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Abstract. A homogeneous high quality tide gauge
hourly record covering the period 1954-2004 was
obtained at Cananéia (SP-Brazil). A previous
analysis of a 36 years data set has shown many
interesting features, especially very long period
signals. This re-analysis benefits from a 40% longer
time series and the powerful program VAV for tidal
data processing is used to determine the parameters
of the tidal constituents derived from the tidal
potential, including the long period tidal waves, and
of the shallow water and radiation tides. Long
period terms are determined from the tidal residues
by a semi-automatic research algorithm. The
variation of the mean sea level is estimated after
subtraction of the ocean tides and estimation of the
long period terms. The mean sea level rate of
change is estimated to 0.5666 ± 0.0070 cmlyear.
Special attention is given to the determination of the
ocean pole tide as well as the 11 years term directly
related to the solar activity.

Keywords. Ocean tides, mean sea level, ocean pole
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1 Introduction

The paper presents some of the results from the
application of the tidal program VAV (Venedikov
et al., 2001, 2003, 2005) on the ocean tide (OT)
data from the Cananéia tide gauge (SP- Brazil)

(<P = 25° 01.0' S, le = 47° 55.5' W). This series of
data covers 50 years in the time intervaI26.02.1954
- 31.12.2004 and contains 444410 hourly ordinates.
A previous analysis of a 36 years data set (Mesquita
et al., 1995, 1996) has shown many interesting
features, especially very long period signals. The re-
analysis benefits from the longer time series and a
powerful tidal analysis programo

Tide gauge, station and data characteristics can
be found in (Mesquita et al., 1983, 1995).

The present paper is mainly focusing on the
investigation of the mean sea level (MSL),
including its secular variation, and the detection of
various low frequency components.

2 The VAV tidal analysis program

VAV is originally designed for the processing of
Earth tide (ET) data. Now, it has been supplied by
specific options (Ducarme et al., 2006a),
corresponding to the OT characteristics and
problems (Godin, 1972; Munk and Cartwright,
1966).

VAV has various options for tidal data
processing. The main one for the OT is the
determination of the amplitudes and the phases of
all 1200 tides in the development of Tamura (1987),
including the long period (LP) tides. For large series
of data it can also study the time variations of the
tidal parameters, as shown by Figure 1 for the tidal
waveM2.
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Fig. 1. Time variations of the amplitude of the main
lunar tide M2 (thick line) with 95% confidence
limits (grey lines) at Cananéia

The secular increase of the amplitude of M2
was already pointed out in Mesquita et al, 1995 and
Harari et al, 2004. The amplitude seems more or
less stable since 1985.
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Fig. 2. Amplitudes of quarter-diurnal shallow water
tides in Cananéia, the grey line representing the
99.99% confidence leve!.

VAV can also determine an arbitrary number
of shallow water and radiation tides in the
frequency bands fram 1 till 12 cpd. The millimetre
accuracy can be achieved (Figure 2).

Here we shall pay special attention to the
investigation of the tidal residues d(t) obtained by
subtraction of the tidal signal. These residues
should represent the sea level, free of the known
tidal signals. However they can still include LP
radiation tides with unknown periods. The
investigation is made with the help of our computer
program POLAR for regression and spectral
analysis, initially created for the study of the gravity
effect of the polar motion.

Figure 3 shows a sample of the sea level,
determined by VAV. It is obtained after the
reduction of all estimated tides, including the LP
and the shallow water tides.
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Fig. 3. Sample of the observed hourly tidal data and the
residues (thick line), which represents the sea level, free
of the tidal signals. The drift values d(t) are determined
every 24 hours (black dots).

Figure 4 represents the whole set of tidal
residues or apparent sea level variations d(t)
(18570daily values).
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Fig. 4. The total curve of the sea level variations
d(t) (one value per day).

3 General model of the sea level
variations

The general model used for d(t) is
M

d(t) = L(t)+ IW(úlj,t)
i=v

(1)

The first term L(t) is a polynomial of the time
t, which we consider to represent the mean sea level
(MSL).

