| 1  | Transferring Atlantic maritime pine improved material to a region with marked                          |
|----|--------------------------------------------------------------------------------------------------------|
| 2  | Mediterranean influence in inland NW Spain. A likelihood-based approach on spatially                   |
| 3  | adjusted field data                                                                                    |
| 4  |                                                                                                        |
| 5  | Raúl de la Mata <sup>1</sup> *, Rafael Zas <sup>2</sup>                                                |
| 6  |                                                                                                        |
| 7  | <sup>1</sup> Centro de Investigación Forestal de Lourizán. Apdo. 127, 36080 Pontevedra, Spain; E-mail: |
| 8  | rmata.cifal@siam-cma.org.                                                                              |
| 9  | <sup>2</sup> Misión Biológica de Galicia. CSIC. Apdo. 28, 36080. Pontevedra, Spain. E-mail:            |
| 10 | rzas@mbg.cesga.es.                                                                                     |
| 11 |                                                                                                        |
| 12 | * to whom correspondence should be addressed. Current address: Misión Biológica de                     |
| 13 | Galicia. CSIC. Apdo. 28, 36080. Pontevedra, Spain; phone: +34 986 854800.                              |
| 14 |                                                                                                        |
| 15 |                                                                                                        |
| 16 |                                                                                                        |
| 17 |                                                                                                        |
| 18 |                                                                                                        |
| 19 |                                                                                                        |
| 20 |                                                                                                        |
| 21 |                                                                                                        |
| 22 |                                                                                                        |
| 23 |                                                                                                        |
| 24 |                                                                                                        |
| 25 |                                                                                                        |

# 1 Abstract

2 The inland region of Galicia (NW Spain), marks the boundary between the Atlantic climate of the coastal area and the typical Mediterranean climate of central Spain. Compared to the 3 4 Atlantic coast, climate in this area has a pronounced summer drought, lower annual 5 precipitation, and higher annual thermal oscillation. Despite the high productivity and 6 ecological importance of maritime pine in inland Galicia, local forest reproductive material (FRM) of high genetic quality is not available for this area. Seed sources originating 7 8 elsewhere and of unknown adaptation to this area are commonly used for reforestation. With 9 the aim of finding new sources of FRM for this region and exploiting the genetic gains of 10 existing breeding programmes, we analyzed the performance in field conditions of improved 11 families of the Coastal Galicia (CG) and Western Australia (WA) breeding programmes. Growth, stem characteristics and branch habit were evaluated in 5 progeny trials established 12 13 following a coastal-to-inland gradient. Likelihood-based analyses were used to estimate 14 genetic correlations between environments and to test statistically for causes and patterns of 15 genotype  $\times$  environment interaction. Because of the strong non-random spatial structures and 16 heterogeneity of residual variances, the analyses were carried out using heterogeneous residual variance mixed models on spatially adjusted data. The results indicated that there is 17 18 not sufficient evidence to subdivide Galicia into the two current deployment areas. Interaction 19 patterns do not reveal significant differences between zones, and crossover interactions for 20 height growth are present both between and within areas. On the inland sites, the Atlantic 21 improved materials clearly outperformed unimproved seedlots tested in adjacent provenance trials, suggesting the feasibility of using both the CG and WA breeding materials as sources 22 23 of FRM for reforestation in inland Galicia. Of the two, the WA material showed excellent 24 results for all traits. The inclusion of this material into the Galician maritime pine breeding 25 population should be strongly considered.

1

Keywords: *Pinus pinaster*, progeny trial, iterative spatial analysis, genotype × environment
interaction, spatial autocorrelation, REML estimation, genetic correlation, variancecovariance matrix, heterogeneous variance models

5

#### 6 **1. Introduction**

7 Maritime pine (Pinus pinaster Ait.) is one of the most important forestry species in Galicia 8 (NW Spain) where nearly 400.000 ha of pure and mixed stands are present (27% of the wooded area in Galicia), producing up to  $2 \cdot 10^6$  m<sup>3</sup> of round-wood per year (Sanz et al. 2006). 9 10 Galicia is located in the extreme North West of Spain and is typically characterized by an Atlantic climate, although two main climatic regions can be distinguished. The coastal region 11 12 (up to 600 m above sea level) has high annual rainfall (1500-2500 mm) and short annual 13 thermal oscillation (10-11 °C), corresponding with Regions of Identification and Utilization 14 (RIUs) of forest reproductive material number one and three (Figure 1) (García et al. 2001). 15 The inland region of Galicia (corresponding with RIU number two, Figure 1) is a boundary 16 area where the Atlantic climate of the coastal area meets with the typical Mediterranean climate of Central Spain. Climate in this area has a pronounced summer drought (summer 17 18 precipitation of 60-100 mm), lower annual precipitation (600-1200 mm), and higher annual 19 thermal oscillation (13-14 °C) owing to the greater continental influence. Maritime pine is 20 abundant and has large productive relevance in both areas. Previous studies have identified 21 important differences in terms of growth patterns and genetic structure between both regions (Alía et al. 1996; Álvarez-Gonzalez et al. 2005). 22

A genetic improvement programme of *P. pinaster* in the coastal area of Galicia was initiated in 1985. It has included phenotypic mass selection in wild stands and use of this material for seed production in clonal seed orchards. The breeding objectives were focused 1 mainly on improving growth traits, stem form, and branch quality (Zas and Merlo 2008). By 2 contrast, in the inland area, although the annual rate of plantation is also high, local 3 reproductive material of good quality is not available. Foresters need to introduce material 4 from other Spanish provenances, often with questionable adaptation to this area, and typically 5 showing low growth rates and being of poor quality stem form. Looking for alternative 6 material that performs well in the inland region has become a primary objective in order to 7 provide immediate seed sources suitable for planting in this area.

8 The coastal region breeding programme has been progressing in recent years, based on 9 the results of a series of progeny trials established in the coastal area. Using the information 10 obtained in these trials a new depurate clonal seed orchard has been recently installed, and the 11 selection of a second breeding generation has been started (Zas and Merlo 2008). The important gains and good results achieved in the Coastal area encourage us to explore the 12 13 possibility of using the coastal breeding material in the inland region, combining the breeding 14 efforts and minimizing the overall costs. Galicia would constitute a single breeding area, and 15 new material for the inland region would be available in a short space of time. However, the 16 coastal seed orchard's families have only been tested in the coastal zone, and no information is available regarding their performance within the inland region. Previous results revealed a 17 18 large genotype  $\times$  environment (G $\times$ E) interaction in the breeding population both in field 19 conditions within the coastal area (Zas et al. 2004; Martíns et al. 2009), and in a drought 20 experiment under controlled conditions (Zas and Fernández-López 2005). However, G×E 21 interaction was found to be originated by a small number of families especially sensitive to 22 environmental variation, whereas most of the families tested showed a stable behaviour. Selecting for stability has been thus suggested as an option for obtaining material suitable for 23 24 both climatic regions (Zas and Fernández-López 2005).

1 A breeding programme in Western Australia (WA) started in the 1950s using a plus tree selection from within the Leiría (Portugal) provenance, and has now completed several 2 3 breeding selection cycles, achieving important genetic gains in growth, stem form and 4 branching habit (Butcher 2007; Butcher and Hopkins 1993; Perry and Hopkins 1967). The 5 Leiría provenance is a clear Atlantic provenance, whereas the current areas reforested with P. 6 pinaster in WA are medium-low rainfall (400-600 mm) ex-agricultural sites with a marked 7 Mediterranean influence (Butcher 2007). Drought tolerance is therefore an important trait for 8 selection in this breeding programme (Butcher 2007; Butcher and Chandler 2007). The WA 9 example therefore supports the feasibility of achieving successful results through recurrent selection upon Atlantic material for use in more Mediterranean conditions with strong 10 11 summer droughts (Butcher 2007; Butcher and Chandler 2007).

12 The present study aims to assess the field performance of improved materials with 13 different levels of selection (Coastal Galician (CG) and Western Australia (WA) breeding 14 programmes) in the inland region of Galicia. We also analyzed in detail the magnitude and relevance of the G×E interaction within and between the two current deployments areas 15 16 (Coastal and Inland Galicia) in order to assess the suitability of this zonification. To this end we evaluated the performance of 111 half-sib CG P. pinaster families and six WA families in 17 five sites, two located in the coastal and three in the inland region of Galicia, three and seven 18 19 years after planting. The feasibility of the Atlantic breeding materials in the inland sites was 20 assessed through comparisons with unimproved seed sources planted in adjacent provenance 21 trials.

22

23 **2. Material and methods** 

24 **2.1. Genetic material and test sites** 

The study material consists of half sib families obtained from 111 selected plus trees represented in a first generation clonal seed orchard (Sergude, 42.82° N, 8.45° W) which provide high genetic quality seed for reforestation in the coastal area of Galicia (Figure 1). All these plus trees were individually selected from natural stands or from plantations within the Atlantic region of Galicia, for their superior growth, stem form, and branch characteristics.

