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The microreversibility principle implies that the conductance of a two-terminal Aharonov-Bohm interferom-
eter is an even function of the applied magnetic flux. Away from linear response, however, this symmetry is not
fulfilled and the conductance phase of the interferometer when a quantum dot is inserted in one of its arms can
be a continuous function of the bias voltage. Such magnetoasymmetries have been investigated in related
mesoscopic systems and arise as a consequence of the asymetric response of the internal potential of the
conductor out of equilibrium. Here we discuss magnetoasymmetries in quantum-dot Aharonov-Bohm interfer-
ometers when strong electron-electron interactions are taken into account beyond the mean-field approach. We
find that at very low temperatures the asymmetric element of the differential conductance shows an abrupt
change for voltages around the Fermi level. At higher temperatures we recover a smooth variation of the
magnetoasymmetry as a function of the bias. We illustrate our results with the aid of the electron occupation
at the dot, demonstrating that its nonequilibrium component is an asymmetric function of the flux even to
lowest order in voltage. We also calculate the magnetoasymmetry of the current-current correlations �the noise�
and find that it is given, to a good extent, by the magnetoasymmetry of the weakly nonlinear conductance term.
Therefore, both magnetoasymmetries �noise and conductance� are related to each other via a higher-order
fluctuation-dissipation relation. This result appears to be true even in the low-temperature regime, where
Kondo physics and many-body effects dominate the transport properties.
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I. INTRODUCTION

Transport in electric conductors is governed by funda-
mental principles when the fields applied to the system are
small. For instance, in the linear regime microscopic revers-
ibility leads to symmetric response coefficients, as demon-
strated by Onsager.1 In the case of a conductor coupled to
two terminals, the linear conductance G0 is an even function
of the magnetic field B.2 When the conductor is reduced to
typical sizes less than the phase-breaking length, electron
mesoscopic transport depends on the particular arrangement
of the attached probes in a multiterminal configuration in
such a way that current and voltage terminals must be ex-
changed to recover the Onsager symmetry.3 On the other
hand, in the mesoscopic regime interference effects associ-
ated to the wave nature of carriers can be detected in a trans-
port measurement. A prominent example is an Aharonov-
Bohm interferometer with a quantum dot inserted in one of
its arms for which the linear conductance G0 is periodically
modulated by the externally applied flux. However, the con-
ductance phase �, which can be related to the transmission
phase through the quantum dot, shows abrupt jumps as a
function of the gate voltage4 since the Onsager symmetry
establishes that � can be 0 or � only.5 Further theoretical6,7

and experimental works8,9 have addressed the effect of
electron-electron interactions inside the quantum dot.

Away from linear response, the principle of microscopic
reversibility is, generally, not satisfied and, as a consequence,
the two-terminal current, which consists of linear as well as
nonlinear coefficients, is not a symmetric function of B. Re-
cently, this magnetoasymmetry effect has been theoretically
demonstrated10–21 and experimentally verified.22–30 Magne-

toasymmetries arise because the charge response of the sys-
tem is, generally, not symmetric when the field orientation is
inverted.10,11 Out of equilibrium, the piled-up charge injected
from the external reservoirs is partly balanced by the screen-
ing potential of the conductor. This internal potential is not
an even function of B �the Hall potential is a paradigmatic
example�,10 leading to magnetoasymmetries seen already in
the second-order coefficients within an expansion of currents
in powers of voltages.10 Now, computation of the internal
potential due to long-range Coulomb interaction is a difficult
task and requires self-consistency. This calculation can be
achieved within a mean-field scheme, as previous works
have done.10–14 However, the importance of strong electron-
electron correlations such as those giving rise to the Kondo
effect31,32 has not been clarified yet. This is the goal we want
to accomplish in this work.

Our calculations are also relevant in view of recent devel-
opments that relate the magnetoasymmetries of the current
and that of the noise to leading order in a voltage
expansion.33–38 It has been shown that fluctuations relations
hold in the weakly nonlinear regime between the asymmetric
second-order conductance and the first-order noise suscepti-
bility in terms of a higher-order fluctuation-dissipation theo-
rem. These works explicitly check this relation for specific
systems by treating interactions in the mean-field limit.33–36

Thus, it is highly desirable to find systems in which the non-
equilibrium fluctuation relations can be checked beyond the
mean-field case.

We here consider a quantum dot embedded in one of the
arms of a two-terminal mesoscopic interferometer. We em-
ploy the nonequilibrium Keldysh Green’s-function formal-
ism to describe the transport properties of the system and use
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an equation-of-motion technique to calculate both the current
and the noise in the nonlinear regime including electron-
electron correlation terms not present in the Hartree-Fock
�mean-field� approximation.

The oscillations in the conductance of an Aharonov-Bohm
ring occur in the mesoscopic regime, where the electrons’
phase coherence is preserved. Interference takes place be-
tween electron waves that pick up different phases while
traversing the two arms of the interferometer even if the
electron does not directly experience the flux enclosed by the
ring. When a finite bias is applied, the phase of the differen-
tial conductance shows a continuous variation with B since
the Onsager symmetry need not hold away from linear
response.7,39,40 Such phase rigidity breakings have been re-
cently related to the onset of inelastic cotunneling of a
Coulomb-blockaded quantum dot placed in one of the
arms.41,42 The effect is rather generic as the phase symmetry
can be also broken using microwave fields43 or coupling to
phonons.44

We now give a simple argument that sheds light on the
appearance of magnetoasymmetries in a quantum-dot
Aharonov-Bohm ring. A sketch of the system is depicted in
Fig. 1. We model the interaction in the dot with an on-site
charging energy U. We assume for simplicity that the dot
contains a single energy level �d which acquires a finite life-
time 2� /� due to coupling to the external reservoirs. Then,
within the Hartree approximation for the Anderson
Hamiltonian45 the �retarded� Green’s function for dot elec-
trons with spin � reads

Gd�
r ��� =

1

� − �d − U�nd�̄� +
1

4
�Tb� cos� e	

�
� +

i

2
�̃

, �1�

where �̃ renormalizes � due to the presence of the nonreso-
nant channel �the upper arm in Fig. 1�. Its �energy-
independent� transmission is denoted with Tb. Importantly,
the renormalization of the level �d is given by two terms. The
term that explicitly depends on Tb is an even function of the
magnetic flux 	 and it fulfills the Onsager symmetry. How-
ever, the term U�nd�̄�, proportional to the interaction
strength, is generally not symmetric under field reversal
since the dot occupation �nd�̄� out of equilibrium need not
fulfill the Onsager symmetry.

Let us expand the dependence of �nd�̄� on the external
bias V in powers of V,

�nd�̄� = �nd�̄��0� + �nd�̄��1�V + O�V�2. �2�

�nd�̄��0� is the equilibrium charge and must be B symmetric.
The nonequilibrium response of the dot to leading order in V
is given by �nd�̄��1�=��nd�̄� /�V �V=0. �nd�̄��1� is then deter-
mined from the change in the dot occupation when a small
shift is applied to the leads’ electrochemical potential. Hence,
�nd�̄��1� is a charge susceptibility that includes information
about the screening properties of the dot and, as such, must
be computed self-consistently in the presence of V �e.g.,
from charge-neutrality condition�.46 We below show that pro-
cesses of charge filling of the dot from the left lead contrib-
ute to the occupation with a term proportional to 1
+�Tbsin�e	 /�� whereas the contribution from the right lead
is proportional to 1−�Tbsin�e	 /��. Clearly, the sine terms
are not even under B reversal. As a result, electron transfer
from left to right at a given orientation of B does not occur
with the same probability that the reverse transfer when the
B direction is inverted. In other words, the injectivity from
the left, which is the partial density of states associated to
carriers injected from the left contact,47 does not equal the
right injectivity under B reversal.10 As a consequence, one
finds �nd�̄��1�
�Tbsin�e	 /��. Inserting Eq. �2� in Eq. �1�,
there arises in the denominator a term proportional to
UV�Tbsin�e	 /h�, which is responsible, to leading order, for
the magnetoasymmetry of the nonlinear conductance. Note
that this term vanishes in the absence of interactions �U
=0� or at equilibrium �V=0� in which cases the Onsager
symmetry is recovered. This further demonstrates that mag-
netoasymmetries arise as a consequence of the presence of
both interactions and external bias.