Each term

(2)

is a sinusoidal function of the time, representing a
wave with frequency (¡) j and unknown amplitude
and phase. The frequencies, as well as their number
M, are also a priori unknown quantities.
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After many numerical experiments, combined
with some theoretical considerations, we have
accepted the hypothesis that the MSL L(t) should
be treated as a linear function, i.e.

(3)

with unknown regression coefficients ao and aJ • In
such a way we accept that all non-linear
components of d(t) can be represented through the
periodic terms W(úJj,t), 1:'S: j:'S: M .

Once the model (3) is fixed, it remains to find
the frequencies üJj of the waves W(úJj,t), i.e. we
have to solve the problem of finding the hidden
periodicities in the sea level d(t).

4 Search 01 hidden periodicities

Our solution of the problem uses the Akaike Infor-
mation Criterion AIC (Sakamoto et al., 1986), based
on the principIe of the maximum Iikelihood. The prac-
tical use of AIC is based on the following procedure.
Let AlceA) and AlceB) be the values of AIC, ob-
tained by the least square solutions using two differ-
ent models A and B. If it happens AlceA) < AlceB),
then we may give our preference to the model A.

At a given stage we know m frequencies, i.e.
we have reached to the concrete expression of our
model (1)

m

d(t) = L(t) +¿W(üJj,t) ~ AlC(üJm) (4)
j;J

Through the application of the least squares we
get easily the estimates of all unknowns
ao, a

J
, a j' ~j (1 :'S: j :'S: M) , as well as the

corresponding value of AIC, denoted AlceüJm).
Next we add a new wave W(w,t) with

frequency w, which does not coincide with any of
the existing frequencies üJt : i.e. the expression (4)
is replaced by

m

d(t) = L(t) +¿W(üJj,t)+ W(w,t) ~ AIC(w) (5)
j;J

In the expression (5) the new frequeney w is
variable within a selected frequency interval. For
every value of w we get the least squares solution
of (5), accompanied by a corresponding value of
AIC. In such a way we obtain AIC as a funetion of
w, i.e. AlC = Alcew).

Let for a given value w = WMin AlC(WMin) be
the minimum of the function Alcew) in the
frequency interval and, still, AlcewMin) be lower

than the previous AIC, i.e. AlcewMin) < AlceüJm).
This is aecepted as a confmnation that one more
wave W(üJm+!,t) with frequency úJm+!= wMin
really exist in d(t), so that the expression (4) has to
be replaeed by

m+J

d(t) = L(t) +¿W(üJj,t) ~ AlC(üJm+J) (6)
j;J

The process is reiterated in the same way, by
looking for a new frequency úJm+2 .

In the case of two close frequeneies we ean
apply a 2D research algorithm for a minimum AIC.
Instead of the model (5) with one new wave, we can
add two waves with variable frequencies w' & w" ,
i.e. instead of (5) we use

m

d(t) =L(t) +¿W(üJj,t)
j;J

+W(w',t) +W(w",t) ~AIC(w', w")

(7)

Now w' & w" are allowed to cover two
neighboring frequency intervals. For every couple
w' & w" we get the least square solution of (7),
accompanied by a corresponding AIC value. In
such a way we get AlC = AlC(w',w") as a function
two frequeneies. The values of w' & w" at which
AIC has a minimum can be aceepted as two new
frequencies üJm+! and üJm+2

As shown by Table 1 and Table 2 we have
found in total M = 16 frequencies. We shall
demonstrate the final stage of finding the first two
of them, related with the Chandler periodo Final
stage means that we shall use first in (5), then in (7)
m = M - 2 = 14 frequencies, namely those with
numbers 3 to 16, while the two first frequeneies will
be found through frequency variations.

Figure 5 is obtained by the application of the
model (5) where the variable frequency w is
moving between 0.80 7 0.95 cpy. Graphics like this
one can be considered as an AIC spectrum.
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Fig.5. The values of AlC = Alcew) as function of the
frequency w .
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The absolute minimum of AIC in this case is at
wMin = 0.84402 cpy, i.e. at period 432.75 days. We
have got also a relative minimum at frequency
0.87993 cpy, i.e. at period 415.09 days.

Fig. 6. AlC = AlC(w', w") with a nummum at
w' = 0.84180 cpy and w" = 0.88102 cpy.

