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Chaos-Based Optical Communications:
Encryption Versus Nonlinear Filtering

Adrian Jacobo, Miguel C. Soriano, Claudio R. Mirasso, and Pere Colet

Abstract—Several chaos encoding schemes codify the message in
such a way that the mean value of the transmitted signal (carrier
with the message) is different for bits “0” and “1”. We present a
nonlinear filtering method that is able to detect very small changes
in the mean value of a signal and therefore recover this kind of mes-
sages if its amplitude is larger than the chaotic fluctuations in the
mean over the length of a bit. We also introduce a new codification
method in which the mean value of the transmitted signal, over the
length of each bit, is preserved and we show how it is able to beat
the decryption scheme.

Index Terms—Chaos, dynamics, nonlinear optics, optical com-
munications, semiconductor lasers.

I. INTRODUCTION

O PTICAL chaos-based communications have become
popular in the past decade, evolving from a theoretical

concept and an experimental demonstration [1] to an almost
ready-to-use technique where successful field experiments have
been reported [2]. Typically, the transmitted signal consists of a
chaotic carrier generated by a semiconductor laser (SL) subject
to feedback in which a message is encrypted. Then, a system
similar to the emitter is necessary at the authorized receiver
side to recover the message. Privacy relies on the difficulty
to recover the message without the appropriate receiver. This
depends not only on how strong the chaos is but also on the
codification method. One of the most popular methods to
encode information is chaos modulation (CM) [1], [3], [4] in
which the message is encoded as a (small) modulation of the
amplitude of the chaotic carrier.

Eventual eavesdroppers can attack in different ways. The sim-
plest one is just trying direct detection of the modulated car-
rier. This attack usually fails except for messages codified with
an extremely large modulation amplitude. A more sophisticated
situation is such that the eavesdropper has a system similar to
the authorized receiver although he may not know the param-
eters in which it operates. In this case, the degradation of the
synchronization as a function of parameter mismatch [5]–[8]
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plays a critical role in determining how similar the eavesdropper
system should be to succeed. Other possibilities include the re-
construction of the chaotic attractor using the chaotic time se-
ries. This is only practical in systems where the local dynamics
is low dimensional [9], [10]. Finally, one can also use adaptive
systems trained to synchronize to the chaotic carrier, such as,
for example, neural networks [11].

In this work, we take a different approach exploiting eventual
pitfalls in the codification technique. We do not attempt to
match the receiver nor to reconstruct the chaotic carrier, rather
we study the possibility of using a nonlinear filtering technique
to break chaos encrypted messages in encoding schemes in
which the mean value of the chaotic carrier is not preserved.
The method that we apply to break the encryption is based in
previous work on noise filtering and contrast enhancement by
using nonlinear dynamics of extended systems [12] which can
be used to detect sudden jumps that are masked by noise.

In Section II, we introduce the model of two SLs subject to
feedback and the encoding scheme. Then, in Section III, we
show how the messages encoded with this scheme can be recov-
ered using a nonlinear filtering technique. Finally, we propose
an alternative encryption method that requires a more sophisti-
cated implementation but that avoids detection by the nonlinear
filter.

II. CHAOS ENCODING

We model the dynamics of the SL subject to optical feedback
in terms of the Lang–Kobayashi equations [4]. The equations
for the slowly varying amplitude of the electric field and
the carrier number (in single-mode operation and low to
moderate feedback) are

(1)

(2)

where subindex refers to the emitter (receiver) laser and
to the transmitted signal (carrier with embedded message).

The gain . The laser
intensity is . For simplicity, we have assumed
identical internal laser parameters and operating conditions and
neglected noise effects in the lasers. Parameter is the
linewidth enhancement factor, 0.5 ps is the photon
decay rate, 2 ns is the carrier lifetime, ps
is the differential gain coefficient, is the carrier
number at transparency, is the gain compression
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Fig. 1. (a) Time trace and (b) power spectrum of the chaotic carrier generated by a SL subject to feedback.

coefficient, is the injected current, 14.7 mA
is the solitary laser threshold current, 1 ns is the feedback
delay time, 25 ns is the feedback strength, and is
the optical feedback phase. The last term in (1) only appears in
the equation for the receiver and it accounts for the injection of
the emitter laser field into the receiver. Without loss of gener-
ality, we consider that this injection occurs instantaneously. An
example of the generated chaotic carrier time trace and power
spectrum is given in Fig. 1.