The asymmetric behavior discussed here can be verified
experimentally. Recent experiments with rings show micror-
eversibility violations in the nonlinear regime. An unex-
pected even-odd behavior has been revealed by Leturcq et
al.25 In an expansion of the observed current-voltage charac-
teristics, they find that the odd �even� coefficients are sym-
metric �asymmetric� under reversal of B. This is surprising
since one would expect all coefficients beyond the linear
response to be asymmetric, not only the even ones. There-
fore, it is instructive to derive the conductance series expan-
sion. The magnetoasymmetric effect appears in the nonlinear
regime only because the internal potential is an asymmetric
function of B at finite bias. And this dependence on the in-
ternal potential is shown in the even coefficients, not in the
odd ones. A mean-field description gives this behavior25

since the dot potential depends linearly with V, as can be also
inferred from our discussion above. Below, we find that the
effect persists even if higher electronic correlations are taken
into account.

Microreversibility at linear response also leads to the
fluctuation-dissipation theorem, which relates the dissipative
part of the electric transport �the linear conductance� to the
fluctuations at equilibrium �the thermal noise�. Since it is
clear that microreversibility is broken beyond the linear-
response regime, it thus natural to ask whether higher-order
fluctuation relations exist in the presence of an external field.
We find an approximate verification of such relations to next
order in the voltage expansion. In other words, the asymmet-
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FIG. 1. �Color online� Sketch of a mesoscopic interferometer
with a quantum dot inserted in the lower arm.
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ric part of the second-order conductance and that of the
linear-order noise are related to each order via a nontrivial
fluctuation relation. Remarkably, our results are interesting
because we treat interactions beyond the Hartree-Fock ap-
proximation.

The paper is organized as follows. In Sec. II we introduce
the system and its Hamiltonian. Section III is devoted to the
transport properties. We also analyze two approximations:
the noninteracting case and the Hartree approach. Both limits
have serious drawbacks and can even lead to unphysical pre-
dictions but we nevertheless include discuss them for peda-
gogical reasons. A detailed study of the transport coefficients
in the Coulomb-blockade regime is contained in Sec. IV. We
examine the even-odd properties of the conductance terms
both for zero and nonzero temperatures. In Sec. V we con-
sider the Kondo regime, which is the relevant scenario at
very low temperatures. We briefly discuss the limits of tem-
peratures lower and higher than the Kondo temperature and
then present numerical results for the magnetoasymmetric
differential conductance as a function of the background
transmission and bias voltage. In Sec. VI we calculate the
noise and show that it is an asymmetric function of the mag-
netic flux. Finally, our results are summarized in Sec. VII.

II. THEORETICAL MODEL

The mesoscopic interferometer consists of an Aharonov-
Bohm ring with a quantum dot inserted in one of its arms.
The interferometer is coupled to left �L� and right �R� leads
with continuous energy spectrum �k�, where k is the wave
vector. An electron can travel either through the nonresonant
arm with probability amplitude W or via the quantum dot
with hopping terms V� where �=L,R is the contact index.
The spin-degenerate level dot is denoted with �d and the
charging energy is U. Finally, the magnetic flux 	 piercing
the ring results in an Aharonov-Bohm phase �=e	 /�.
Hence, the Hamiltonian reads

H = HC + HD + HT. �3�

Here,

HC = 	
�=L/R,k,�

�k�c�k�
† c�k� + 	

k,k�,�

�Wei�cRk��
† cLk� + H.c.� ,

�4�

describes the two leads and the direct channel that couples
them. The gauge is chosen in such a way that an electron
wave picks up the phase � whenever it passes along the
upper arm. The dot electrons obey

HD = 	
�

�dd�
†d� + Und↑nd↓, �5�

while the tunneling Hamiltonian between the reservoirs and
the dot is given by

HT = 	
�=L/R,k,�

�V�c�k�
† d� + H.c.� , �6�

where the tunneling amplitudes V� are assumed to be inde-
pendent of k for simplicity. The same assumption is made for
the direct transmission W.

III. TRANSPORT PROPERTIES

In the stationary limit, the current I can be calculated from
the time evolution of the occupation number of the right
contact �nR�,

I = IR = − e
d�nR�

dt
= −

ie

�
�
H,nR�� , �7�

where nR=	k�cRk�
† cRk�. Using the Keldysh formalism,48 the

current becomes

I =
e

h
	

p,q,�
�

−



d�
VRGd�,Rq�
� ��� − VR

� GRq�,d�
� ����

+ 
Wei�GLp�,Rq�
� ��� − W�e−i�GRq�,Lp�

� ����� �8�

with the following definitions for the lesser Green’s function
�G��,

GLp�,Rq�
� = i�cRq�

† cLp�� , �9a�

GRq�,Lp�
� = i�cLp�

† cRq�� , �9b�

Gd�,Rq�
� = i�cRq�

† d�� , �9c�

GRq�,d�
� = i�d�

†cRq�� . �9d�

In the case of energy-independent couplings or for propor-
tionate couplings, the expression for the current is more con-
veniently recast in terms of a generalized transmission func-
tion T���� for an electron with spin � and energy �,

I = −
e

h
	
�
� d�T����
fL��� − fR���� , �10�

where fL and fR are the Fermi-Dirac distribution functions in
the leads L and R, respectively. The transmission reads,49,50

T���� = Tb + ��TbRbcos����̃ Re
Gd�,d�
r ���� −

1

2
�
1

− Tb cos2���� − Tb��̃ Im
Gd�,d�
r ���� . �11�

Here, Tb is the transmission probability between the two
leads along the direct channel,

Tb =
4�

�1 + ��2 , �12�

where �=�2W2�L�R with �L�R� the density of states for lead
L �R�. The reflection probability Rb is determined from Rb
=1−Tb. The broadening of the dot level due to hybridization
with states of lead L �R� reads �L�R�=2��VL�R��2�L�R�, where
�L�R� is the density of states for lead L �R�. The total line-
width is �=�L+�R. In the wide band limit, we take �L�R�
=�0 �and, consequently, � and �� to be energy independent.
In the presence of the upper bridge, the broadening becomes
renormalized,
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�̃ =
�

1 + �
. �13�

Finally, the factor �=4�L�R /�2 in Eq. �11� quantifies the
tunneling asymmetry �0���1�. It yields �=1 for symmet-
ric couplings ��L=�R=� /2�.