Due to the existence of two mmima at very
close frequencies we had to apply the model (7). In
such a way we get the picture presented by Figure
6, through which we get the final values of the first
2 components in Table 1.

The existence of two close periods at 433.6 and
414.3 day around the Chandler period of 430 day is
due to the amplitude modulation of the signal.

Table 1. Summary of the periodicities found by the
automatic research procedure for the Chandler term, the
annual one and its harmonics

Freq. Period Amplit. MSD
cpy Davs cm cm

1 0.8418 433.6 1.522 ±0.188Chandler 2 0.8810 414.3 1.271 ±0.188
Annua1 3 0.9973 366.0 5.111 ±0.191
1 cpy 4 1.0295 354.5 1.384 ±0.192

Annua! 5 1.9881 183.6 1.241 ±0.193
at 2 cpy 6 2.0154 181.1 0.497 ±0.193

Annual 7 2.9189 125.0 0.945 ±0.189
8 2.9555 123.5 0.637 ±0.189at 3 cpy 9 3.0298 120.5 0.912 ±0.189

The usual spectral analysis deals with the
amplitude spectrum, i.e. the amplitude, represented
as a function of the frequency, looking for its
maximum. Here we deal with AIC as a function of
the frequency, looking for the minimum of AIC. A

deeper difference is that the usual spectral analysis
does not take in consideration the dependence
between the frequencies found, which can be
important when some of them are very close. On
the contrary, our spectral analysis takes into account
the effect of the frequencies already found, in this
case of the m = M - 2 = 14 frequencies. The
procedure can be repeated as many times as
necessary in or~er to clean up completely such kind
of dependences.

Table 2. Summary results for very low frequency
components.

Freq. Period Amplit. MSD
cpy Years cm Cm

10 0.0413 24.22 3.39 íO.21
11 0.0931 10.74 1. 48 íO.19
12 0.1479 6.76 0.97 íO.19
13 0.1951 5.13 0.87 íO.19
14 0.2601 3.84 1. 39 íO.19
15 0.3159 3.17 1. 61 íO.19
16 0.3795 2.64 1. 36 íO.19

As shown in Table 2 we have identified 7 very
long periods. The component with the second
largest period (10.74 years) corresponds to
the known solar cycle with a period close to
11 years. Harrnonics of this term are also present:
5.13 year (order 2), 3.84 and 3.17 (order 3) and
2.64 (order 4). The periodicity of 6.76 year,
already found by Mesquita et al. (1995), is not
easy to interpret, but could be the fourth harmonic
of the longest periodo

The total contribution to the sea level variations
at Cananéia of periodicities longer than two year is
plotted in Figure 7. The peak to peak amplitude
(double amplitude) reaches 15 cm.
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Fig. 7. Total contribution to sea level variations of
the modeled periodicities with period larger than
two years.
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If M denotes the total number of the frequencies,
the MSL L(t), as it was defined by (3), is found
through the least square solution of the model

M

d(t)=ao+alt+ ¿W(úJj,t) (8)
j=1

The use of the linear function ao + a.t as
representing L(t) requires some explanations.

It appeared that when L(t) is represented by a
polynomial of power higher than 1, this polynomial
interferes with the low frequency components,
especialIy with the 24.2 year wave. Namely, we
start getting too high coefficients of the polynomial
with too high amplitudes of the periodic
constituents. Due to this, we have accepted that the
non-linearity in the development of d(t) is entirely
represented by the periodic constituents, while a
reasonable representation of the MSL is by a
polynomial L(t) of power 1.

A probIem in this simple model of L(t) is
whether there are not some discontinuities. Namely,
whether there are not one or several time points
TOisc in which is an offset in L(t) , i.e. some
changes in the constant ao or changes in the
general behavior, i.e. changes in the coefficient al .

Testing the data in this sense is generally
necessary for Earth tides data, since the gravimeters
and the cIinometers are suffering from offsets due
to instrumental problems. It is rather unlikely to
happen with tide gauges data, except during long
interruptions of the records or inside interpolated
sections.

Our conception is that in any case we should
suppose possible discontinuities and check the data
for their existence.