6 In addition, six improved families from the WA breeding programme were also included in all the trials (WA1-WA6). The six families were open pollinated in the second 7 8 generation clonal seed orchard at Manjimup (34.24° S, 116.14° E, Western Australia). Parents 9 were selected for vigour, stem form, small branching and resistance to drought within family trials established in WA upon open or cross pollinations between the original plus trees 10 11 selected in Leiría and plus trees selected within the WA land race. Seedlot WA6 was a 12 mixture of different families and can be considered to be representative of the average 13 performance for the Manjimup clonal seed orchard (T. Butcher, personal communication).

14 One and a half year old containerized seedlings of the 111 half-sib families and of the 15 WA material were planted in five sites in 2001. Site characteristics are presented in Table 1. 16 Daneiro and Laracha sites were within the RIU number 1 which constitutes, a priori, the deployment area for the selected material of the coastal seed orchards (Figure 1). These sites 17 have a typical Atlantic climate characterized by high annual precipitation, low summer 18 19 drought, and low temperature oscillation (Table 1). The other three sites, Becerreá, Guntín 20 and Laza, were located within the RIU number 2 which includes most of the inland area of 21 Galicia, and constitutes a transitional region towards the more continental and Mediterranean 22 climate characteristics of the central areas of the Iberian Peninsula, with prolonged summer 23 drought and wide thermal oscillation (Table 1). Becerreá is the coldest site while Guntín and 24 Laza show low annual and summer precipitation, with Laza being the drier of the two.

1

2

All five plantations follow a randomized complete block design with 25 replications (except Daneiro, with 23 replications) of one tree-plots with 3x2 m spacing (except Laza, with 2.5x2 m spacing), which is the typical spacing for *P. pinaster* plantations in this region.

3

4 In the three inland sites, a provenance trial was simultaneously planted adjacent to the 5 progeny trials. Six Spanish provenances (Bajo Tiétar, Sierra de Gredos, Montaña de Soria-6 Burgos, Serranía de Cuenca, Albarracín and Sierra Segura-Alcaraz) of the Mediterranean area 7 were tested in each site. These provenances were selected on the basis of their quality for 8 timber production within their natural stands and of their performance in previous provenance 9 trials (Alía et al. 2001; Molina 1965). All three trials follow a randomized complete block 10 design with 10 replications and 5 tree-row-plots. Seedlings of these provenance trials were 11 cultivated together with the progenies following the same nursery protocols. Both the progeny 12 and the provenance trials were planted at the same time, with the same spacing and soil 13 preparation, and were measured at the same dates. Data from these trials were used to predict 14 the performance of unimproved seed sources, to with compare the Atlantic materials (see 15 below). A specific analysis of these provenance trials are presented in a companion paper (de 16 la Mata and Zas 2009).

17

# 18 **2.2.** Assessments

All trees from each site were assessed for growth, stem form and branch characteristics at age 3 and 7, except those dead or badly suppressed. Growth traits included total height (H) measured with a pole in centimetres and diameter at breast height (D) measured with a calliper in millimetres (only assessed at age 7). Stem form and branch traits were assessed following Galera et *al.* (1997). Stem form of each tree was evaluated by a straightness score (STR: 1 = straight to 6 = very crooked) and a stem leaning score (LEN: 1 = vertical to 4 = severe lean). The number of whorls (WH) was also recorded as a measure of the branch abundance. The spatial position of each tree was determined using a total station (Pentax R 315).

The two coastal sites, Daneiro and Laracha, were significantly affected by pests and diseases, so were only assessed at age 3. Trees in Daneiro were attacked by the large pine weevil, *Hylobius abietis* L., which kills trees by girdling the stem of the young seedlings. In Laracha, the root rot fungus *Armillaria ostovae* (Romagn.) Herink caused the death of up to

Laracha, the root rot fungus *Armillaria ostoyae* (Romagn.) Herink caused the death of up to
65% of the plants three years after planting (see Zas et al. 2007). In addition the Becerreá
provenance trial was affected by the construction of a forest access track in 2005, affecting
several of the trial trees. Data on provenance performance in this site is only available for the
three year-old assessment.

11

3

4

5

# 12 **2.3. Statistical analyses**

#### 13 Correcting the spatial dependence

14 We examined the spatial structure of the dependent variable in each site by constructing the 15 empirical semivariogram for the residuals adjusted for family effects with the SAS VARIOGRAM 16 procedure (SAS-Institute 1999). Those variables that were spatially dependent were corrected 17 using the Iterative Spatial Analysis (ISA) method (Zas 2006). Briefly, this method first fits a 18 theoretical semivariogram model to the observed residual semivariogram using the SAS NLIN 19 procedure (SAS-Institute 1999). Using the theoretical semivariogram model, the spatial 20 variation of the dependent variable is then modelled by the kriging method using the KRIG2D 21 procedure of SAS (SAS-Institute 1999). The original variable is then adjusted for its spatial 22 autocorrelation, subtracting the kriging estimate in each position. Finally, the new corrected 23 variable is reanalyzed and a new estimate of the family effects is obtained, and used to 24 generate new residuals. The process is repeated iteratively, until convergence of the BLUPs estimates of family effects. A detailed description of the method can be consulted in Zas 25

1 (2006). The spatial adjustment was carried out for each site independently, including both the 2 trees of the progeny and the adjacent provenance trials, and considering a single genetic effect 3 (family or provenance) to obtain the original residuals. Once the dependent variable was 4 spatially corrected, the progeny and provenance trials were analyzed independently as shown 5 in the following sections.

6

# 7

#### Likelihood-based analyses of the site by family interaction

8 Spatially adjusted data (for traits with non random spatial structures), or original 9 unadjusted data (for spatially independent traits), were analyzed by fitting mixed models with 10 site as a fixed factor, and block within site, family and family  $\times$  site interaction as random 11 factors (Crossa et al. 2004; Yang 2002). The mixed models were fitted using the MIXED 12 procedure of SAS (Littell et al., 2006), accommodating the SAS Programmes of Yang (2002) 13 to our experimental design. Variance components were estimated using the REML method. The estimation of the family covariance structure (variances and covariance across sites) was 14 15 achieved by including the SUBJECT and TYPE option in the RANDOM statement. Heterogeneity 16 of residual variances across sites was implemented with the GROUP option of the REPEATED 17 statement. Initial values (derived from single site analyses) were specified in the PARMS 18 statement to facilitate convergence and speed calculations.

In order to explore and interpret the G×E interaction, different reduced models constraining different elements of the family covariance structure were fitted. Constraints to the family covariance structures were specified by choosing appropriate predefined covariance models for the TYPE option in the RANDOM statement, and/or by fixing specific covariance parameters to certain values using the HOLD option of the PARMS statement (Crossa et al. 2004; Fry 2004; Yang 2002). Out-of-bond family correlations (> 1, or < -1) were avoided by including the UPPERB and LOWERB option in the PARMS statement. A detailed list of the different models and

1 the corresponding hypothesis analyzed is listed in Table 2. Hypothesis testing regarding the 2 constraints imposed on the family-covariance structure was done by comparing the restricted log-likelihoods (RLL) of the constrained model and the unconstrained model (usually the full 3 4 model with an unstructured family covariance structure, see later). Under the null hypothesis 5 that the full covariance model is not different from the reduced covariance model, the loglikelihood ratio LLR =  $-2(RLL_{reduced model} - RLL_{full model})$  is distributed approximately as  $\chi^2$ 6 7 with degrees of freedom given by the difference between the number of covariance parameter 8 specifying the full model and the reduced model (Fry 2004).

9 Because we are dealing with multiple environments (3 or 5 sites depending on the 10 trait) the following strategy was employed (Yang 2002). Firstly, we analyzed our data with the conventional mixed model typically used in tree breeding, which assumes a constant 11 12 family variance and covariance across sites (i.e. a compound symmetry (CS) covariance 13 structure), and homogeneity of residual variance. This model was compared with a less restrictive model in which residual variances were allowed to vary between sites. 14 15 Homogeneity of residual variance is a main assumption of conventional statistical analyses and the non-fulfilment of this requisite is known to be a possible cause of spurious 16 17 interactions (Yang 2002). Significance of family and family  $\times$  site interaction was analyzed 18 comparing the RLL of each factor included versus excluded from this model. This test of G×E 19 interaction, although commonly used, may be not appropriate in cases of heterogeneous 20 family variance and/or covariances across sites. A more precise analysis of the significance of 21 the G×E interaction in a broad sense was implemented comparing the CS model without the term G×E (Model H1 in Table 2) with the unstructured covariance model (the full model H0), 22 23 in which all possible causes of G×E (i.e. family heterogeneity across sites and deviations from perfect family correlations between environments) are allowed (Yang 2002). Secondly, we 24 25 specifically tested for the contribution of each of the different possible causes of G×E.