The problem has thus been reduced to the calculation of
the dot retarded Green’s function Gd�,d�

r ���. For later conve-
nience, we introduce the following definitions:

��A�t�,B�t����� = + i�B�t��A�t�� , �14a�

��A�t�,B�t����� = − i�A�t�B�t��� , �14b�

��A�t�,B�t����r = − i��t − t���
A�t�,B�t���+� , �14c�

��A�t�,B�t����a = + i��t� − t��
A�t�,B�t���+� , �14d�

where r �a� stands for “retarded” �advanced�. Using the op-
erators A=d� and B=d�

† we obtain the dot Green’s function,

Gd�,d�
r ��� = �

−



dtei�t��d�t�,d†�0���r, �15�

where we have set t�=0 since the Hamiltonian is time inde-
pendent. The equation of motion for Gd�,d�

r is found as

�� − �d +
1

4
��Tb� cos��� +

i

2
�̃���d�,d�

†��r = 1

+ U��d�nd�̄,d�
†��r. �16�

A. Noninteracting case

In the absence of the interaction, one sets U=0 in Eq. �16�
and the retarded Green’s function is readily computed,

Gd�,d�
r�0� ��� =

1

� − �d +
1

4
��Tb� cos��� +

i

2
�̃

. �17�

Substituting in Eq. �11�, the transmission probability be-
comes

T���� =
Tb

�̃2 +
1

4
�̃2

��̃ +
qF�̃

2
�2

, �18�

where

�̃ = � − �d +
1

4
��Tb� cos��� , �19a�

qF =� �

Tb

�Rbcos��� + i sin���� . �19b�

Equation �18� is evidently of the Fano type.51 The Fano an-
tiresonances arise as a consequence of interference between a
direct path channel �the upper arm in Fig. 1� and a hopping
path via a quasilocalized state �the quantum dot in the lower

arm�. As a result, a characteristic asymmetric transmission
line shape is obtained, which is described with the �generally
complex� Fano parameter qF. When � is a multiple of �, the
transmission vanishes at the special energy point given by

�̃���=−qF�̃ /2. On the other hand, for vanishingly small
transmission along the direct channel �Tb→0�, Equation �18�
reduces to the Lorentzian form of the transmission resonance
through a noninteracting dot.

We take a bias V symmetrically applied to the electrodes
��L=−�R=eV /2� and insert Eq. �18� in Eq. �10�. Next, we
expand the current-voltage characteristics, I=G0V+G1V2

+G2V3+ ¯ =	n�0GnVn+1. We find that the even coefficients
G2n �n=0,1 ,2 , . . .� are functions of cos � while the odd co-
efficients vanish, G2n+1=0. As a consequence, the current is
an even function of the flux and fulfills the Onsager symme-
try. This result also holds for finite temperatures. For in-
stance, the linear conductance reads

G0 =
2e2

h

�

2�
��̃��TbRbcos���Im
�0� +

�̃

2
�
1

− Tb cos2���� − Tb�Re
�0�� , �20�

where � is the inverse temperature and �0��� 1
2 + ��̃

4�

+ i�
�̃d

2� � denotes the digamma function.52 Note that we have
subtracted the offset term �d�Tb
fL���− fR����. In the zero-
temperature case, G0 becomes

G0��� =
2e2

h �Tb −
�̃�̃d��TbRbcos���

��̃d�2 +
�̃2

4

+
�̃2�
1 − Tb cos2���� − Tb�

4���̃d�2 +
�̃2

4
� � , �21�

where

�̃d = �d −
1

4
��Tb� cos��� . �22�

Equation �21� is clearly an even function of �. These results
show that in the absence of interactions, transport is B sym-
metric to all orders in voltage. However, a word of caution is
in order. Neglecting interactions in the nonlinear regime of
transport can lead to unphysical results �e.g., gauge invari-
ance can be broken�.46,53 Therefore, to give reliable results
away from equilibrium we must include interactions at least
in the lowest level of approximation.

B. Hartree approximation and even-odd behavior

We now introduce interactions in the most simple way,
namely, we use in Eq. �16� the following decoupling,

��d�nd�̄,d�
†�� � �nd�̄���d�,d�

†�� . �23�

This Hartree approximation is well known to spontaneously
generate local-moment formation45 in the quantum dot. Al-
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though this result is physically meaningless since the Hamil-
tonian 
Eq. �3�� is invariant under spin rotations, the approxi-
mation is useful as a benchmark for more elaborate models.

The retarded Green’s function is found to be

Gd�,d�
r ��� =

1

� − �d − U�nd�̄� +
1

4
�Tb� cos��� +

i

2
�̃

,

�24�

which was anticipated in Sec. I. The electron occupation
�nd�� can be obtained from

�nd�� =
1

2�i
� d�Gd�,d�

� ��� . �25�

In general, for interacting systems, the lesser Green’s func-
tion cannot be directly obtained from the equation-of-motion
technique without introducing additional assumptions. How-
ever, we note that only the integral of Gd�,d�

� ��� is, in fact,
needed in Eq. �25�. This observation allows us to bypass any
approximation involved in computing Gd�,d�

� ���, yielding54

�nd�� = −
1

2�i
� d�fpeq���
Gd�,d�

r ��� − Gd�,d�
a ���� ,

�26�

An alternative derivation is presented in Appendix A. In Eq.
�26�, fpeq��� denotes a pseudoequilibrium distribution func-
tion which is not, quite generally, of the Fermi-Dirac type,

fpeq��� =
1

�̃
�1

2
�̃��Tbsin���
fL��� − fR����

+
1

�1 + ��2 
��L + ��R�fL��� + ��R + ��L�fR����� .

�27�

Setting Gd�,d�
a ���= 
Gd�,d�

r �����, we see that Eqs. �24�, �26�,
and �27� form a closed system of equations which must be
solved self-consistently. But before proceeding with such a
calculation, we point out to the presence of a � -asymmetric
term already in Eq. �27�. Note that this term is nonzero only
in the nonequilibrium case �fL� fR�.

1. Zero-temperature case

For �L=�R, the pseudoequilibrium distribution function
can be simplified,

fpeq��� =

fL��� + fR���� + �Tbsin���
fL��� − fR����

2
,

�28�

and from Eq. �26� we find an exact expression for the occu-
pation,

�nd�� =
1

2���
1 + �Tbsin�����

� cot−1�2��̃d + U�nd�̄� − �L�

�̃
� + 
1

− �Tbsin����cot−1�2��̃d + U�nd�̄� − �R�

�̃
�� .

�29�

As introduced in Sec. I, injection from the left lead contrib-
utes to the dot occupation with a term 1+�Tbsin��� while the
contribution from the right lead is given by 1−�Tbsin���.
Both terms cancel out at equilibrium, regardless of interac-
tion, but survive in the presence of a finite bias.