Let us check whether in a point T is a
discontinuity. Then (8) should be used with
different models of L(t) before and after the point
T, namely

L(t) = aó + ait for t <;, T}
--+ AlC(T)

L(t) = a:;+ ai't for t > T
(9)

We can let vary the point T in a time interval.
For every value of T we can apply the least squares
and thus obtain the AlC = AlC(T) as a function of
T. If AlC(T) at T = TMin has a minimum and
AlC(T Min) is lower than AIC for the model (8),
then we have to accept that TMin is a point of
discontinuity, i.e. TOisc = TMin .
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Fig. 8. Ale as a function of a supposed point T of
discontinuity with TMin = 6349 days (16.07.1971).

This is the case of Figure 8, showing a
TOisc = 6349 days. The result from the analysis
with this TOisc is shown in Figure 9.

A significant offset (jump) of 4.00 cm ± 0.68
cm has been found. However, the difference
between the slopes of L(t) before and after the
discontinuity appeared to be not significant: 0.511
±0.006 cm/year against 0.574±0.018 cm/year.

Other points of discontinuities have not been
found.
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Fig. 9. The data del) and the MSL L(t) (white
line) with a discontinuity in TOisc = 6349 days .
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On the basis of this result the data d(t) have
been corrected for the offset but, due to the lack of
significant differences of the slopes before and after
the jump, we applied later on the model (8) without
discontinuity.
The final result about L(l) are:

ao= 171.279 ± 0.094 at the epoch 31.01.1979
al = 0.5666 ± 0.0070 cm/year

The slope is slightly higher than the 0.405
cm/year reported by Mesquita et al, 1995 or Harari
et al, 2004.



458 B. Ducarme . A. P.Venedikov· A. R.de Mesquita . C. A. de Sampaio Franca . D. S.Costa- D. Blitzkow . R.Vieira Diaz· S. R. C.de Freitas

6 Modeling of the ocean pole tide

The existence of Chandler frequencies indicates that
the astro-geophysical phenomenon known as
"ocean pole tide", generated by the polar motion, is
effectively present in our data. The polar motion
changes the position of the axis of rotation inside
the Earth. At a given location on the Earth it
produces a change of latitude measured by
astronomical methods and a change of gravity,
associated with the corresponding change of
centrifugal force, measured by the superconducting
gravimeters (Ducarme & al., 2006b). Moreover the
associated pd potential is able to excite a tidal
deformation of the sea surface.

In section 4 the study of the ocean pole tide was
made in the frequency domain. It is certainly
interesting to study the direct effect of the polar.
motion in the time domain.

At a point of coordinates (rp, le) of the ocean
surface, the equilibrium ocean poIe tide can be
written

p(t) = Y20,zr2 /2g

. {x(t) cos x + y(t)sin le} sin 2rp
(10)

where Y2 = 1+ k2 - h2, ~ and k2 being the
Love numbers for radial deformation and change of
the potential respectively, x(t) and y(t) are the
coordinates of the pole at time t, [2 is the angular
velocity of the Earth, r is the radius of the Earth and
gis the acceleration of gravity.

The equilibrium pole tide has been computed
for the daily coordinates of the pole, available from
IERS since January 1, 1962, i.e. nearly 3000 days
later than the start of the Cananéia data.

In analogy with the gravity effect of the polar
motion (Ducarme & al., 2006b) we have accepted
that the effect of the polar motion on our data
i1d(t) will be

i1d(t) = 8pp(t - M) (11)

where 8p is an unknown regression coefficient,
called also amplitude factor, and M is a time lag,
positive for retardation.

This expression is inc1uded in our model in the
following way

M-2

d(t) =ao+a¡t+ ¿W(coj,t)+8pp(t-M) (12)
j=¡

Here we use only M - 2 of the frequencies, the
Chandler frequencies in Table 1 being exc1uded.

As we know already all M - 2 frequencies, the
only problem to estimate 8p is the unknown M,
which participates non-linearly in this model.