1 Heterogeneity of family variance was analyzed by comparing the CS family covariance structure model (model H2 in Table 2) with the heterogeneous compound symmetry 2 3 covariance structure model (CSH, model H4 in Table 2). Deviations from perfect correlations, 4 which can be interpreted as a test of cross-over interactions (Yang 2007), were analyzed by 5 comparing a model in which all family correlations are fixed to 1 (model H3 in Table 2) with 6 the full model H0. Finally, if significant deviations from perfect correlations were detected, 7 we examined whether family correlations between sites were constant across all pairs of 8 environments (model H4 in Table 2) or whether they differed depending on the site pairs (full 9 model H0). Additionally, for traits assessed both in Coastal and Inland sites (i.e., traits 10 assessed at age 3), we also investigated whether the crossover interactions were due to 11 deviations from perfect correlations between sites of different areas. This hypothesis was 12 analyzed comparing the full model with a model in which all family correlations between 13 sites of the same area were fixed to 1, whereas family correlations between sites of different 14 areas were unconstrained (model H5 in Table 2).

15 SAS codes for performing all these analyses are available from the second author upon16 request.

17

# 18 Comparisons between WA and CG materials

In order to analyze the statistical differences between the families of the WA and CG breeding programmes, we reanalyzed the data including the Breeding Programme and the Programme X Site interaction as fixed effects in the mixed models, and nesting families within breeding programmes. Additionally, the best linear unbiased predictor (BLUP) of each WA family was statistically compared with the BLUP of the average of all the 111 CG families using the ESTIMATE statement of the MIXED procedure (Littell et al. 2006, chap. 6).

25

### 1 Superiority of the improved materials

Because no control seedlots were included in the trial series, we used the adjacent 2 provenances tests to obtain predictors of unimproved seed sources with which to compare the 3 4 selected materials. Despite the provenance and the progeny trials being two independent 5 trials, with independent experimental designs, statistical comparisons between them were 6 reliable due to the fact that common spatial adjustments accounted for the eventual microenvironmental differences between both trials. We estimated the confidence intervals at 7 8 95% for BLUPs of each family and provenance across the three inland sites using the 9 ESTIMATE statement of the MIXED procedure (Littell et al. 2006). Non overlapping confidence 10 intervals were interpreted as significance differences between the improved families and the 11 unimproved provenances. Becerreá was not considered for traits assessed at age 7 because 12 data for the provenance trial from this site at age 7 was lacking.

13

# 14 **3. Results**

15 Mean heights (H) were notably different over the different sites, indicating different site 16 indexes. Height means varied from 78.6 cm in Daneiro to 133.9 cm in Laracha at age 3, and from 295.1 cm in Becerreá to 350.3 cm in Guntín at age 7 (Table 1). The dispersion of the 17 individual tree heights within each site was very high, with coefficients of variation up to 18 40%. For instance, individual tree heights at age 7 varied in Laza from 52 cm to 683 cm, i.e. 19 20 more than 5 m between the lowest and the highest tree. For each trait, the corrected data 21 adjusted for spatial autocorrelation showed the same site mean as the uncorrected data, but a 22 clearly smaller dispersion, with coefficients of variation of just 15-20% (data not shown).

The survival in the coastal sites was abnormally low (39 and 35 % in Daneiro and Laracha at age 3, respectively) because of the sanitary problems explained before. Of the

- inland sites, survival rates were acceptable in Guntín and Laza with values of around 93 % at
  age 7, whereas it was notably lower in Becerreá (58 % at age 7).
- 3

### 4 **3.1. Spatial dependence and homocedasticity**

5 Residuals after subtracting family effects revealed pronounced non-random spatial structures 6 for the growth traits and the number of whorls in all sites (Table 3). The spherical theoretical semivariogram fitted well to the observed semivariogram for most of these traits ( $r^2 > 0.85$ , 7 8 p<0.001). The variation explained by the spatial pattern varied from 10.6% for WH in 9 Becerreá at age 3 to 73.2% for H in Laza at age 7 (Table 3, see also Figure S1 supplied as supplementary online material). Height at age 7 showed the largest intensities of the spatial 10 11 dependence, with values of the patch variance to sill variance ratio varying from 41.4 to 12 73.2%. The range  $(a_0)$  or patch size of the theoretical semivariograms was greatly variable, ranging from 29.3 m for H in Daneiro at age 3 to 103.9 m for H in Laza at age 3 (Table 3). 13 14 Stem form traits revealed random spatial structures with the exception of Becerreá and 15 Daneiro sites, where STR and LEN revealed a slight spatial autocorrelation.

Heterogeneity of residual variances was observed for all traits and ages (see Table S1 as supplementary online material). Log-likelihood ratios for the heterogeneous variance models were much lower than those for the respective equal variance models, and the differences were highly significant (p < 0.001) in all cases.

Because of heterogeneity of residual variances in all cases, all further analyses presented in the following sections were based on heterogeneous error variance models, and in those cases where non random spatial structures were found (Table 3), spatially adjusted data were employed.

24

#### 25 **3.2. Family variation and family × site interaction**

1 Results of the conventional mixed model including family and family  $\times$  site interaction as 2 random effects (i.e., assuming a compound symmetry family covariance structure with 3 constant variance and constant covariance) are shown in Table 4. Using this model, family 4 variation was highly significant for all traits and ages, and the family  $\times$  site interaction was 5 significant (p < 0.05) or marginally significant (p < 0.10) for seven out of the 9 traits. The 6 number of whorls at age 3 and the leaning score at age 7 were the traits with no significant family  $\times$  site interaction. The ratio of interaction to family variance component ( $\sigma_{fs}^2/\sigma_f^2$ ) was 7 8 relatively low in all cases, and varied between 0.10 for leaning at age 7 to 0.54 for height at 9 age 3.

10 A comprehensive likelihood-based analysis regarding the relevance and interpretation 11 of the family  $\times$  site interaction for three selected traits is shown in Table 5. When all possible 12 causes of interaction are considered, the family  $\times$  site interaction was highly significant in all cases. These results disagree with those presented in Table 4 for the number of whorls at age 13 14 3 and straightness at age 7. These discrepancies arise because results presented in Table 4 are based on a model that assumes homogeneity of family variance and covariance across sites, 15 16 which are clearly inappropriate assumptions in these cases. Indeed, the large heterogeneity of 17 family variance across sites for these traits (Table 5) is responsible for the significant family  $\times$ 18 site interaction. On the other hand, the lack of perfect family correlation between sites 19 contributed significantly to the family  $\times$  site interaction in the cases of height growth at both 20 ages, and straightness at age 3, suggesting family rank changes across sites for these traits. 21 Moreover, the results of the H4 hypothesis indicate that the family covariance across sites for 22 height growth was fairly constant for all pairs of sites (Table 5). Thus, family rank changes 23 are likely to be equally distributed among all pairs of sites and no single site or group of sites 24 is responsible for the cross-over interaction (see the low variation in family correlations 25 between sites in Table 6). This is not the case with straightness at age 3, where the common-

1 covariance model (H4) fitted significantly less well than the unstructured covariance model 2 (Table 5). The family correlations between sites (Table 6) indicate that Becerreá, which shows 3 no significant family correlations with any other site, has a clearly anomalous behaviour for 4 this trait. Furthermore, in the case of height and straightness age 3, deviations from perfect 5 correlations appeared both within and among the two deployment areas (coastal and inland 6 Galicia). Assuming perfect correlation between sites of the same area and allowing family rank changes between sites of different areas (H5 hypothesis) resulted in clearly and 7 8 significantly less well-fitting models (Table 5).

9

# 10 **3.3. Performance of the CG and WA material**

11 Grouping the families into the two breeding programmes which they originated (WA and 12 CG), and including this origin and its interaction with sites as fixed effects in the mixed 13 models, resulted in highly significant differences between programmes for all traits (Table 7). 14 Families from WA performed, on average, significantly better than those from CG (Figure 2). In the case of growth traits, the programme  $\times$  site interaction was significant (Table 7) 15 indicating that the superiority of the WA material was not uniform across sites. The 16 superiority in height growth of the WA material was more evident in Laza and Guntín (Table 17 8). Among the different WA families tested, WA4 always ranked highly for all traits in each 18 19 of the three inland sites (Table 8), whereas WA1 showed reduced growth and worse stem 20 form. Other WA sources showed intermediate results.

Both the CG and WA materials grew significantly more than the average performance of the unimproved seed sources tested in the adjacent provenance trials, and none of the single provenances performed better than the average of the improved material (Figure 2). However, although the mean performance in stem form traits of the 6 provenances was worse than the average of the improved materials, there were some single origins that stand out with very
 straight stems and low number of whorls (Figure 2).