A high degree of synchronization between emitter and re-
ceiver is achieved by working in a closed loop configuration and
for 60 ns [6], [13].

We consider here a message encoded by modulating the
emitter’s chaotic carrier power

(3)

where is the transmitted signal, is the message modu-
lation amplitude, is the message being transmitted, taking
values 0.5 and 0.5, and is the chaotic carrier. The mes-
sage can be recovered by the authorized receiver as

(4)

where is the power emitted by the receiver laser. The
recovery strongly depends on the quality of the synchronization
between the emitter and receiver lasers. For
(ideal synchronization) the message can be perfectly recovered.
In practice one applies a Butterworth filter after detection to
further clean the message, as it is typically done in all-optical
chaos-based communications.

In some instances, it may not be straightforward to implement
the division in (4), then the message is recovered by using

(5)

This is later filtered using a Butterworth filter and then nor-
malized to the interval . In this work, we will com-
pare both decoding techniques with the eavesdropper attack in-
troduced in Section III.

To illustrate the quality of the recovered messages, we show
in Fig. 2 (a.1) a sample of a sequence of recovered bits using
(4) and in Fig. 2 (a.2) the corresponding eye diagram of this
sequence. Fig. 2 (b.1) and (b.2) show the time trace and eye

diagram of a sequence recovered using (5). To quantify the per-
formance of the recovery process we use the quality factor

(6)

where and are the average optical power of bits “1” and
“0”, and and are the corresponding standard deviations. A
larger value of accounts for a better recovery of the message
since the bit error rate is a monotonically decreasing function
of [14]. For a 5-Gb/s message, the authorized receiver shows
a clean and open eye diagram with in the case of

and for . Note that, by not making the
division in (5), the quality factor is largely reduced, but message
recovery is still possible.

One property of CM is that the mean value of the transmitted
power during the length of a bit “1” ( , where the bar stands
for average over time) is different from a bit “0” . This
difference is

(7)

This feature is shared by other encryption methods such as
chaos shift keying [15] and chaos masking [4], [5], [16], which
makes this discussion also relevant for these cases. If the
message modulation amplitude is large, these differences
on the mean value are easily detectable and the message can
be recovered by using a linear filter, such as a low pass filter.
One may also consider averaging the power over one bit. This
requires the eavesdropper to know the exact bit rate as well as
where the bit starts. As is reduced, usual filtering techniques
fail to recover the message, nor does the average technique
work. The use of a nonlinear filter can improve the ability to
detect these deviations, and therefore push the range of secure
operation to smaller amplitudes. The chaotic properties of the
carrier set a limit for the message amplitudes that allow to
operate in a secure regime. The average value of the chaotic
carrier during a bit length fluctuates from one bit to another,
and these fluctuations increase with the bit rate. We measure
the standard deviation of these fluctuations and define as
the ratio between and the mean value of the chaotic carrier.
For the chaotic carrier shown in Fig. 1(a), at 1 Gb/s,

at 2.5 Gb/s, and at 5 Gb/s. Encoding a
message with the CM method induces deviations from the mean
value of the carrier. If these deviations are of the same order of
magnitude or smaller than those of the chaotic signal, a filtering
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Fig. 2. Recovered messages (left) and eye diagrams (right) for 256 bits encoded
with CM at 5 Gb/s �� � ����. (a) Authorized receiver � ����� � 75 ns �,
(b) authorized receiver � ���, (c) GLE first pass (� � ����, � � ���), and (d)
GLE second pass (� � �, � � ����).

technique will not be able to distinguish the intrinsic variations
from the ones produced by the message, and therefore it will not
be able to decrypt it. The drawback of working in this regime is
that, to recover the message with enough quality, a very good
synchronization between the emitter and the receiver is needed.