We solve Eq. �29� iteratively. We write

�nd�� = �nd���0� + �nd���1��eV� + �nd���2��eV�2 + ¯ ,

�30�

insert this expansion in Eq. �29� and assume �nd��= �nd�̄�.
Then, we obtain the following expansion coefficients:

�nd���0� =
1

�
tan−1� �̃

2�̃d
0� , �31a�

�nd���1� =

�̃

2
�Tbsin���

2�����̃d
0�2 +

�̃2

4
� +

�̃

2
U� , �31b�

�nd���2� =
�̃�̃d

0
1 + 4�U�nd���1��2 − 4U�Tbsin����nd���1��

4�����̃d
0�2 +

�̃2

4
� +

�̃

2
U����̃d

0�2 +
�̃2

4
� ,

�31c�

�nd���3� = 3!2�̃U
4U2
12��̃d
0�2 − �̃2���nd���1��3 + 3�nd���1�

�12��̃d
0�2 − �̃2 − 4U�̃d

0
4��̃d
0�2 + �̃2��nd���2���

+ �Tbsin����̃
− 12��̃d
0�2 + �̃2�
1 + 12�U�nd���1��2�

+ 12�̃U�̃d
0
4��̃d

0�2 + �̃2��nd���2��� � �192�����̃d
0�2

+
�̃2

4
� +

�̃

2
U����̃d

0�2 +
�̃2

4
�2�−1

, �31d�

where we have defined

�̃d
0 = �d + U�nd���0� −

1

4
�Tb� cos��� , �32�

which is an even function of the field. From Eq. �31�, we
infer the relations,
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�nd���0���� = + �nd���0��− �� , �33a�

�nd���1���� = − �nd���1��− �� , �33b�

�nd���2���� = + �nd���2��− �� , �33c�

�nd���3���� = − �nd���3��− �� . �33d�

Therefore, we can then conclude that the nonequilibrium
charge response of the system is not a symmetric function of
the flux, as shown in the odd coefficients in Eqs. �33b� and
�33d�. In fact, these coefficients are antisymmetric when the
field is inverted. On the other hand, the even coefficients are
all symmetric under reversal of �. This restoration of the
Onsager symmetry for the even coefficients of a current-
voltage expansion has been observed experimentally in rings
�see Ref. 25�. In this section, we do not attempt to make a
direct comparison with the experimental data since the con-
ductance within the Hartree approximation would give
wrong results due to the aforementioned breaking of the
spin-rotation symmetry. Nevertheless, in the next section we
demonstrate that this even-odd behavior is not an artifact of
the Hartree approximation and persists in a better treatment
of Coulomb interaction from which a physically meaningful
conductance can be extracted.

2. Nonzero-temperature case

For completeness, we briefly discuss the nonzero-
temperature case. Equation �29� is replaced with

�nd�� =
1

2�
�
1 + �Tbsin����

� �1

2
−

1

�
Im���1

2
+
��̃

4�
+ i�

��̃d − �L�
2�

���
+ 
1 − �Tbsin���� � �1

2
−

1

�
Im���1

2
+
��̃

4�

+ i�
��̃d − �R�

2�
���� . �34�

We now substitute the expansion Eq. �30� in Eq. �34� and
find exactly the same relations as Eq. �33b�. For instance, the
first two expansion coefficients read

�nd���0� =
1

2�
�1 −

2

�
Im
�0�� , �35�

�nd���1� =
�

4�3

�Tbsin���Re
�0
�1��

1 +
�U

2�3Re
�0
�1��

, �36�

where �0
�n�=��n�� 1

2 + ��̃
4� + i�

�̃d
0

2� � is the polygamma function
�the nth derivative of the digamma function defined above�.52

We again see the antisymmetric charge response of the sys-
tem due to the sin � term in the leading-order nonequilib-
rium coefficient �nd���1�.

IV. COULOMB-BLOCKADE REGIME

In the Coulomb-blockade regime of two-terminal quan-
tum dots, transport takes place only through two resonances
approximately located at �d and �d+U. Clearly, the retarded
Green’s function given by Eq. �24� does not show this be-
havior and consequently we must perform a higher-order
truncation in Eq. �16�. This way, one obtains the equation of
motion for ��d�nd�̄ ,d�

†��,

�� − �d − U���d�nd�̄,d�
†�� = �nd�̄� + 	

�,k
V�

���c�k�nd�̄,d�
†��

+ 	
�,k

V�
���d�̄

†c�k�̄d�,d�
†��

− 	
�,k

V���c�k�̄
† d�̄d�,d�

†�� . �37�

To obtain the two-peak solution, we keep only the first term
on the right-hand side �rhs� of Eq. �37�, calculate its equation
of motion, and make the following approximations:55

��c�k�c��k��̄
† d�̄,d�

†�� � 0, �38a�

��c�k�d�̄
†c��k��̄,d�

†�� � 0. �38b�
Then,

Gd�,d�
r ��� =

1 − �nd�̄�

� − �d +
1

4
��Tb� cos��� +

i

2
�̃

+
�nd�̄�

� − �d − U +
1

4
��Tb� cos��� +

i

2
�̃

. �39�

We note that the retarded Green’s function now correctly
shows two peaks located at �d− 1

4
��Tb� cos��� and �d

− 1
4
��Tb� cos���+U with weights 1− �nd�̄� and �nd�̄�, re-

spectively.
Using Eq. �26� we find that the occupation is given by

�nd�� =
�LIL��̃d

0� + �RIR��̃d
0�

4 + �L
IL��̃d
0� − IL��̃d

U�� + �R
IR��̃d
0� − IR��̃d

U��
, �40�

where we have used the following definitions:

�L�R� =
2��L�R� + ��R�L��

�1 + ���
� ��Tbsin��� , �41a�

I��x� = 1 −
2

�
Im���1

2
+
��̃

4�
+ i

��x − ���
2�

�� , �41b�

�̃d
0 = �d −

1

4
��Tb� cos��� , �41c�

�̃d
U = �d + U −

1

4
��Tb� cos��� . �41d�

For symmetric couplings ��L=�R� or a completely open
nonresonant channel ��=1�, we find for the particular case of
symmetric bias ��L=−�R�V /2� that
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�nd����,V� = �nd���− �,− V� . �42�

Physically, this corresponds to an invariance of the whole
system when both the magnetic field and the electric bias are
inverted.39 A series expansion in V then yields,

�nd���0���� + �nd���1����V + ¯ = �nd���0��− �� − �nd���1�

��− ��V + ¯ . �43�

Thus, we have

�nd���2n���� = + �nd���2n��− �� , �44a�

�nd���2n+1���� = − �nd���2n+1��− �� . �44b�

These equations represent a generalization of the Hartree
case 
Eq. �32�� to the Coulomb-blockade regime. It then fol-
lows that

T���,V� = T��− �,− V� �45�

and

I��,V� = − I�− �,− V� . �46�

A further expansion of I in powers of V finally gives

G2n��� = G2n�− �� , �47a�

G2n+1��� = − G2n+1�− �� , �47b�

i.e., the even �odd� conductance coefficients are symmetric
�antisymmetric� functions of the flux. We see here a crucial
difference compared to the noninteracting case discussed ear-
lier. For U=0 the current is always a symmetric function of
� regardless of the applied voltage. In the interacting case,
we find that the odd coefficients of the conductance are not
invariant when the field orientation is inverted.

The above property is not general and can be traced back
to the spatial symmetry of the system �symmetric couplings
and symmetric bias�. In the more general case of asymmetric
couplings ��L��R�, the occupation symmetry given by Eq.
�42� is not fulfilled. To see this, for simplicity we take the
limit U→. Then, the occupation is given by

�nd�� =
IL + IR + A����IL − IR�

4 + IL + IR + 
�Rb�� + ��Tbsin ���IL − IR�
,

�48�

where I� is evaluated at x= �̃d
0 and we have defined

A��� = 
�Rb�� + ��Tbsin���� �49�

and

�� =
�L − �R

�
. �50�

We now expand the occupation as a function of V and find
that the expansion coefficients are given by

�nd���2n� = 	
m=0

n

C2m
�2n����A2m��� , �51a�

�nd���2n+1� = 	
m=0

n

C2m+1
�2n+1����A2m+1��� �51b�

with the C’s fulfilling,

Cm
�n���� = Cm

�n��− �� . �52�

We give the explicit expressions for the first leading-order
coefficients

�nd���0� =
� − 2 Im �0

3� − 2 Im �0
, �53a�

�nd���1� =
Re �0

�1�A���
�3� − 2 Im �0�2/�

, �53b�

�nd���2� =
�3� − 2 Im �0�Im �0

�2� − 4
Re �0
�1��2A2���

8��3� − 2 Im �0�3/�2 .