3

# 4 **4. Discussion**

5 This paper provides new information about the performance of Atlantic improved material in 6 the inland region of Galicia, where the Atlantic character is clearly modified by continental and Mediterranean influences. Growth patterns of maritime pine in Galicia are known to 7 8 differ between the inland and the coastal area, as a consequence of both environmental and 9 genetic factors (Álvarez-Gonzalez et al. 2005; Barrio-Anta et al. 2006). Our results are in 10 agreement with this, and the height growth of the studied material in the inland sites was 11 lower than that observed in the coastal region in an earlier trial series at similar ages (Zas et 12 al. 2004). However, mean height growth in the three inland sites was similar to intermediate 13 to high site index P. pinaster plantations in this area (Álvarez-Gonzalez et al. 2005), 14 suggesting that the coastal material also performed relatively well in the drier and colder 15 environmental conditions of the inland region.

16 Results from the likelihood-based analyses of the G×E interaction also indicate that there is not sufficient evidence to warrant the subdivision of the region into the two 17 independent deployment areas of Coastal and Inland Galicia. This subdivision would be only 18 19 justified if the relevance of the G×E interaction were much lower within than between areas. 20 The G×E interaction is of consequence only when it involves rank changes across sites (i.e. 21 crossover interactions) and so, deployment areas should cluster sites into groups with statistically negligible crossover interactions (e.g. Crossa et al. 2004). In this study, family  $\times$ 22 23 site interaction was highly significant for most of the studied traits, however this interaction 24 was due to departures from perfect family correlations between sites only in the case of height 25 growth and straightness at age 3. Imperfect genetic correlations between environments

suggest crossover interactions (Yang, 2007; Crossa et al. 2004). Thus, for these traits, there 1 2 could be major disadvantages to merging both areas into a single deployment zone. However, 3 the analysis of additional hypotheses regarding the genetic correlations between sites revealed 4 that, in the case of height growth, crossover interactions are as important within areas as 5 between areas. Constraining genetic correlations between sites of the same deployment area to 6 1 (i.e. avoiding family rank changes within areas) significantly reduced the log likelihood of 7 the model, and thus resulted in an inappropriate model compared with the unconstrained full 8 model. Moreover, genetic correlations between sites were similar for pairs of sites of the same 9 or different areas, and the mixed models that assumed a constant family correlation between 10 sites fitted as well as the unstructured full model. Thus, the pattern of the crossover 11 interactions for height growth seemed to be similar between all possible pairs of sites, 12 irrespective of the sites belonging to the same or different deployment areas.

13 The interpretation of the crossover interactions for straightness at age 3 was different. 14 Assuming a constant family correlation between sites was not appropriate for this trait, and 15 Becerreá seemed to be a site showing clearly anomalous behaviour. Family correlations 16 between this site and the other four sites were not significant and even negative in some cases, whereas the remaining family correlations were significant and positive. The anomalous 17 results for straightness in Becerreá, a site near the upper limit of the distribution of the 18 19 species, are likely to be caused by the strong and irregular slope and the presence of snow 20 during the winter. Additionally, straightness was assessed as an ordinal trait (1-6 scale), and 21 residuals of the mixed models significantly (p < 0.05; Kolmogorov-Smirnov test) departed 22 from normal distributions, although residual histograms were unimodal and relatively 23 unskewed. Normality of residuals is a main assumption of mixed models (Littell et al. 2006), 24 so results regarding this trait should be managed with care here. Generalized linear mixed 25 models would have provided a more appropriate way of analyzing an ordinal trait such as this (Bolker et al. 2009), but fitting generalized linear mixed models to our large data set and
 imposing constraints to the family covariance structure resulted in a failure to converge.

The pest and disease problems that occurred in the coastal sites may be also distorting the results regarding the comparison of inland and coastal performance. Both the fungus and the pest significantly reduced the survival and growth of the pine seedlings (Zas et al. 2007), and may have also favoured severe deformities in the stems (Sampedro et al. 2009). In addition, pine growth and stem straightness in the five studied sites could be also heavily influenced by rooting problems induced by the relatively long time nursery period (up to 19 months) and the small containers used (Superleach 125 cm<sup>3</sup>) (Climent et al. 2008).

10 Both across and within site variation in the studied traits was very high. The results 11 indicated a strong spatial autocorrelation for all the growth variables, reflecting the strong 12 within site heterogeneity, whereas no spatial pattern was found for the stem form variables, 13 except in Becerreá and Daneiro. Spatial dependence in stem form traits in these sites may be 14 caused by the strong and irregular slope and the presence of snow during the winter in 15 Becerreá, and by the existence of patchy waterlogged areas in Daneiro, that caused severe 16 deformities in the stem. Non random spatial patterns in traits assessed in forest genetic trials 17 are very common (Dutkowski et al. 2006; Fu et al. 1999). Augmenting standard analytical 18 models with spatial components have shown to increase the accuracy of genetic parameter 19 estimates and to increase the treatment correlation between tests (Dutkowski et al 2006; Oiao 20 et al. 2000; Zas 2006). The impact of the spatial autocorrelation on the analyses of forest 21 genetic trials can be so dramatic that several authors stated that leaving data unadjusted in the 22 presence of spatial autocorrelation is clearly unacceptable (Costa-Silva et al. 2001; Dutkowski 23 et al. 2006; Zas 2006). PROC MIXED in SAS allows to fit spatial correlation models in which 24 residuals are allowed to be autocorrelated among themselves, with autocorrelation being a function of the distance that separate them (Littell et al. 2006, chap. 11; Saenz-Romero et al. 25

1 2001). The mixed models used in the present paper could thus have been augmented allowing 2 for an autocorrelation structure of the residual variation within each site. However, both 3 fitting spatial autocorrelation models and fitting heterogeneous residual variation models with 4 unstructured family covariance structure across sites are computationally very demanding. 5 Integrating all these family and residual covariance structures into a single mixed model 6 would be very difficult with a conventional personal computer. Thus, the procedure used here, 7 in which we first adjusted data for spatial autocorrelation (Zas 2006) and then fitted these 8 complex mixed models, seems to be an operative way to circumvent this problem.

9 The studied trial series lacks control seedlots of local origin with which to compare the 10 improved materials. Indeed, finding a representative seedlot of the many different origins 11 commonly used in the maritime pine plantations in the inland region of Galicia would be a 12 difficult task. We took advantage of the adjacent provenance tests to get estimates of 13 unimproved seed sources in the area. Comparisons between materials from these adjacent 14 trials with independent experimental designs were possible thanks to the common spatial 15 adjustment, which accounted for the microenvironmental variation between the two trials 16 within each site. The results indicate that both the CG and WA improved materials grew 17 significantly more than all the provenances tested. On average, stem form and branching habit 18 of the improved materials were also better, but some individual provenances from Central 19 Spain performed clearly better regarding these traits. Atlantic origins are known to present 20 poor forms, and are clearly surpassed in provenance tests by other mountain origins such 21 Morocco, Corsica, and Sierra de Gredos (Alía et al. 1995). In fact, the French maritime pine 22 breeding programme, developed upon the basis of the Atlantic Landes provenance, has 23 exploited interprovenance crosses with Corsican origins to improve stem straightness of the 24 local population (Alazard 1988; Harfouche and Kremer 2000). Our results also suggest that the superiority of the Atlantic improved materials in inland Galicia could be complemented 25

by introducing favourable genes for straightness and branching habit through introgression.
Interprovenance crosses with Albarracín (good stem straightness) and Sierra de SeguraAlcaraz (low number of whorls), or with other mountain origins of known stem straightness
(e.g. Morocco, Corsica or Sierra de Gredos; Alía et al. 1995; Harfouche and Kremer 2000;
Sierra de Grado et al. 2008) should therefore be considered.

6 The Western Australia breeding programme has achieved, using an Atlantic 7 provenance, very good results and ample gains for use in areas of severe drought within that 8 region (Butcher 2007). The wide genotypic variation within provenances (Mariette et al. 9 2001; Petit et al. 1995) and the characteristic phenotypic plasticity of the species (Alía et al. 10 1997; Chambel 2006) offer a plausible explanation for this large flexibility. The performance 11 of the WA material in inland Galicia was also very good, always above the overall average at 12 each site. The superiority of the WA families was evident for the three main studied traits: 13 growth, stem form and branch habits (Figure 2, Table 7, Table 8). However the performance 14 of the WA families was fairly variable across the three inland sites (Table 8). As expected, the 15 best development of this material occurred on the driest sites (Guntín and Laza), while the 16 worst performance was on the coldest one (Becerreá). Among the different WA families, 17 WA4, a full cross between "sexy" clones characterized by a high resistance to drought, good growth and strong apical dominance, was one of the most stable and stands out as one of the 18 19 best families for the three main traits in the three inland sites. The remaining WA families, except WA1, also show superior growth in Laza and Guntín, but only intermediate 20 21 performance in terms of stem form. Results from the WA6 seedlot, which is a mixture of different open pollinated families from the 2<sup>nd</sup> generation clonal seed orchard at Manjimup 22 23 (WA), indicated that, on average, the material from this seed orchard performed better than 24 that from the Galician coastal seed orchard, although the differences were only significant in 25 the case of growth on the two warmest and driest sites. Because the tree breeding programme

for maritime pine in WA has continued to progress in recent years (Butcher 2007), we could
 expect even greater gains with new WA materials with higher levels of selection. Testing new
 seedlots from WA is, therefore, highly recommended.