As we said, the variations of the chaotic signal at 5 Gb/s
are about 10%, and we will show how, with a nonlinear fil-
tering technique based on the forced Ginzburg Landau equation
(GLE), we are able to decrypt signals up to these message mod-
ulation amplitudes, which is much better than what a linear filter
can do.

III. BREAKING THE ENCRYPTION

To decrypt the message, we map the time series with the en-
coded message as the forcing of a nonlinear partial differen-
tial equation that presents a bistable steady state. The decoded
message is recovered as the stationary state of the equation. We
use the prototypical GLE [17] in one spatial dimension with a
forcing term

(8)

Fig. 3. Message recovery with the forced GLE. (a) The full line corresponds
to the forcing term of (8) (chaotic carrier with the message) and the dashed line
is the normalized encoded message. The dotted–dashed line corresponds to the
reference level �. (b) Stationary state solution of (8) (recovered bits).

where is the field, is the diffusion constant, is the forcing
strength, and is a space-dependent forcing. For conve-
nience, we set .

Neglecting diffusion and , (8) has two stable stationary
solutions, and (plus an unstable solution at

). Starting from , the points where
will evolve to and those where will

evolve to . If we now consider the effect of diffusion, areas
of a size of the diffusion length (given by ) that in average
are larger than zero will approach to , and those areas that in
average are lower than zero will approach to as illustrated in
Fig. 3. The diffusion will also wash out the fast frequencies of
the chaotic signal. Finally, the effect of the forcing term is
to change the basin of attraction of and , favoring the sep-
aration mechanism and balancing the effect of diffusion, making

follow the variations of . The GLE filtering method was
initially intended to detect sudden jumps hidden by noise in eco-
logical and biological experimental data1 developing on prior
ideas of using nonlinear extended systems to filter noise in im-
ages and selectively enhance the contrast [12], [18]. To apply
the GLE filtering method to our case, we identify

MAX
(9)

with , where is a threshold parameter .
Starting from , we let the equation evolve to
the steady state, with a large value of , this filters
the fast frequencies of the chaos in a similar way that a low-pass
filter would do. Once the field reaches the steady state, we set

, with this value of the parameter the nonlinear mechanism
comes into play enhancing the contrast of the signal from the
reference level given by , making the encoded message visible.
The total effect of the process is to separate the zones (defined
by the diffusion length) where the average of the signal is larger
than (i.e., “1” bits) and the zones where the average is less than

(i.e., “0” bits).
To illustrate the procedure, we start by processing the mes-

sage using an encoding amplitude of . In Fig. 2 (c.1)

1An implementation of the GLE method for filtering data series can be found
online at http://ifisc.uib-csic.es/users/jacobo/
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Fig. 4. Quality factor � as a function of the message amplitude � using CM at
(a) 5 Gb/s and (b) 1 Gb/s. The solid lines correspond to the authorized receiver
(circles for � ��� and squares for � ���), the dotted–dashed line (red online)
to the GLE first pass and the dashed line (blue online) to the GLE second pass.
The dotted line (green online) is the quality factor obtained by taking the mean
value of the time series during the length of one bit.

and (c.2), we show a part of the time trace of the decoded mes-
sage, and the eye diagram for the first pass with the filter, using

and , respectively. It can be seen that, in this
case, we are able to recover some features of the message but
the eye diagram is very closed . This means that we
would only be able to recover, at best, some bits. As previously
said, this performance is similar to the one expected for a linear
filter.

One should notice that the statistics of the message extracted
by the GLE in the nonlinear filtering process may not be the
same as for the authorized receiver. So the relationship between

-factor and bit error rate may be different. Still the bit error rate
will monotonically decrease function of , and therefore we
will use it to characterize the accuracy of the recovered message.
We choose to use the quality factor because it requires much less
statistics and computation time than computing the bit error rate.

