� be the mean volume per particle and its fluctuation,
respectively, at p0�N ,T�; if a first-order transition is present,
then �v0�N ,T� will have a finite nonzero value at the ther-
modynamic limit. Additionally, at the transition pressure
p0�N ,T� in this limit the volume distribution function be-
comes bimodal, with two narrow peaks centered at the v
values of the coexisting phases.

The fulfillment of these trends can be assessed analyzing
the cumulants of the volume distribution functions. We
define the cumulant ratio by

G4�N,T� =
��v − v0�4�
��v − v0�2�2 �67�

evaluated at p= p0�N ,T�. Then the presence of a first-order
transition leads to limN→��v�N ,T��0 and limN→�G4�N ,T�
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=1. In contrast, in continuous transitions G4 in the thermo-
dynamic limit approaches a value different from unity which
depends on the universality class to which the transition can
be ascribed �35�.

We chose N=500, 864, and 1372 particles for the reduced
temperatures T*=2.0 and T*=2.5. At T*=3.0 we have also
considered a sample with N=2048 and finally for T*=3.5
also systems with N=2916 and N=4000. Our results show
that the transitions are weakly first order. Except at the high-
est temperature, the values of v0 and �v0 show only a small
dependence �within the error bars� on system size, while the
trends on the values of G4�N ,T� confirm the first-order char-
acter of the transition. The values of the volumes per particle
of the two coexisting phases can be evaluated as

v± = v0 ± �v0, �68�

using the values of v0 and �v0 in the thermodynamic limit.

IV. RESULTS AND CONCLUSIONS

We have performed a series of Monte Carlo NpT runs
with 500–4000 particle samples, with a thermalization stage
of 25 000 trial steps and a production stage of 250 000 steps
to evaluate the ensemble averages. In the NVT simulations
for the thermodynamic integration, we have used 500 and
864 particle samples with 50 000 trial steps during equilibra-
tion and 100 000 steps in the production run. Every step in
an N-particle sample implies N translation attempts and ei-
ther N local updates of the particle orientation or a cluster
move. Additionally, in NpT simulations a step also implies a
volume change attempt.

In the integral equation calculations, pair functions
are evaluated on uniform grids rj = j�r and kj = j�k,
j=0,1 ,2 , . . . ,Nr, with �r�k=� /Nr; we set �r=0.01� and
Nr=4096. Series expansions in the orthogonal polynomials
are truncated at lmax=mmax=4. We have checked the perfor-
mance of the KYBG and TZLMBW equations, obtaining
similar results for both closures. However, the TZLMBW
equation leads to divergent transverse susceptibilities in the
nematic phase at zero field for all approximate closures, in-
cluding the mean spherical approximation. This feature, re-
sulting from the presence of Goldstone modes in the ordered
phase, is built into the TZLMBW equation, as was shown by
Holovko and Sokolovska �36�. In contrast, the KYBG equa-
tion does not always reproduce the correct zero-field diver-
gence in the transverse susceptibility of the ordered phases
�9�. For this reason, we have focused here on the use of the
TZLMBW relation, although preliminary comparisons of
thermodynamic properties from both calculations indicate
that the phase diagram will hardly be affected by the particu-
lar choice of the one-body equation. Note, however, that the
divergence in the transverse susceptibility at zero field is
associated with the existence of diverging correlations. As a
consequence, it will not be possible to obtain converged so-
lutions of the anisotropic Ornstein-Zernike equation at zero
field in the nematic region using the standard numerical al-
gorithms. We have implemented the procedure devised by
Perera �37� to remove this zero-field singularity without re-
ally improving the situation. Fortunately, for small external

fields the thermodynamic properties of the MS fluid depend
quasilinearly on the field. Hence, we have obtained the zero-
field results presented here using a simple extrapolation from
calculations carried out at W0

*=1.0,0.8,0.6. The validity of
this approach was tested using the same procedure with
simulation data; this showed that the extrapolated values dif-
fered from the zero-field simulation results by less than
0.1%.

We can assess the quality of the anisotropic integral equa-
tion calculation so far as the thermodynamic properties are
concerned from Figs. 1 and 2. Here we plot both the excess
internal energy �Fig. 1� and the pressure �Fig. 2� calculated in
the RHNC approximation, along with MC results. Optimiza-
tion of the reference hard sphere diameter �28� somewhat
improves the results at low temperatures, especially in the
metastable region of the phase diagram, but is hardly notice-
able when determining the gas-liquid equilibria. Since opti-
mization implies a meaningful increase in the computational
burden, we have restricted the calculation to the nonopti-
mized RHNC with �Ref=�. In any case, it is evident from
the figures that the anisotropic RHNC closure is a reliable
approximation for this type of system.

For calculations along an isotherm at a relatively high
temperature �T*=3.5, well above the gas-liquid equilibrium

FIG. 1. �Color online� Integral equation and simulation results
for the excess internal energy of the hard sphere Maier-Saupe fluid
with and without external fields.
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curve�, the two-particle component of the longitudinal sus-
ceptibility exhibits the characteristic divergence of an order-
disorder transition as the external field vanishes �see Fig. 3�.
It is obvious from this result that we should expect an
isotropic-nematic order-disorder transition to occur along the
isotherm. If one now performs a series of NpT calculations at
T*=3.8 and pressures around 
p�3=6, one finds the typical
density histogram that occurs in the presence of a first-order
phase transition, in consonance with our remarks in Sec.
III B. This is illustrated in Fig. 4.