4 As a practical conclusion, the results of this paper suggest the feasibility of using both 5 the CG and the WA breeding materials as possible sources of forest reproductive material for 6 the inland region of Galicia. Specifically, based on the excellent results of the WA material, 7 importing seed for reforestation in inland Galicia and/or including specific selected WA 8 genotypes into the local breeding population should be strongly considered. Furthermore, 9 judging from the results of the G×E interaction analyses, there is not sufficient evidence to 10 subdivide Galicia into the two current deployment areas, coastal and inland Galicia. 11 Interaction patters do not reveal significant differences between zones, and crossover 12 interactions for height growth are present both between and within areas. Although a strategy 13 is undoubtedly needed to deal with the overall crossover interactions, based on the results of 14 the present paper, both zones could be merged into a single breeding and deployment area.

15

#### 16 **5. Acknowledgements**

This study was supported by the Instituto Nacional de Tecnología Agraria y Alimentaria 17 (INIA) projects RTA05-173 and RTA07-100. The series of trials were established under 18 19 supervision of Guillermo Vega and Josefa Fernández-López, within the development of the 20 Forest Genetic Improvement Programme of Galicia, funded by the European Union and 21 Xunta de Galicia. We thank Ana Hernández for her helpful participation in data processing 22 and field assessments, Dr. Esther Merlo for stimulating discussion on the results, Pablo 23 Xesteira for helping in trial maintenance, and Ricardo Ferradás, Raquel Jares, Manuel 24 Cerviño, Emilio Pérez, Xoaquín Moreira and Patricia Martíns for field assessments. We also 25 gratefully acknowledge Trevor Butcher (Department of Conservation and Land Management,

1 WA) for providing the Western Australia improved seedlots and providing valuable 2 suggestions on earlier versions of the manuscript. Valuable comments by Dr. Luis Sampedro 3 and two anonymous reviewers also helped to improve the quality of the manuscript.

4

#### 5 **References**

6 Alazard, P. 1988. Intérêt de la race Corse dans le programme d'amélioration génétique du pin
7 maritime. Ann Rech Sylv. AFOCEL.

8 Alía R, Gil L, Pardos JA (1995) Performance of 43 *Pinus pinaster* Ait. provenances on 5
9 locations in central Spain. Silvae Genet 44: 75-81

10 Alía R, Martin S, De Miguel J, Galera R, Agúndez D, Gordo J, Catalán G, Gil L (1996) Las

- 11 regiones de procedencia de *Pinus pinaster* Ait. OA de Parques Nacionales. DGCONA,
  12 Madrid
- 13 Alía R, Moro J, Denis JB (1997) Performance of *Pinus pinaster* provenances in Spain:
- 14 interpretation of the genotype by environment interaction. Can J For Res 27: 1548-1559
- 15 Alía R, Moro J, Denis J-B (2001) Ensayos de procedencias de Pinus pinaster Ait. en el centro
- 16 de España: resultados a la edad de 32 años. Inv. Agraria: Sist Rec For 10: 333-354
- 17 Álvarez-Gonzalez JG, Ruiz-Gonzalez AD, Rodriguez-Soalleiro R, Barrio-Anta M (2005)
- 18 Ecoregional site index models for *Pinus pinaster* in Galicia (NW Spain). Ann For Sci 62:
  19 115-127
- Barrio-Anta M, Balboa-Murias Mn, Castedo-Dorado F, Diéguez-Aranda U, AlvarezGonzález JG (2006) An ecoregional model for estimating volume, biomass and carbon pools
  in maritime pine stands in Galicia (NW Spain). Forest Ecol Manage 223: 24-34
- 23 Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen RP, Stevens MH, White JS (2009)
- 24 Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol
- 25 Evol 24: 127-135

Butcher TB (2007) Achievements in forest tree genetic improvement in Australia and New
 Zealand 7: Maritime pine and Brutian pine tree improvement programs in Western Australia.
 Aust For 70: 141-151

Butcher TB, Chandler AL (2007) Maritime pine for dry-land Western Australia. Joint
Australian Forest Genetics and IUFRO Southern Pines Working Group (2.02.20) Conference.
11-14 April 2007, Hobart Australia. (Proceedings in press as CD and at
http://www.crcforestry.com.au/)

8 Butcher TB, Hopkins ER (1993) Realised gains from breeding *Pinus pinaster*. For Ecol
9 Manage 58: 211-231

Climent J, Alonso J, Gil L (2008) Root restriction hindered early allometric differentiation
between seedlings of two provenances of Canary Island Pine. Silvae Genet 57: 187-193

Costa-Silva J, Dutkowski GW, Gilmour AR (2001) Analysis of early tree height in forest
genetic trials is enhanced by including a spatially correlated residual. Can J For Res 31: 18871893

15 Chambel MR (2006) Variabilidad adaptativa y plasticidad fenotípica en procedencias de 16 pinos ibéricos. Thesis. Departamento de Silvopascicultura. Universidad Politécnica de Madrid 17 de la Mata R, Zas R (2009) Performance of maritime pine Spanish Mediterranean 18 provenances at young ages in a transitional region between Atlantic and Mediterranean 19 climates in NW Spain. Silvae Genet In press

Crossa J, Yang R-C, Cornelius PL (2004) Studying crossover genotype x environment
interaction using linear-bilinear models and mixed models. J Agric Biol Environ Stat 9: 362380

Dutkowski GW, Costa-e-Silva J, Gilmour AR, Wallendorf H, Aguiar A (2006) Spatial
analysis enhances modelling of a wide variety of traits in forest genetic trials. Can J Forest
Res 36: 1851-1870

23

Fry JD (2004) Estimation of genetic variances and covariances by restricted maximum
 likelihood using PROC MIXED. A.M. Saxton (ed) Genetic analysis of complex traits using
 SAS. SAS Institute, Cary, NC.

Fu YB, Yanchuk AD, Namkoong G (1999) Spatial patterns of tree height variations in a
series of Douglas-fir progeny trials: implications for genetic testing. Can J For Res 29: 714723

- Galera R, Martin S, Alía R, Gordo J, Aguado AM, Notivol E (1997) Manual de selección de
  masas productoras de semillas. Evaluación de caracteres. Ministerio de Agricultura, Pesca y
  Alimentación. INIA, Madrid
- 10 García JM, De-Miguel J, Alía R, Iglesias S (2001) Regiones de Identificación y Utilización de
- 11 material forestal de reproducción. Ministerio de Medio Ambiente. Serie Cartográfica, Madrid
- 12 Harfouche A, Kremer A (2000) Provenance hybridization in a diallel mating scheme of
- 13 maritime pine (Pinus pinaster). I. Means and variance components. Can J Forest Res 30: 1-9
- 14 Kremer A, Lascoux DM (1988) Genetic architecture of height growth in maritime pine (Pinus
- 15 *pinaster* Ait.). Silvae Genet 37: 1-8
- 16 Littell RC, Milliken GA, Stroup WW, Wolfinger RD, Schabenberger O (2006) SAS System
- 17 for mixed models, second edition. SAS Institute, Cary, NC
- 18 Mariette S, Chagne D, Lezier C, Pastuszka P, Raffin A, Plomion C, Kremer A (2001) Genetic
- 19 diversity within and among *Pinus pinaster* populations: comparison between AFLP and
- 20 microsatellite markers. Heredity 86: 469-479
- 21 Martíns P, Sampedro L, Moreira X, Zas R (2009) Nutritional status and genetic variation in
- 22 the response to nutrient availability in Pinus pinaster. A multisite field study in Northwest
- 23 Spain. For Ecol Manage 258: 1429-1436
- 24 Molina F (1965) Comportamiento racial del *Pinus pinaster* en el noroeste de España. An IFIE
- 25 2: 221-238

- 1 Perry DH, Hopkins ER (1967) Importation of Breeding Material of *Pinus pinaster* Ait. from
- 2 Portugal. Bulletin 75, Forests Department, Western Australia
- 3 Petit RJ, Bahrman N, Baradat P (1995) Comparison of genetic differentiation in Maritime
- 4 Pine (Pinus pinaster Ait.) estimated using isozyme, total protein and terpenic loci. Heredity