�53c�

Now, the dimensionless function A��� is a small quantity for
almost all cases. We show in Fig. 2 that A is always smaller
than 1 even for the case �=� /2. As a result, we can safely
neglect An��� for all n�1, thus keeping the first-order term
only. This implies that the even expansion coefficients are
always symmetric under the reversal of � but the odd ones
do not show any particular symmetry since �L��R. Since
we know that the transmission T���� from Eq. �10� obeys the
same symmetry as the occupation �nd��, it follows that

G2n��� = G2n�− �� , �54a�

G2n+1��� � − G2n+1�− �� . �54b�

This is precisely the behavior that was observed in Ref. 25
for an asymmetric ring. In Fig. 3 we numerically calculate
the first four conductance coefficients in the current expan-
sion for two different values of the background transmission.
In both cases, G0 obeys reciprocity, as expected. For a par-
tially open direct channel �Tb=0.5�, the leading-order non-
linearity, G1, is magnetoasymmetric but the Onsager symme-
try is recovered for G2 and later destroyed again in G3. These

0.0

0.5

1.0 0.0

0.5

1.0

0.0

0.5

1.0

A(ϕ)

Tb

δΓ

FIG. 2. �Color online� A��� as a function of Tb and �� for �
=� /2. Refer to Eq. �49�.
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results are in agreement with the experiment.25 In the case of
a fully open direct channel �Tb=1� the odd coefficients are
still asymmetric but they are now odd functions of the mag-
netic flux, in agreement with Eq. �47b�.

V. KONDO CORRELATIONS

We can now go to next order in the equation-of-motion
technique to describe the onset of Kondo correlations. Thus,
we obtain the equations of motion for the three functions
appearing on the right-hand side of Eq. �37�, and approxi-
mate the new Green’s functions that appear in the procedure
by making the decouplings,56

��c�k�c�r�̄
† d�̄,d�

†�� � �c�r�̄
† d�̄���c�k�,d�

†�� , �55a�

��c�k�d�̄
†c�r�̄,d�

†�� � �d�̄
†c�r�̄���c�k�,d�

†�� , �55b�

��d�̄
†c�k�̄c�r�,d�

†�� � �d�̄
†c�k�̄���c�r�,d�

†�� , �55c�

��c�r�̄
† c�k�̄d�,d�

†�� � �c�r�̄
† c�k�̄���d�,d�

†�� , �55d�

��c�k�̄
† c�r�̄d�,d�

†�� � �c�k�̄
† c�r�̄���d�,d�

†�� , �55e�

��c�k�̄
† d�̄c�r�,d�

†�� � �c�k�̄
† d�̄���c�r�,d�

†�� . �55f�

In what follows, we take the limit U→, in which case the
term ��c�k�̄

† d�d�̄ ,d�
†�� does not give any contribution. After

little algebra, we find,

��d�,d�
†��r =

1 − �nd�̄� − �nd�̄���

� + i0+ − �d − 
1 − �nd�̄�����0��� − �1���
,

�56�

where

�nd�̄��� = −
�̃

2�
� d��

fpeq����
�� − � − i0+ 
��d�̄,d�̄

†����
r �� �57�

and

�0��� = − i
�̃

2
−

1

4
��Tb� cos��� , �58a�

�1��� = −
�̃

2�
� d��

fpeq����
�� − � − i0+ � 1 + 
�0����

���d�̄,d�̄
†����

r ��� . �58b�

The derivation of this expression for the retarded Green’s
function is explained in Appendix B.

To lowest order in �, Eq. �56� can be further simplified as

��d�,d�
†�� =

1 − �nd�̄�

� + i0+ − �d − �r���
, �59�

where

�r��� = �0��� + �1��� �60�

with

�1��� = −
�̃

2�
� d��

fpeq����
�� − � − i0+ . �61�

Here, we note that for �L=�R the self-energy obeys the fol-
lowing symmetry:

�r��,V� = �r�− �,− V� . �62�

In turn, this property implies that the occupation and the
conductance obey the even-odd symmetry also in the Kondo
regime �at least when the coupling is not very strong�.

Together with Eqs. �25� and �27� the Green’s function of
Eq. �56� can be obtained from a self-consistent procedure.
But before solving this system of equations using numerical
methods, we briefly discuss two limits �high and low tem-
peratures� to clarify the origin of magnetoasymmetries in the
Kondo regime.

A. High-temperature regime

In this case, �nd�̄ is a small correction and an expansion
can be done. To first order in � it can be shown that the
position of the virtual level is renormalized to �d�,
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FIG. 3. �Color online� Conductance coefficients as a function of
�. G0 and G2 are offset for simplicity. Parameters are �0=1, ��
=0.2, ��=�0�1����, �d=−5�0, and T=�0. Here, the conductance
coefficients are scaled by en+2 / �2n−1n !h�.
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�d� = �d −
1

4
��Tb� cos��� −

�̃

2�
ln

���d� − EF�2 + ��/��2

D
,

�63�

for ���−EF��1. If ���d−EF��1 we have

�d� = �d −
1

4
��Tb� cos��� −

�̃

2�
ln

��d� − EF�
D

. �64�

From the equation above, the Kondo temperature is given by

kBTK = D exp� 2�

�̃
��d −

1

4
��Tb� cos����� . �65�

The Kondo temperature marks the energy scale below which
nontrivial spin fluctuations start to play a dominant role,
leading to an antiferromagnetic exchange between the dot
electron and the conduction electrons. We note that for a
quantum dot inserted in an Aharonov-Bohm ring and in the
presence of an applied flux, TK depends on � and � but the
dependence on the flux is weak.57 Furthermore, the Kondo
temperature is a static quantity and, as such, is always a
symmetric function of the flux.

We compare in Fig. 4 the value of TK with the Kondo
temperature of a two-terminal quantum dot,

kBTK
�0� � D exp�2��d

�
� , �66�

and plot the ratio TK /TK
�0� as a function of the direct channel

tunneling probability 
Fig. 4�a�� and the flux 
Fig. 4�b��. For
�=0 and Tb=0 we recover TK=TK

�0� as expected. As Tb in-
creases for �=0, the Kondo temperature decreases since
electrons preferably travel along the upper arm. However, for
fluxes above �=� /2, the level renormalization due to cos �
is positive and the curve TK /TK

�0� becomes nonmonotonous
due to the competition between the renormalized dot level
and broadening. This can be more clearly seen in Fig. 4�b�.