It is clear that we have to look for a first-order transition
both in the high-temperature regime ��isotropic fluid�—
�nematic fluid� transition� and in the low-temperature regime
��isotropic gas�—�nematic liquid� transition�. To that end, we
solve the equilibrium conditions


p��g�3,T*� = 
p��l�
3,T*� , �69�


���g�3,T*� = 
���l�
3,T*� , �70�

using RHNC thermodynamics. The computed equilibrium
curve is plotted in Fig. 5 together with the estimates obtained
from our Monte Carlo calculations. As mentioned before, in

the latter instance the equilibrium points for high tempera-
tures �T*�2.0� have been estimated from the NpT calcula-
tions. At lower temperatures, when the isotropic-nematic and
the gas-liquid transitions are coupled, the thermodynamic in-
tegration method from NVT simulations is more reliable. At
intermediate and high temperatures the two procedures yield
identical results, within their statistical uncertainties. Data
for the fluid-solid equilibrium obtained from thermodynamic
integration are also shown in the figure. The first-order
isotropic-nematic transition eventually meets the fluid-solid
equilibrium, and one should expect to find again a first-order
transition between isotropic and nematic solids. This is, in
fact, what Zhang et al. �38� found for a simple cubic lattice,
and since the interaction �3� induces no frustration effects the
same results should be found in the most stable compact
lattices �fcc or hcp�. Now, since the isotropic-nematic first-
order transition spans over all the temperature range, we do
not have a proper gas-liquid critical point at which the dif-
ference between gas and liquid gets blurred. However, it is
clear that around T*�2.0 there is a qualitative change in the
behavior of the binodal curves. Actually, if one should intro-
duce a small external field favoring nematic ordering a gas-
liquid critical point would appear in the neighborhood of this
temperature and ��3�0.5. Increasing the external field, in

FIG. 2. �Color online� Integral equation and simulation results
for the pressure of the hard sphere Maier-Saupe fluid with and
without external fields.

FIG. 3. �Color online� Density dependence of the two-particle
component of the longitudinal susceptibility determined via the
RHNC-TZLMBW equations at T*=3.5 and various external fields
W0

*, as labeled.
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parallel to what happened in the Heisenberg spin fluid �9,11�
or in the coplanar Maier-Saupe model �19�, first should in-
duce a decrease in the Tc

* due to a change in the universality
class. This should be followed by a substantial increase of
the critical temperature at moderate and high fields, due to
the enhanced attractions induced by the nematic ordering. As
a whole, the liquid phase is more stable in the presence of
ordering fields.

Note that there is a region in which the gas side of the
RHNC binodal lies above the RHNC nonsolution line �i.e.,
the line at which the solutions for the isotropic RHNC equa-
tion cease to exist�. In this case we have estimated the bin-
odal points by extrapolating the results obtained from the
isotropic RHNC equation on the gas side to larger densities.
This extrapolation procedure fails at temperatures above T*

=2.5 since the binodal starts to depart substantially from the
RHNC spinodal. This shortcoming of the anisotropic RHNC

approach might be attributable to a certain degree of thermo-
dynamic inconsistency or, more likely, to the failure of HNC-
like approaches to capture the true criticality of fluids �39�
because of the presence of complex solutions. Aside from
this, the agreement between the RHNC coexistence curve
and the simulation data is excellent. Both theory and simu-
lation show that the hard sphere MS fluid exhibits a weak
first-order isotropic-nematic transition at high temperatures
that couples smoothly to a gas-liquid transition. This quali-
tatively agrees with the density functional theory predictions
�17� and marks a clear difference with respect to the closely
related Heisenberg spin fluid �9,10�. It is also interesting to
see the effect that the change of dimensionality of the spatial
distribution of the spins has on the critical behavior. Thus,
one goes from a continuous BKT transition in the case of
coplanar MS spins to a first-order transition when the par-
ticles are free to move in three dimensions in space. This is a
well-known feature in lattice models �20� but it is nonethe-
less meaningful to see that in going from lattice to continu-
ous models the same trends are manifest. Also, as in the case
of the Heisenberg fluid, we observe here that the net attrac-
tion of the angle-dependent interactions is long ranged
enough to bring about condensation, the only qualitative dif-
ference being that in the MS fluid the nature of the coupling
between orientational and condensation transitions rules out
the existence of tricritical or critical endpoints.

In summary, we have presented a detailed analysis of
the phase behavior of hard sphere Maier-Saupe spin systems,
with the aid of Monte Carlo computer simulations and
an anisotropic Ornstein-Zernike integral equation. According
to both theory and simulation this system undergoes a first-
order isotropic-nematic transition continuously coupled to a
gas-liquid transition. The theoretical approach has proven
fairly accurate at moderate and low temperatures. The use
of more sophisticated �40� closures at high temperatures
might bypass the improper RHNC behavior at near critical
conditions.

FIG. 4. �Color online� Density histograms �upper figure� and
chemical potential distribution �lower figure� in NpT simulations of
the Maier-Saupe fluid in the vicinity of the isotropic-nematic tran-
sition. The first-order equilibrium densities correspond to the two
maxima �minima� of the density �chemical potential� histograms for
the pressure at which the gas and liquid phase extrema reach equal
values.

FIG. 5. �Color online� Phase diagram of the Maier-Saupe fluid
determined from an anisotropic integral equation and computer
simulation. The error bars at most simulation points have the same
size as the symbols.
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