The problem has been solved by applying again
a Bayesian approach, i.e. through the least square
solution of (12) for a set of different values of M.
In this case, since we are mostly interested in the
values of 8p we have chosen as a criterion the
estimated MSD of this unknown. As shown by
Figure 10 we get this MSD as a function of M. A
broad minimum exists between 8 and 24 days, but
we can accept, as a most reliable value of the time
lag, the value of M at which we get the minimum
of MSD i.e. M = 21 days. It means that the effect
of the polar motion has 24 degrees of phase lag.
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Time lag i1t in days, i1t > O : retardation

Fig. 10. MSD of 8p as a function of the time lag M in
the model (12), with a minimurn at M = 21 days

Finally, by applying M = 21, we have got
through the solution of (12) for the ocean poi e tide an
amplification factor 8p = 2.19 ± 0.44 .
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Fig. 11. Estimated ocean pole tide.

Figure 11 displays the estimated ocean pole
tide at Cananéia, showing the effect of the secular
drift of the pole position ..

Using the model (12) the MSL variation
becomes a¡ =0.547±0.014cm/year, with a lower
precision than in the previous section. One of the
reasons is that here a shorter series of data is used.
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7 Modeling of the direct effect of the
solar activity

Figure 12 shows the daily series of the sunspot
index, measured by the number of Wolf W(t) ,
taken from the SIDC (Solar Index Data Center)
(Vanderlinden et al, 2005). The series nearly
coincides with the Cananéia ocean data. The
phenomenon has obviously a period, very close to
the period of our component 11 in Table 2.

Following the same idea as in the previous
section we have attempted to study the direct effect
of W(t) on our data. The model now used is

M-I

d(t) =00 +al+ IW(coj,t)+owW(t-ót) (13)
j=1

where 0w is an amplifying coefficient, /I.t is a time
lag, positive for retardation and W(t) represents the
solar activity. The number of waves is reduced by 1,
because the component 11 is excluded.

O-NW~~~~OO~--~-_-_-_ooooOOOOOO-NW~~~~OO000000000000000000000000000000000000000000000
Time in days, 26.02.1954 - 9.09.2003

Fig. 12. Solar activity (sunspot index., measured by
the number of Wolf) and a least squares filtered
variant (white curve): cut off O.OOlcpd, half length
1,000 days.

We have used W(t) in the following variants:
(i) the raw data, (ii) filtered data by a least square
low pass filtering with characteristics cut off
frequency 0.003cpd, half length 300 and (iii)
filtered with cut off frequency O.OOlcpd, half length
1000 (the white curve in Figure 12).

In all cases, using the scheme illustrated in
(Figure 10), we have got a zero time lag, i.e.
/I.t=O.

With /I.t = O in (13) we have got an estimate of
0w with highest signal-to-noise ratio by using the
smoothed data in variant (iii), namely
Ow = -1.88 ± 0.28 cm/(100 units of W (t)). It is
thus in opposition of phase with the excitation.

The computed effect of the solar activity on the
data is shown by Figure 13. It reaches a peak to
peak amplitude of 4cm.

The estimated slope of L(t) obtained in this
way is al = 0.574 ± 0.010. Here again, as in the
case of the polar data, the new value of al does not
differ significantly from al in section 5 and, in the
same time, it has a lower precision.
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Fig. 13. Estimated effect of the solar activity on the
ocean data.

8 Conclusions

An automatic procedure is used to determine hidden
long period frequencies from the daily residues also
called non-tidal components. The amplitude
modulation of the annual radiation tide and its
harmonic can be represented by a frequency
splitting. The situation is similar for the Chandler
period, associated with the ocean poi e tide. Two
periodicities dominate the very low frequency
spectrum at 24.2 year and 10.7 year. The second
one is clearly associated with the Solar cycle.

The ocean pole tide was modeled using the
equilibrium tide. The results show an amplification
factor close to 2 with a time lag between 10 and 24
days. In a similar way we tried to associate the 10.7
year period with the daily sunspot number. We
found a perfect anti-correlation, without any time
lag.

For what concerns the MSL variations,
obtained after subtraction of the ocean tide signal
and all the long period harmonic terms (pole tide
and radiation tides), we found a mean linear drift
rate of 0.5666 ± 0.0070 cm/year. This high rate is
probably due to ground subsidence. GPS
observations at the same site seem to confirm this
fact (Blitzkow and Costa, personal communication).
The necessity of a careful determination of the very
long period harmonics for the estimation of MSL
has to be underlined.
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