In Fig. 2 (d.1) and (d.2), we show the effect of a second pass
using and setting to maximize the factor of the re-
covered message. Here, it can be seen that the message is nearly
recovered (ten errors over 256 bits of the message), and the eye
diagram is quite open . Considering these results,
it would not be secure to encode messages with this amplitude
using CM. In Fig. 4, we show the quality factor as a function of
the message modulation amplitude . We can see that, applying
the GLE twice, the results are much better than with a single pass
with large diffusion (which is basically a linear filter). While the
performance is not as good as the authorized receiver, it is still
enough to decode the message if the value of is not too small.
Performance decreases with decreasing . At 5 Gb/s [Fig. 4(a)],
when approaches 0.1 (which is of the order of ), the nonlinear
filtering method recovers only part of the message. However, it

Fig. 5. Recovered messages (left) and eye diagrams (right) for 256 bits encoded
with CM at 1 Gb/s �� � �����. (a) Authorized receiver� ��� (� � 75 ns ).
(b) GLE second pass (� � �, � � ����).

should be kept in mind that reproducing part of the message is
already a security threat.

Decreasing the bit rate the performance of the GLE filter im-
proves. Fig. 5(a) shows the eye diagram for a message encoded
at 1 Gb/s with using CM and decoded by an authorized
receiver using (5). Fig. 5(b) shows the message decoded by an
eavesdropper using the GLE filter with in the second
pass. Fig. 4(b) shows the quality factor as function of the mes-
sage amplitude at 1 Gb/s. Since for this bit rate is smaller
than for 5 Gb/s, the GLE filter provides a better performance
for lower values of . In general, to prevent decoding using a
nonlinear filter like the one considered here, the change in bit
average power induced by message encoding should be of the
order or smaller than the chaos fluctuations of the bit mean.

At this point, a few remarks on noise effects are in order since
in practice the transmission scheme will always be subject to
noise. As stated before, the GLE filtering method was initially
designed to detect sudden jumps hidden by noise in data. As
for the method, the chaotic carrier is considered as a kind of
noise (whose origin is the deterministic chaos) that hides the
message. If some amount of noise is added to the transmitted
signal, within reasonable limits, the GLE will filter this noise
along with the chaotic variations and the message will be re-
covered. The presence of noise in the system will also affect the
ability of the authorized receiver to synchronize. The larger the
noise, the worst the synchronization, requiring a larger message
amplitude to keep the same quality factor at the authorized re-
ceiver. The larger the amplitude of the message, the better the
performance of the GLE.

One can also compare the nonlinear method with the much
simpler approach of taking the mean value of the time series
during the length of one bit. In order to compute the mean value
of one bit, we need to know both the transmission bit rate and
the bit starting time. This is already one advantage of the GLE
filtering method, for which this information is not needed (only
the order of magnitude of the bit rate is needed, in order to ad-
just the value of for the second pass). But the main advantage
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Fig. 6. Recovered messages (left) and eye diagrams (right) of 256 bits encoded
with MPCM at 2 Gb/s for the authorized receiver (� � 75 ns and � � ���)
with (a) � � �, (b) � � ����, and (c) � � ���.

of the nonlinear filtering can be seen in Fig. 4, where the dotted
line shows the quality factor obtained by computing the average
value over one bit. Here is clearly seen that due to its contrast en-
hancement capabilities the GLE filtering provides a much better
quality factor than averaging over the bit length, and therefore
the message can be decoded for smaller values of .

IV. NEW CODIFICATION SCHEME

The GLE filter acts by detecting changes in the mean value
of the signal, therefore it is useless if the message is encoded in
such a way that the mean value is the same for bits “1” and “0”.
As an example of an encoding method which cannot be broken
by the GLE filter, we introduce the mean preserving chaos mod-
ulation (MPCM) as

(10)

where is the mean of the chaotic carrier and is now
a binary message taking values 0 and 1. This method, in which
the message is encoded in the variations around the mean value,
is an extension of CM in which the average power for bits one
and zero is the same for any modulation amplitude, albeit more
difficult to implement experimentally. As a possible implemen-
tation, one could consider dividing the output of the emitter in
two beams. The power of one of the beams is modulated as

. The other beam goes through a low-pass
frequency filter to obtain the power average which then is mod-
ulated as . Finally, both beams are recombined.