5 75: 382-389

- 6 Qiao CG, Basford KE, DeLacy IH, Cooper M (2000) Evaluation of experimental designs and
  7 spatial analyses in wheat breeding trials. Theor Appl Genet 100: 9-16
- 8 Saenz-Romero C, Nordheim EV, Guries RP, Crump PM (2001) A case study of a
  9 provenance/progeny test using Trend Analysis with correlated errors and SAS PROC
- 10 MIXED. Silvae Genet 50: 127-135
- 11 Sampedro L, Moreira X, Martíns P, Zas R (2009) Growth and nutritional response of Pinus
- 12 *pinaster* after a large pine weevil (*Hylobius abietis*) attack. Trees Struct Funct 23: 1189-1197
- 13 Sanz F, Latour S, Neves M, Bastet E, Pischedda D, Piñeiro G, Gauthier T, Lesbats J, Plantier
- 14 C, Marques A, Lanvin JD, Santos JA, Touza M, Pedras F, Parrot J, Reuling D, Faria C (2006)
- 15 Aplicacions industriais da madeira de piñeiro pinaster. Rodi Artes Gráficas S.L., Ourense
- 16 SAS-Institute (1999) SAS/STAT User's guide, Version 8. SAS Institute Inc., Cary, NC
- 17 Sierra de Grado R, Pando V, Martinez-Xurimendi P, Penalvo A, Bascones E, Moulia B
- 18 (2008) Biomechanical differences in the stem straightening process among *Pinus pinaster*
- provenances. A new approach for early selection of stem straightness. Tree Physiol 28: 835-846
- Webster R, Oliver MA (1990) Statistical methods in soil and land resource survey. Oxford
  University Press, Oxford
- Yang R-C (2002) Likelihood-based analysis of Genotype-Environment interactions. Crop Sci
  42: 1434-1440

- 1 Yang R-C (2007) Mixed-model analysis of crossover genotype-environment interactions.
- 2 Crop Sci 47: 1051-1062
- Zas R (2006) Iterative kriging for removing spatial autocorrelation in analysis of forest
  genetic trials. Tree Genet Genom 2: 177-186
- 5 Zas R, Fernández-López J (2005) Juvenile genetic parameters and genotypic stability of *Pinus*
- 6 pinaster Ait. open pollinated families under different water and nutrient regimes. Forest Sci
- 7 51: 165-174
- 8 Zas R, Merlo E (2008) El programa de mejora de *Pinus pinaster* en Galicia. Boletin CIDEU.
- 9 URL: http://www.uhu.es/cideu/Boletin/TemasBoletines.htm
- 10 Zas R, Merlo E, Fernández-López J (2004) Genotype x environment interaction in Maritime
- 11 pine families in Galicia, Northwest Spain. Silvae Genet 53: 175-182
- 12 Zas R, Solla A, Sampedro L (2007) Variography and kriging allow screening Pinus pinaster
- 13 resistant to Armillaria ostoyae in field conditions. Forestry 80: 201-209
- 14
- 15

# **Figure Captions**

**Fig. 1** Location of the *Pinus pinaster* plus trees (black dots), the five progeny trials (grey squares), the three provenance trials (black squares), and the clonal seed orchard (black star) from which CG families were obtained. Encircled numbers indicate the number of the 'Identification and Utilization Regions' (RIUs) of forest reproductive material (García et al. 2001).

**Fig. 2** Best linear unbiased predictors (BLUPs) for the 111 half sib families of the CG seed orchard (white bars) and the 6 families of the WA breeding programme (black bars, WA1-WA6), for a) height, b) straightness, and c) number of whorls at age 7 in two sites (Guntín and Laza) located in the inland region of Galicia. The best linear unbiased predictor (BLUP) of the best provenance and the overall mean of all the provenances tested in the adjacent provenance trials (grey bars) are also shown. X-axis intersects the y-axis at the overall mean of the progeny trials.

**Table 1** Location, main climatic features and overall means for height at age 3 and 7, of the*Pinus pinaster* progeny trials

|                                                  | CO            | AST            |                | INLAND         |                          |  |  |
|--------------------------------------------------|---------------|----------------|----------------|----------------|--------------------------|--|--|
|                                                  | Daneiro       | Laracha        | Becerreá       | Guntín         | Laza                     |  |  |
| Longitude (W)                                    | 8° 55' 06"    | 8° 31' 47"     | 7° 10' 32"     | 7° 40' 42"     | 7° 29' 32"               |  |  |
| Latitude (N)                                     | 43° 9' 35"    | 43° 12' 09"    | 42° 50' 16"    | 42° 54' 02"    | 42° 02' 24"              |  |  |
| Altitude (m)                                     | 210           | 252            | 900            | 550            | 770                      |  |  |
| Aspect                                           | SEE           | SW             | S              | W              | NE                       |  |  |
| Slope (%)                                        | 0             | 2              | 30             | 3              | 18                       |  |  |
| Annual precipitation (mm)                        | 1528          | 1505           | 1047           | 1000           | 783                      |  |  |
| Summer precipitation (mm) <sup>1</sup>           | 144           | 140            | 132            | 99             | 76                       |  |  |
| Gaussen Index <sup>2</sup>                       | 1             | 0              | 0              | 17             | 37                       |  |  |
| Annual mean Temperature (°C)                     | 13.2          | 12.4           | 10.4           | 11.6           | 11.1                     |  |  |
| Annual Temperature oscillation (°C) <sup>3</sup> | 10.1          | 10.8           | 13.1           | 13.3           | 13.7                     |  |  |
| No. of frost days (Tmin <0 °C) per year          | 10            | 23             | 58             | 38             | 29                       |  |  |
| Absolute minimum temperature (°C)                | -2.8          | -4.3           | -7.8           | -7.1           | -4.8                     |  |  |
| Overall height mean 3 years (cm) <sup>4</sup>    | $78.6\pm24.0$ | $133.9\pm30.9$ | $109.1\pm23.0$ | $106.1\pm20.4$ | $\textbf{88.0} \pm 22.2$ |  |  |
| Overall height mean 7 years (cm) <sup>4</sup>    |               |                | $295.1\pm60.1$ | $350.3\pm77.1$ | $300.1\pm120.8$          |  |  |

<sup>1</sup> Rain fallen during the months of June, July and August

<sup>2</sup> Gaussen =  $\Sigma(2\text{T-P})$  for each month where 2T > P (P: monthly precipitation (mm), T: monthly mean temperature (°C))

<sup>3</sup> Difference between the mean of daily maximum of the warmest month and the mean of daily minimum of the coldest month.

<sup>4</sup> Overall mean and standard deviation of height at age 3 and 7 without spatial correction.

**Table 2** Description of the full model and reduced models for testing different hypotheses on the relevance and interpretation of the genotype by environment interaction. The reduced models constrain different elements of the family variance-covariance structure<sup>(1)</sup> by specifying in the RANDOM statement of PROC MIXED different types of covariance structures (CovStruc), and/or constraining different covariance parameters with the HOLD option of the PARMS statement<sup>(2)</sup>. The parameters to be estimated in each model are shown for analyses involving 5 sites (traits assessed at age 3). The total number of parameters to be estimated (# parms) for analyses involving 5 and 3 sites is also given. All models assume heterogeneity of residual variances across sites. All hypotheses are tested by comparing the reduced models with the full model, except the H2 hypothesis which is tested by comparing the H2 model *versus* the H4 model.