B. Low-temperature regime

At low temperature �nd�̄ must be large, especially near
the Fermi level. If we suppose that Gd�,d�

r ��� varies smoothly
near the Fermi level, Eq. �57� can be approximated as

�nd�̄��� � −
�̃

2�

Gd�,d�

r ��� i�

2
+ ln

2�

�D
+ ��1

2

− i�
�� − EF�

2�
�� . �67�

Inserting Eq. �67� into Eq. �56�, we find

Gd�,d�
r �EF� =

2

�̃
sin���e−i�. �68�

Here, the value of � is related to the number of d electrons
according to the Friedel-Langreth sum rule,58

� =
��nd�

2
�

�

2
. �69�

This implies

��d�,d�
†��EF

=
1

i�̃/2
. �70�

Then, the linear conductance can be written as

G�0���� =
2e2

h
�
1 − Tb cos2���� . �71�

This result is exact in the limit kBT ,V→0. For nonzero volt-
ages, one should take into account that the imaginary part of
the interaction self-energy of Gd�,d�

r depends on V but this
dependence is weak for eV�kBTK and can be safely ne-
glected. As a result, deep in the Kondo regime the conduc-
tance preserves the Onsager symmetry since in the Fermi-
liquid picture the Kondo resonance behaves as a
noninteracting system with renormalized parameters. Charge
fluctuations are quenched and transport becomes B symmet-
ric. This regime is beyond the scope of our method and we
prefer not to present numerical results for very low tempera-
tures. However, the expected scenario would be as follows:
for very low temperatures the current would be B symmetric
and asymmetries would arise as temperature approaches TK

�0�.
In the opposite case, for temperatures much larger than TK

�0�
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FIG. 4. �Color online� Kondo temperature TK as a function of Tb

and �. The parameters are D=1, �d=−0.05, U=, and �L=�R

=0.031. For these parameters, TK
�0��0.0063.
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transport is thermally assisted and the magnetoasymmetric
effect also disappears.13 Therefore, we expect a large mag-
netoasymmetry for temperatures on the order of TK

�0� for
which charge fluctuations are large. We confirm this expec-
tation in the numerical results reported below.

C. Numerical results

We numerically investigate the evolution of the magne-
toasymmetry when temperature is lowered from the
Coulomb-blockade regime to the Kondo temperature. We
first illustrate the generic behavior in Fig. 5, which shows the
differential conductance dI /dV as a function of the applied
voltage V for opposite orientations of the magnetic field. To
compute the derivative of the current we have employed a
numerical finite-difference method.

In the top panel of Fig. 5, the temperature is large enough
that Kondo correlations can be neglected. Then, the dot is in
the Coulomb-blockade regime and a small current is ex-
pected since the dot level is below the Fermi energy ��d=
−0.05�. However, the bridge channel is partially open and the
system conductance reaches around 0.55�2e2 /h at V=0.
This value is independent of the magnetic orientation, as
expected. But when V departs from equilibrium, the differ-
ential conductance behaves differently for +� and −�. We
recall that the effective position of the effective resonance
depends on the charge state of the dot, as discussed in Sec.
IV. Since the charge response of the system is not a symmet-
ric function of �, dI /dV peaks at different voltages for op-
posite magnetic fields.

In Fig. 5�b� we depict dI /dV in the low-temperature case.
We observe for both field orientations a dip around V=0.
This dip is known to arise from the destructive interference
between partial waves propagating through the upper arm
and resonantly hopping across the dot.49 We emphasize that
the dot bare level, �d, is the same for both calculations but in
the Kondo regime transport is dominated by the narrow reso-
nance formed at the Fermi level due to the higher-order tun-
neling processes that originate the Kondo effect. As a result,
the Fano interference between the Kondo resonance and the
background channel gives rise to the pronounced dip at zero
bias. In our case, we obtain an asymmetric line shape for the
dip due to the magnetoasymmetric response of the dot away
from equilibrium. As a consequence, the difference in dI /dV
for +� and −� is more visible in the Kondo regime, as can be
seen in Fig. 5�b� compared to Fig. 5�a�.

We now define the symmetric �+� and antisymmetric parts
�−� of dI /dV,

dI�
dV

=
dI���

dV
�

dI�− ��
dV

. �72�

In Fig. 6 we plot the ratio between these two components as
a function of the applied bias V for a fixed value of the flux
��=� /4� and for different values of the nonresonant trans-
mission Tb. In Fig. 6�a� we set the temperature to a high
value compared to the Kondo temperature. For Tb=0.5 the
magnetoasymmetry is always finite for V�0. For voltages
around zero, the magnetoasymmetry is a linear function of V
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FIG. 5. �Color online� Differential conductance dI /dV �2e2 /h�
as a function of the applied bias eV for D=1, �d=−0.05, U=,
�L=�R=0.031, and �=� /4. Temperatures are �a� T=10TK

�0� and �b�
0.1TK

�0�.

−0.2 −0.1 0 0.1 0.2
−0.04

0

0.04

eV

d
I − d
V

/
d
I + d
V

Tb = 0.25
Tb = 0.5
Tb = 0.75
Tb = 1

−0.2 −0.1 0 0.1 0.2
−0.08

−0.04

0

0.04

0.08

eV

d
I − d
V

/
d
I + d
V

Tb = 0.25
Tb = 0.5
Tb = 0.75
Tb = 1

(a)

(b)
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since the largest contribution stems from the G1 coefficient
in the current-voltage expansion. In the limit of high bias, the
magnetoasymmetry saturates.18 Interestingly, with increasing
Tb the magnetoasymmetry is reduced and changes sign for a
fixed V. Therefore, the sign of the asymmetry can be tuned
with the background transmission of the nonresonant chan-
nel. The situation is similar to the magnetoasymmetry of a
two-terminal quantum dot when transport is dominated by
elastic cotunneling processes.13 In that case, the sign of the
asymmetry can be changed with the gate voltage which
moves the dot level position above and below the particle-
hole symmetric point.13 In our case, Tb acts as an effective
gate which changes the position of the level since �0 is renor-
malized according to Eq. �22�.

When temperature is lowered, we observe that the transi-
tion from positive to negative asymmetries as V is tuned, is
rather abrupt, see Fig. 6�b�. We note that as voltage ap-
proaches V=0 one sweeps along the strongly asymmetric dip
structure found in Fig. 5�b�, for which the difference between
the cases +� and −� is most clear.

Then, it is the Kondo resonance that produces the abrupt
change in the magnetoasymmetry profile as compared to the
high-temperature case 
Fig. 6�a��. As a consequence, Kondo
correlations enhance the deviations from the Onsager sym-
metry since the narrow resonance is more sensitive to
changes in the orientation of the magnetic field.59 For in-
stance, we observe in Fig. 6�b� a revival of the magne-
toasymmetry for Tb=0.75, which almost vanished in the
high-temperature case. However, if temperature is further
lowered �T�TK

�0�� for �d�EF, charge fluctuations would be
quenched and the Kondo resonance would be pinned at the
Fermi level, independently of � and Tb. As a consequence,
the magnetoasymmetry would tend to vanish.

VI. SHOT NOISE

The shot noise is a valuable tool in the characterization of
the transport properties of mesoscopic systems.60 For sys-
tems described with Anderson impurity models like ours, the
electron repulsion term U introduces correlations which can
be investigated through the noise. Then, the problem be-
comes involved, although the effect of Kondo correlations in
the shot noise have been already addressed in a number of
papers.61–75

Magnetoasymmetries in noise have recently attracted a
good deal of attention due to the �weakly� nonequilibrium
relations between the asymmetries of the current and that of
the noise to leading order in a voltage expansion.33–36 The
subject is also of interest because it poses questions about the
validity of fluctuation theorems out of equilibrium.33 In this
section our goal is to calculate the noise power for our sys-
tem in the limits of both weak and strong electron-electron
interactions and check the nonequilibrium fluctuation rela-
tions.

The current noise between terminals � and � is defined as

S���t − t�� =
1

2
�
Î��t�, Î��t���+� − 2�Î���Î��� , �73�

where Î represents a current operator. The Fourier transfor-
mation of the current noise �the noise power� reads

S��� � �
−



dtei�tS�t� , �74�

where we have defined the Fourier transform without the
prefactor 2. In the following, we present results for the zero-
frequency case 
the shot noise S�S�0��.