Fig. 7. Recovered messages (left) and eye diagrams (right) of 256 bits encoded
with MPCM at 2 Gb/s �� � ����. (a) Authorized receiver� ��� (� � �� ns
and� � ����), (b) authorized receiver� ���, and (c) GLE second pass (� � 1
and � � ��	�).

The recovery of the message at the authorized receiver side
needs to account for the mean of the transmitted signal

(11)

In order to recover the message with a good quality, the autho-
rized receiver must neglect the data points in which the power of
the receiver is close to the mean value . Specifically, we dis-
card the data points that satisfy , where

is an arbitrary number larger than 0. Fig. 6 shows samples of
the recovered message for different values of and its corre-
sponding eye diagrams for . In Fig. 6(a)–(c), the largest
quality factor is obtained for . In the latter
case, 9% of the points are neglected. Notice that the neglected
points do not imply the loss of bits in the message since the dis-
carded portion of the time trace is much shorter than the length
of one bit.

Fig. 7 (a.1) and (a.2) show the message recovered using (11)
and the eye diagram for and . The eye
diagram shown in Fig. 7 (a.2) is clearly open. The eye dia-
grams have been obtained with the same synchronization de-
gree between the emitter and receiver lasers than in the CM
case 75 ns . The MPCM method enhances the security
of the communications at the expense of sacrificing part of the
quality of the recovered message. In Fig. 8, we show the quality
factor of the recovered message by an authorized receiver for
different values of . We can see that while the quality of the
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Fig. 8. Quality factor � as a function of the encrypted message modulation
amplitude � using the mean-preserving chaos modulation (MPCM) scheme. The
solid lines correspond to the authorized receiver (circles for � ��� and squares
for � ���).

recovered message is lower compared to Fig. 4, even though we
are modulating at a slower bit rate, the message is still well re-
covered.

As stated in Section II, the division in (11) may not be
straightforward to implement experimentally, therefore we will
also consider a second message recovery method, given by

(12)

Fig. 7 (b.1) and (b.2) show the same message as Fig. 7 (a.1)
and (a.2) but recovered using (12), when the division is not avail-
able. In this case, the eye diagram is barely open and the quality
factor is reduced, as shown in Fig. 8. Given these results, it is
not clear that this method could be implemented experimentally
if the division is not feasible.

Now we apply the GLE method to a message encoded using
this scheme. The result of the decoding operation is shown in
Fig. 7(c) for . As can be seen, nothing can be recovered
from the encoded message but random bits. Independently of the
value of used to encode the message the GLE method is unable
to extract it. Due to the way in which the GLE filter works in this
case, it creates bits given by the variations of the chaotic signal
only, and not by the variations in the mean value produced by
the encoded message. We do not estimate the -factor since in
this situation its value is basically meaningless.

V. CONCLUSION

In this work, we applied a nonlinear filtering method based
on the GLE. Since this method is able to detect changes on the
mean value of a data series, by properly tuning the parameters
of the GLE, we were able to break communications schemes in
which the change in bit average power induced by message en-
coding is larger than the one induced by the chaotic fluctuations.
This nonlinear filtering method outperforms linear filters, due to
the fact that besides filtering the fast frequencies of the chaotic
signal as the linear filter does, the nonlinear one enhances the
contrast of the bits “1” and “0”, improving the quality factor of
the recovered message.

Therefore, if the codification is done without preserving the
average power for bits “1” and “0”, the codification amplitude
should be of the same order or smaller than the variations of the
mean value of the chaotic signal over the length of one bit. Am-
plitude modulations larger than that pose a security threat since

the message could be eventually detected by an eavesdropper
using the method proposed here or a similar one.

Finally, we have introduced a new codification method which,
although its implementation is more cumbersome, constitutes
an example of encoding that preserves the average power for
bits “1” and “0”. In this way, the nonlinear filtering method de-
scribed here or similar methods aiming at detecting variations
in the mean become ineffective.
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