|    |                                                                          |                                                                                                                              |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | # pa       | irms       |
|----|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|
| Μ  | odel and hypothesis tested                                               | Constraints                                                                                                                  | CovStruc <sup>(2)</sup> | Parameters to be estimated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5<br>sites | 3<br>sites |
| H0 | Full model. All causes of genotype x environment interaction are allowed | None                                                                                                                         | UNR                     | $\sigma_{G1}^2, \sigma_{G2}^2, \sigma_{G3}^2, \sigma_{G4}^2, \sigma_{G5}^2$<br>$\rho_{12}, \rho_{13}, \rho_{14}, \rho_{15}, \rho_{23}, \rho_{24}, \rho_{25}, \rho_{34}, \rho_{35}, \rho_{45}$<br>$\sigma_{e1}^2, \sigma_{e2}^2, \sigma_{e3}^2, \sigma_{e4}^2, \sigma_{e5}^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20         | 9          |
| H1 | No family by environment interaction                                     | $\sigma_{Gi}^2 = \sigma_{Gj}^2 = \sigma_G^2 \forall i, j; \sigma_{GxE}^2 = 0$                                                | CS*                     | $egin{aligned} &\sigma^2_G\ &\sigma^2_{e1}, \sigma^2_{e2}, \sigma^2_{e3}, \sigma^2_{e4}, \sigma^2_{e5} \end{aligned}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6          | 4          |
| H2 | Homogeneity of family variance across sites                              | $\boldsymbol{\sigma}_{Gi}^2 = \boldsymbol{\sigma}_{Gj}^2 = \boldsymbol{\sigma}_{G}^2 \forall \boldsymbol{i}, \boldsymbol{j}$ | CS                      | $\sigma_G^2, \sigma_{GxE}^2  onumber \ \sigma_{e_1}^2, \sigma_{e_2}^2, \sigma_{e_3}^2, \sigma_{e_4}^2, \sigma_{e_5}^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7          | 5          |
| H3 | Perfect family correlation<br>between all site pairs                     | $\rho_{Gij} = 1 \forall i \neq j$                                                                                            | CSH*                    | $\sigma_{_{G1}}^2, \sigma_{_{G2}}^2, \sigma_{_{G3}}^2, \sigma_{_{G4}}^2, \sigma_{_{G5}}^2 \ \sigma_{_{e1}}^2, \sigma_{_{e2}}^2, \sigma_{_{e3}}^2, \sigma_{_{e4}}^2, \sigma_{_{e5}}^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10         | 6          |
| H4 | Homogeneity of family<br>covariance across all site<br>pairs             | $\rho_{Gij} = \rho_{Gi'j'} = \rho_G \ \forall \ i \neq j, i' \neq j'$                                                        | CSH                     | $\sigma_{G1}^2, \sigma_{G2}^2, \sigma_{G3}^2, \sigma_{G4}^2, \sigma_{G5}^2$<br>ho<br>$\sigma_{e1}^2, \sigma_{e2}^2, \sigma_{e3}^2, \sigma_{e4}^2, \sigma_{e5}^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11         | 7          |
| H5 | Perfect family correlation between sites within areas                    | $\rho_{Gij} = 1 \forall i, j \in same area$                                                                                  | UNR*                    | $\sigma_{G_1}^2, \sigma_{G_2}^2, \sigma_{G_3}^2, \sigma_{G_4}^2, \sigma_{G_5}^2,  ho_{\mu_1},  ho_{\mu_5},  ho_{\mu_2},  ho_{\mu_2},  ho_{\mu_2},  ho_{\mu_3},  ho_{\mu_3},  ho_{\mu_5},  ho_{\mu_2}^2, \sigma_{\mu_2}^2, \sigma_{\mu_2}^2, \sigma_{\mu_2}^2, \sigma_{\mu_3}^2, \sigma_{\mu_5}^2, \sigma_{\mu_5}$ | 16         | -          |

<sup>(1)</sup>Under the full model, the matrices for the family ( $\Sigma_G$ ) and error ( $\Sigma_e$ ) covariance structures are as follow:

|              | Inner sites      |                                                         | Coasta                             | l sites                            | Inner sites Coastal sites          |                                                                                           |
|--------------|------------------|---------------------------------------------------------|------------------------------------|------------------------------------|------------------------------------|-------------------------------------------------------------------------------------------|
|              | $\sigma_{G1}^2$  | $ ho_{12}$                                              | $\rho_{13}$                        | $ ho_{\scriptscriptstyle 14}$      | $\rho_{15}$                        | $\begin{bmatrix} \sigma_{e1}^2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$            |
|              | $\rho_{12}$      | $\sigma_{\scriptscriptstyle G2}^{\scriptscriptstyle 2}$ | $ ho_{\scriptscriptstyle 23}$      | $ ho_{\scriptscriptstyle 24}$      | $ ho_{25}$                         | $0 \sigma_{e^2}^2 0 0 0$   > Inner sites                                                  |
| $\sum_{G} =$ | $ ho_{_{13}}$    | $ ho_{\scriptscriptstyle 23}$                           | $\sigma_{\scriptscriptstyle G3}^2$ | $ ho_{ m _{34}}$                   | $ ho_{35}$                         | $\sum_{e} = \left  \begin{array}{ccc} 0 & 0 & \sigma_{e3}^2 & 0 & 0 \end{array} \right  $ |
|              | $ ho_{14}$       | $ ho_{\scriptscriptstyle 24}$                           | $ ho_{ m _{34}}$                   | $\sigma_{\scriptscriptstyle G4}^2$ | $ ho_{\scriptscriptstyle 45}$      | $\begin{vmatrix} 0 & 0 & 0 & \sigma_{e^4}^2 & 0 \end{vmatrix}$                            |
|              | $ vert  ho_{15}$ | $ ho_{\scriptscriptstyle 25}$                           | $ ho_{\scriptscriptstyle 35}$      | $ ho_{\scriptscriptstyle 45}$      | $\sigma_{\scriptscriptstyle G5}^2$ | $\begin{bmatrix} 0 & 0 & 0 & \sigma_{e^5}^2 \end{bmatrix} \int coastar site$              |

where  $\sigma_{Gi}^2$  and  $\sigma_{ei}^2$  are the family and residual variances in site *i*, and  $\rho_{ij}$  is the family correlation between site *i* and *j*. <sup>(2)</sup> Further constrains in specific elements of the variance-covariance matrix are denoted by an \* in the CovStruc type.

**Table 3** Patch size (range in meters,  $a_0^{-1}$ ) and intensity of the spatial pattern structure (patch variance to sill variance ratio,  $I(\%) = [C_0/(C_0+C_n)]x100$ ) derived from theoretical semivariograms fitted to different traits, adjusted for genetic effects in the five test sites at age 3 and 7 after planting

|              |                   | COA        | AST      |       | INLAND   |          |          |        |          |       |  |
|--------------|-------------------|------------|----------|-------|----------|----------|----------|--------|----------|-------|--|
|              | Dan               | eiro       | Lara     | cha   | Bece     | Becerreá |          | Guntín |          | Laza  |  |
|              | $a_0(m)$          | I (%)      | $a_0(m)$ | I (%) | $a_0(m)$ | I (%)    | $a_0(m)$ | I (%)  | $a_0(m)$ | I (%) |  |
| Age 3        |                   |            |          |       |          |          |          |        |          |       |  |
| Height       | 29.3              | 19.3       | 78.9     | 25.8  | 53.6     | 29.5     | 36.8     | 24.1   | 103.9    | 38.1  |  |
| No. Whorls   | grad <sup>2</sup> | $16.5^{3}$ | $s.i^4$  |       | 61.8     | 10.6     | 44.1     | 11.4   | 70.0     | 22.5  |  |
| Leaning      | 99.0              | 26.6       | s.i.     |       | 77.6     | 12.0     | s.i.     |        | s.i.     |       |  |
| Straightness | grad              | 29.8       | s.i.     |       | 77.2     | 15.8     | s.i.     |        | s.i.     |       |  |
| Age 7        |                   |            |          |       |          |          |          |        |          |       |  |
| Height       |                   |            |          |       | 42.7     | 41.4     | 94.6     | 47.5   | 47.8     | 73.2  |  |
| Diameter     |                   |            |          |       | 48.0     | 32.6     | 88.0     | 42.1   | 34.9     | 57.9  |  |
| No. Whorls   |                   |            |          |       | 112.5    | 60.9     | grad     | 25.6   | 33.8     | 35.3  |  |
| Leaning      |                   |            |          |       | 113.5    | 17.7     | s.i.     |        | s.i.     |       |  |
| Straightness |                   |            |          |       | grad     | 18.1     | s.i.     |        | s.i.     |       |  |

<sup>1</sup> The shown patch size  $(a_0)$  is the  $a_0$  parameter of the spherical model, but is  $a_0x3$  for the exponential model (Webster and Oliver 1990).

<sup>2</sup> grad = gradient (linear semivariogram).

<sup>3</sup> For linear models, the intensity of the spatial pattern structure was calculated for a distance

of 100 m as  $100 C_0/(100 C_0 + C_n)$ .

<sup>4</sup> s.i.= spatially independent trait.