The noise definition of Eq. �73� contains correlations be-
tween currents that, quite generally, involve four operators.
To treat the resulting two-body Green’s functions, we make
use of cluster expansion,68,70,74

�Ô��
† Ô �Ô����

† Ô ���� � �Ô��
† Ô ���Ô����

† Ô ����

+ �����Ô��
† Ô �����Ô �Ô����

† � ,

�75�

which amounts to neglecting two-body connected Green’s
functions. As a result, the shot noise is expressed in terms of
one-body Green’s functions. This is a strong assumption that
can lead to deviations from well-known relations. Neverthe-
less, interactions are included �at the level of the Lacroix’s
approximation�. The calculation is lengthy and we refer the
reader to Appendix C. Here, we consider limit cases only.

For the noninteracting case and at zero temperature we
recover the known expression,

S =
e2

h
	
�
�

−eV/2

eV/2

d�T����
1 − T����� , �76�

where the transmission is given by Eq. �18�. As expected, the
noise is an even function of � to all orders in V. However,
interactions destroy this symmetry already in the linear re-
gime of the noise response. In Fig. 7 we show the noise as a
function of V in the strongly interacting case. We can ob-
serve that the slope of the noise curves at V=0 differ for
opposite field orientations. Another interesting feature is that
for some voltages the nonequilibrium noise can be reduced
from its equilibrium value.76

To gain further insight, we expand the noise in powers of
V,

−0.1 −0.05 0 0.05 0.1
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0.084

0.086
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S
(ϕ

)

Tb = 0.5, ϕ = +π/4
Tb = 0.5, ϕ = −π/4

FIG. 7. �Color online� Noise �2e2 /h� as a function of voltage for
two opposite orientations of �. Parameters are D=1, �d=−0.05, U
=, and �L=�R=0.031.
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S = S0 + S1V + ¯ . �77�

S0 is the equilibrium noise describing thermal fluctuations.
Since these fluctuations do not distinguish between +� and
−�, S0 is an even function of the magnetic field. An alternate
proof of this statement is based on the equilibrium
fluctuation-dissipation theorem, which relates S0 to the linear
conductance G0,

S0 = 2kBTG0. �78�

Since for G0 the Onsager symmetry holds, S0 should be even
for a two-terminal setup.

We now show the numerical results of our model for dif-
ferent temperatures. We define the symmetric and antisym-
metric components of the noise and the current as before,

S� = S�+ �� � S�− �� , �79a�

I� = I�+ �� � I�− �� . �79b�

We consider symmetric couplings. As result, the even-odd
properties of the transport coefficients allow us to write

S+

I+/V
= 2kBT , �80a�

S−

I−/V2 = 2kBT . �80b�

Corrections to these relations are of order V2 and can be
neglected for eV�kBT. The first relation is merely a restate-

ment of Eq. �78�. The second relation is a nonequilibrium
relation that connect the magnetoasymmetries corresponding
to both the linear-response noise �S1� and the leading-order
nonlinear conductance �G1�.

We take a small voltage �V=0.01TK
�0� /e� and plot in Fig. 8

the relation given by Eq. �80a� as a function of the flux for
two different values of the background transmission. In both
cases we find that Eq. �80a� is approximately fulfilled with
small deviations which we attribute to the assumption of Eq.
�75�. We note that deviations grow for smaller temperatures
since in this case the Kondo correlations become more rel-
evant and our model for the noise starts to break down.
When the nonresonant channel is fully open �bottom panel of
Fig. 8�, the deviations are less important since electrons pref-
erably travel along the upper arm and consequently feel less
the intradot interactions.

The validity of the nonequilibrium fluctuation relation

Eq. �80b�� is analyzed in Fig. 9. Here we plot separately the
two terms of Eq. �80b�. We find a strong resemblance be-
tween S1 and G1 for all magnetic fields. Deviations also exist
as in the calculation of the symmetric components but they
fulfill the same pattern, namely, they tend to disappear when
the background transmission is close to 1 and the tempera-
ture increases well above the Kondo temperature. Although
our results are not a conclusive proof of Eq. �80b� for
strongly interacting systems, the errors are small and com-
patible with the same deviations found in the equilibrium
case �Fig. 8�.

0 0.25 0.5 0.75 1
1

1.1

1.2

ϕ/π

S
+
(ϕ

)/
[2

k
B
T

I +
(ϕ

)/
V

]
Tb = 0.5

T/TK = 10
T/TK = 20
T/TK = 40

0 0.25 0.5 0.75 1
1

1.1

1.2

ϕ/π

S
+
(ϕ

)/
[2

k
B
T

I +
(ϕ

)/
V

]

Tb = 1.0

T/TK = 10
T/TK = 20
T/TK = 40

(a)

(b)

FIG. 8. �Color online� Identification of the fluctuation-
dissipation theorem as a function of �. Parameters are D=1, �d=
−0.05, U=, and �L=�R=0.031. The applied bias is eV=0.01TK
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VII. CONCLUSIONS

We have shown that the current-voltage characteristics of
a two-terminal quantum-dot mesoscopic interferometer is not
an even function of the applied flux in the nonlinear regime
of transport and when intradot interactions are taken into
account. The interference pattern of the ring at a finite bias is
thus not symmetric under reversal of the magnetic field. We
have carefully investigated the symmetry properties of the
conductance coefficients in a current-voltage expansion. Our
discussions are based on the properties of the charge re-
sponse of the dot when a finite bias is applied to the system.
When the quantum dot is in the Coulomb-blockade regime,
we find for most cases that the even coefficients are symmet-
ric functions of the field while the odd coefficients does not
show any relevant symmetry in the general case. Only when
the dot is symmetrically coupled to the leads the odd coeffi-
cients are antisymmetric.

We have also calculated the magnetoasymmetry of the
system in the strong coupling regime, when the dot is de-
scribed with Kondo correlations. In this case, the magne-
toasymmetry shows an abrupt transition between positive
and negative values when the voltage crosses the Fermi en-
ergy. As a result, the Kondo resonance dominates the mag-
netoasymmetry line shape when the voltage is on the order
of the Kondo temperature. A further extension of this work
could be focused on the very low-temperature regime using,
e.g., slave-boson techniques.

Finally, we have investigated the asymmetry in the shot
noise, finding a correlation between the noise and the current
magnetoasymmetry to leading order in the applied voltage.
This nonequilibrium fluctuation relation seems to apply in a
wide range of parameters �temperature, direct channel trans-
mission, and applied fluxes�. However, further work is
needed to reduce the deviations which are most probably due
to our approximations. In particular, it would be interesting
to analyze the role of the third cumulant of the current �or
better the entire full counting statistics� under field reversal.
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APPENDIX A: LESSER GREEN’S FUNCTION OF THE
DOT

In general, the lesser Green’s function for an interacting
dot cannot be obtained from the equation-of-motion tech-
nique without introducing additional assumptions. Following
Ng’s heuristic approach, here we employ an ansatz for inter-
acting lesser and greater Green’s functions.77 Using the
lesser and greater self-energies for a noninteracting dot

��
��0���� = + i	

�

�̄�f���� , �A1a�

��
��0���� = − i	

�

�̄�
1 − f����� �A1b�

with

�̄L =
1

�1 + ��2 ��L + ��R� +
�̃

2
��Tbsin��� , �A2a�

�̄R =
1

�1 + ��2 ��R + ��L� −
�̃

2
��Tbsin��� . �A2b�

we assume that lesser and greater Green’s functions for an
interacting dot can be written in the form