**Table 4** Summary of the mixed model analyses for different traits assessed at age 3 and 7 using a compound-symmetry structure for the family variance-covariance matrix across sites. For fixed effects (Site), F-ratio and associated significance levels are shown; for random effects (family, and family × site interaction), variance component estimates  $\pm$  standard errors (VC  $\pm$  s.e.) and associated significance levels of the log-likelihood ratio test<sup>(1)</sup> for significance of each variance component are shown.

| ٨٥٩ | Traits       | Site             | Family                     | Family x site                  |
|-----|--------------|------------------|----------------------------|--------------------------------|
| Age |              | F <sup>(2)</sup> | $VC \pm s.e.$              | $VC \pm s.e.$                  |
| 3   | Height       | 1067.0 ***       | 20.316 ± 3.496***          | $11.053 \pm 1.937^{***}$       |
|     | No. Whorls   | 407.0 ***        | $0.046 \pm 0.008^{***}$    | $0.005 \pm 0.005^{ns}$         |
|     | Leaning      | 329.4 ***        | $0.001 \pm 0.0003^{***}$   | $0.0005 \pm 0.0004^{ns}$       |
|     | Straightness | 75.1 ***         | $0.018 \pm 0.003^{***}$    | $0.009 \pm 0.003^{***}$        |
|     |              |                  |                            |                                |
| 7   | Height       | 635.6 ***        | $124.850 \pm 24.946^{***}$ | $52.487 \pm 16.651^{***}$      |
|     | Diameter     | 261.0 ***        | $4.513 \pm 1.143^{***}$    | $1.617 \pm 1.052*$             |
|     | No. Whorls   | 109.3 ***        | $0.075 \pm 0.015^{***}$    | $0.022 \pm 0.010^{**}$         |
|     | Leaning      | 101.5 ***        | $0.002 \pm 0.001^{**}$     | $0.0002 \pm 0.001^{\text{ns}}$ |
|     | Straightness | 86.3 ***         | $0.010 \pm 0.003^{***}$    | $0.003 \pm 0.002^{\text{ns}}$  |

<sup>(1)</sup> Asterisks denote the significance level (\*\*\* = p<0.001; \*\* = p<0.01; \* = p<0.05; ns = p > 0.05) associated to the chi-square value given by the difference in two times the log likelihood of that factor included versus excluded from the model. Because variance components are constrained to be positive, test of variance components are one-tailed (Fry, 2004).

<sup>(2)</sup>  $F_{4,118}$  for traits at age 3 and  $F_{2,67}$  at age 7.

**Table 5** Likelihood ratios for testing different hypotheses on the relevance and interpretation of the genotype by environment interaction for different traits assessed at age 3 and 7. The chi-squared values shown are the differences in two times the log-likelihood of the full model (unstructured variance-covariance matrix) and different reduced models constraining different elements of the family variance-covariance structure across sites (see Methods). Degrees of freedom (DF) associated with the chi-squared values results from the different between the number of covariance parameters specifying the full and reduced models. P values lower than 0.05 indicate that the null hypotheses should be rejected.

| Null hymothogog                                                                                   | DE | He       | ight         | No.      | Whorls       | Straig   | Straightness |  |
|---------------------------------------------------------------------------------------------------|----|----------|--------------|----------|--------------|----------|--------------|--|
| Null hypotheses                                                                                   | DF | $\chi^2$ | $p > \chi^2$ | $\chi^2$ | $p > \chi^2$ | $\chi^2$ | $p > \chi^2$ |  |
| Age 3                                                                                             |    |          |              |          |              |          |              |  |
| H1: No family by environment interaction                                                          | 14 | 100.7    | < 0.001      | 72.1     | < 0.001      | 912.8    | < 0.001      |  |
| H2: Homogeneity of family variance across sites                                                   | 4  | 15.8     | 0.003        | 60.0     | < 0.001      | 19.5     | < 0.001      |  |
| H3: Perfect family correlation between all site pairs                                             | 10 | 77.3     | < 0.001      | 12.6     | 0.248        | 67.4     | < 0.001      |  |
| H4: Homogeneity of family covariance across site pairs                                            | 9  | 14.6     | 0.102        | 10.6     | 0.304        | 64.2     | < 0.001      |  |
| H5: Perfect family correlation between sites within deployment areas (coastal and inland Galicia) | 4  | 59.5     | <0.001       | 4.7      | 0.319        | 41.0     | < 0.001      |  |
| Age 7                                                                                             |    |          |              |          |              |          |              |  |
| H1: No family by environment interaction                                                          | 5  | 21.3     | < 0.001      | 26.8     | < 0.001      | 256.3    | < 0.001      |  |
| H2: Homogeneity of family variance across sites                                                   | 2  | 4.5      | 0.100        | 19.2     | < 0.001      | 26.6     | < 0.001      |  |
| H3: Perfect family correlation between all site pairs                                             | 3  | 12.3     | 0.006        | 6.3      | 0.098        | 4.2      | 0.241        |  |
| H4: Homogeneity of family covariance across site pairs                                            | 2  | 1.1      | 0.576        | 1.4      | 0.500        | 4.2      | 0.121        |  |

**Table 6** REML estimates of genetic correlations between sites using an unstructured family variance-covariance matrix across sites for different traits at age 3 (above the diagonal) and age 7 (below the diagonal). Sites are grouped into the two major climatic regions (Inland and Coastal Galicia).

| Trait        | Site     |                    | Inland             |                    | Coa                 | stal               |
|--------------|----------|--------------------|--------------------|--------------------|---------------------|--------------------|
|              |          | Becerreá           | Guntín             | Laza               | Daneiro             | Laracha            |
| Height       | Becerreá |                    | 0.63***            | 0.62***            | 0.77***             | 0.62***            |
|              | Guntín   | 0.63***            |                    | 0.60***            | 0.42**              | 0.74***            |
|              | Laza     | 0.67***            | 0.79***            |                    | 0.84***             | 0.67***            |
|              | Daneiro  |                    |                    |                    |                     | 0.60***            |
|              | Laracha  |                    |                    |                    |                     |                    |
| No. Whorls   | Becerreá |                    | 0.79***            | 1.00***            | 0.24 <sup>ns</sup>  | 0.54**             |
|              | Guntín   | 0.86***            |                    | 0.95***            | 1.00*               | 0.60**             |
|              | Laza     | 0.68***            | 0.82***            |                    | 1.00*               | 0.80***            |
|              | Daneiro  |                    |                    |                    |                     | $1.00^{ns}$        |
|              | Laracha  |                    |                    |                    |                     |                    |
| Straightness | Becerreá |                    | 0.28 <sup>ns</sup> | 0.27 <sup>ns</sup> | -0.41 <sup>ns</sup> | 0.10 <sup>ns</sup> |
|              | Guntín   | 1.00 <sup>ns</sup> |                    | 1.00***            | 1.00***             | 0.47**             |
|              | Laza     | 0.29 <sup>ns</sup> | 1.00*              |                    | 0.89***             | 0.45**             |
|              | Daneiro  |                    |                    |                    |                     | 0.10 <sup>ns</sup> |
|              | Laracha  |                    |                    |                    |                     |                    |

Asterisks denote the significance level (\*\*\* = p<0.001; \*\* = p<0.01; \* = p<0.05; ns = p > 0.05) associated to the chi-square value given by the difference in two times the log likelihood of that element included versus excluded (fixed to zero) from the model.

**Table 7** Effects of the Breeding Program origin from which families proceed (Coastal Galicia

 and Western Australia), and its interaction with sites for different traits evaluated at age 7 in

 the three inland sites.

| Effects          |    |     | He    | eight   | No.  | Whorls  | Strai | Straightness |  |  |
|------------------|----|-----|-------|---------|------|---------|-------|--------------|--|--|
|                  | DF |     | F     | p> F    | F    | p> F    | F     | p> F         |  |  |
| Programme        | 1  | 115 | 11.4  | 0.001   | 4.6  | 0.034   | 5.1   | 0.026        |  |  |
| Site             | 2  | 67  | 138.7 | < 0.001 | 17.1 | < 0.001 | 26.0  | < 0.001      |  |  |
| Programme x site | 2  | 230 | 3.2   | 0.043   | 1.5  | 0.217   | 2.0   | 0.132        |  |  |

**Table 8** Ranking of the BLUPs of the Western Australia (WA) families in the three inland sites for height, straightness and number of whorls at age 7 (N= 117 genetic entries). Asterisks denote the significance level <sup>1</sup> associated to the specific contrast between the BLUP of each WA family and the BLUP of the average performance of the 111 CG families for each trait.

| WA Familias  |          | Height |        | N        | o. Whorl | S      | Straightness |      |        |  |
|--------------|----------|--------|--------|----------|----------|--------|--------------|------|--------|--|
| w A rainines | Becerreá | Laza   | Guntín | Becerreá | Laza     | Guntín | Becerreá     | Laza | Guntín |  |
| WA1          | 47       | 44     | 43     | 12       | 19       | 9*     | 39           | 23   | 46     |  |
| WA2          | 16       | 14*    | 15*    | 83       | 63       | 70     | 7            | 15   | 4*     |  |
| WA3          | 7*       | 9**    | 3***   | 16       | 22       | 21     | 35           | 58   | 31     |  |
| WA4          | 4**      | 3**    | 1***   | 1**      | 1**      | 6*     | 3*           | 6    | 2*     |  |
| WA5          | 61       | 16*    | 10*    | 70       | 65       | 74     | 36           | 27   | 35     |  |
| WA6          | 15       | 13*    | 13*    | 32       | 30       | 59     | 28           | 26   | 21     |  |

<sup>1</sup> Significance levels: \*\*\* = p<0.001; \*\* = p<0.01; \* = p<0.05



Figure 1. de la Mata & Zas



Figure 2. de la Mata & Zas