��
���� = + i	

�

�̄�f�R���� , �A3a�

��
���� = − i	

�

�̄�
1 − f��R���� . �A3b�

The explicit form of R���� can be obtained from the relation

��
���� − ��

���� = ��
r ��� − ��

a��� . �A4�

Employing the identity,

Gd�,d�
� ��� − Gd�,d�

� ��� = Gd�,d�
r ��� − Gd�,d�

a ��� , �A5�

it finally yields

Gd�,d�
� ��� = − fpeq���
Gd�,d�

r ��� − Gd�,d�
a ���� �A6�

with

fpeq��� =

	
�

�̄�f����

	
�

�̄�

. �A7�

APPENDIX B: EVALUATION OF EXPECTATION
VALUES

In deriving Eq. �56�, we have to evaluate the expectation
values �d�̄

†c�k�̄� and 	�,rV��c�r�̄
† c�k�̄�. First, let us concen-

trate on �d�̄
†c�k�̄�. In equilibrium, the quantities can be calcu-

lated by using the fluctuation-dissipation theorem,

�d�̄
†c�k�̄� = −

1

�
� d�feq���Im
��c�k�̄,d�̄

†���
r � . �B1�

However, the fluctuation-dissipation theorem cannot be em-
ployed in nonequilibrium. Then, in general,

�d�̄
†c�k�̄� =

1

2�i
� d���c�k�̄,d�̄

†���
�. �B2�

Note that ��c�k�̄ ,d�̄
†���

� cannot be obtained exactly because of
the dot lesser Green’s function. Here, we thus assume the
following pseudoequilibrium form

��c�k�̄,d�̄
†���

� = − fpeq������c�k�̄,d�̄
†���

r − ��c�k�̄,d�̄
†���

a � .

�B3�

Then, we have
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�d�̄
†c�k�̄� = −

1

2�i
� d�fpeq���
��c�k�̄,d�̄

†���
r ���

− ��c�k�̄,d�̄
†���

a ���� , �B4�

where

��cLk�̄,d�̄
†���

r =
gLp�̄

r

1 + �
�VL − i��e−i�VR���d�̄,d�̄

†���
r ,

�B5a�

��cRk�̄,d�̄
†���

r =
gRq�̄

r

1 + �
�VR − i��e+i�VL���d�̄,d�̄

†���
r ,

�B5b�

and

��cLp�̄,d�̄
†���

a =
gLp�̄

a

1 + �
�VL + i��e−i�VR���d�̄,d�̄

†���
a ,

�B6a�

��cRq�̄,d�̄
†���

a =
gRq�̄

a

1 + �
�VR + i��e+i�VL���d�̄,d�̄

†���
a ,

�B6b�

with g�k�̄
r,a =1 / ��� i0+−��k�̄�. Due to the approximations,

however, the retarded Green’s function is not the complex
conjugate of the advanced one so that this equation gives an
unphysical result. To resolve this difficulty, we thus replace
the quantity in the parenthesis by the time-reversal pair. That
is,

�d�̄
†c�k�̄� = −

1

2�i
� d�fpeq��� � 
��c�k�̄,d�̄

†���
r �− ��

− ��c�k�̄,d�̄
†���

a ���� . �B7�

This yields a real expectation value as should be. Using Eq.
�B7�, we thus have

	
k

�d�̄
†cLk�̄�

� + i0+ − �Lk�̄
= −

�0

1 + �
� d��

fpeq����
�� − � − i0+ � �VL

+ i��e−i�VR�
��d�̄,d�̄
†����

r ��, �B8a�

	
k

�d�̄
†cRk�̄�

� + i0+ − �Rk�̄
= −

�0

1 + �
� d��

fpeq����
�� − � − i0+ � �VR

+ i��e+i�VL�
��d�̄,d�̄
†����

r ��. �B8b�

In the same way

	
�,r,k

�c�r�̄
† cLk�̄�

� + i0+ − �Lk�̄
= −

�0

1 + �
� d��

fpeq����
�� − � − i0+ � �VL

+ i��e−i�VR�1 + 
�0������d�̄,d�̄
†����

r ��� ,

�B9a�

	
�,r,k

�c�r�̄
† cRk�̄�

� + i0+ − �Rk�̄
= −

�0

1 + �
� d��

fpeq����
�� − � − i0+ � �VR

+ i��e+i�VL�1 + 
�0������d�̄,d�̄
†����

r ��� .

�B9b�

APPENDIX C: EXPRESSION OF THE SHOT NOISE

The current noise is defined as

S���t − t�� =
1

2
�
Î��t�, Î��t���+� − 2�Î���Î��� . �C1�

The current operator can be calculated from the time evolu-
tion of the occupation number operator

ÎR =
ie

� � 	
p�L,q�R,�


Wei�cRq�
† cLp� − We−i�cLp�

† cRq��

+ 	
q�R,�


VRcRq�
† d� − VR

� d�
†cRq��� . �C2�

The current can be then obtained by taking the average of ÎR.
Using the Keldysh Green’s functions, the current can be ex-
pressed as

�ÎR�t�� =
e

h� 	
p�L,q�R,�


Wei�GLp�,Rq�
� �t,t�

− We−i�GRq�,Lp�
� �t,t�� + 	

q�R,�

VRGd�,Rq�

� �t,t�

− VR
� GRq�,d�

� �t,t��� . �C3�

The Fourier transformation of the current noise is

S��� � �
−



dtei�tS�t� . �C4�

The zero-frequency noise power S�S�0� is referred to as
shot noise. In the derivation, we make use of cluster expan-
sion to treat two-body Green’s functions,68,70,74

�Ô��
† Ô �Ô����

† Ô ���� � �Ô��
† Ô ���Ô����

† Ô ����

+ �����Ô��
† Ô �����Ô �Ô����

† � .

�C5�

In the frequency domain, using Eqs. �C2� and �C3� and clus-
ter expansion the shot noise is given by
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S =
1

2�

2�ie�2

�
� d�W2
e+2i�GLp��,Rq�

� ���GLp�,Rq��
� ��� + e−2i�GRq��,Lp�

� ���GRq�,Lp��
� ���� − W2
GRq��,Rq�

� ���GLp�,Lp��
� ���

+ GLp��,Lp�
� ���GRq�,Rq��

� ���� + W
VRe+i�Gd�,Rq�
� ���GLp�,Rq��

� ��� + VR
� e−i�GRq��,d�

� ���GRq�,Lp��
� ����

− W
VRe−i�Gd�,Lp�
� ���GRq�,Rq��

� ��� + VR
� e+i�GLp��,d�

� ���GRq�,Rq��
� ���� − W
VR

� e+i�GRq��,Rq�
� ���GLp�,d�

� ���

+ VRe−i�GRq��,Rq�
� ���Gd�,Lp��

� ���� + W
VR
� e−i�GRq��,Lp�

� ���GRq�,d�
� ��� + VRe+i�GLp��,Rq�

� ���Gd�,Rq��
� ����

+ 
VRVRGd�,Rq�
� ���Gd�,Rq��

� ��� + VR
� VR

� GRq��,d�
� ���GRq�,d�

� ���� − VRVR
� 
GRq��,Rq�

� ���Gd�,d�
� ��� + Gd�,d�

� ���GRq�,Rq��
� ����� ,

�C6�

where summations over momentum indices are assumed. Here, the Keldysh Green’s functions which appear on the rhs of Eq.
�C6� can be expressed in terms of the dot Green’s functions, Gd�,d�

� ��� and Gd�,d�
r,a ���.
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