
Extracting the multiscale backbone of complex
weighted networks
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A large number of complex systems find a natural abstraction in
the form of weighted networks whose nodes represent the elements
of the system and the weighted edges identify the presence of an
interaction and its relative strength. In recent years, the study of
an increasing number of large scale networks has highlighted the
statistical heterogeneity of their interaction pattern, with degree
and weight distributions which vary over many orders of magnitude.
These features, along with the large number of elements and links,
make the extraction of the truly relevant connections forming the
network’s backbone a very challenging problem. More specifically,
coarse-graining approaches and filtering techniques are at struggle
with the multiscale nature of large scale systems. Here we define
a filtering method that offers a practical procedure to extract the
relevant connection backbone in complex multiscale networks, pre-
serving the edges that represent statistical significant deviations with
respect to a null model for the local assignment of weights to edges.
An important aspect of the method is that it does not belittle small-
scale interactions and operates at all scales defined by the weight
distribution. We apply our method to real world network instances
and compare the obtained results with alternative backbone extrac-
tion techniques.
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In recent years, a huge amount of data on large scale so-
cial, biological, and communication networks, meticulously

collected and catalogued, has become available for scientific
analysis and study. Examples can be found in all domains;
from technological to social systems and transportation net-
works on a local and global scale, and down to the microscopic
scale of biochemical networks [1, 2, 3]. Common traits of these
networks can be found in the statistical properties character-
ized by large scale heterogeneity with statistical observables
such as nodes’ degree and traffic varying over a wide range
of scales [4]. The sheer size and multiscale nature of these
networks make very difficult the extraction of the relevant
information that would allow a reduced representation while
preserving the key features we want to highlight. A typi-
cal example is faced in the visualization of networks. While
it is generally possible to create wonderful images of large
scale heterogeneous networks, the amount of valuable infor-
mation gathered is in most cases very little because of the
redundant intricacy generated by the overwhelming number
of connections. Problems such as the extraction of the rel-
evant backbone or the isolation of the statistically relevant
structures/signal that would allow reduced but meaningful
representations of the system are indeed major challenges in
the analysis of large-scale networks.

In complex weighted networks, the discrimination of the
right trade-off between the level of network reduction and the
amount of relevant information preserved in the new repre-
sentation faces us with additional problems. In many cases,
the probability distribution P (ω) that any given link is carry-
ing a weight ω is broadly distributed, spanning several orders
of magnitude. This feature implies the lack of a characteris-
tic scale and any method based on thresholding would simply
overlook the information present above or below the arbitrary

cut-off scale. While this issue would not be a major drawback
in networks where the intensities of all the edges are indepen-
dently and identically distributed, the cut off of the P (ω) tail
would destroy the multiscale nature of more realistic networks
where weights are locally correlated on edges incident to the
same node and non-trivially coupled to topology [5]. Thus,
the presence of multiscale fluctuations calls for reduction tech-
niques that consistently highlight the relevant structures and
hierarchies without favoring any particular resolution scale.
Furthermore, it also demands to change the focus towards a
local perspective rather than a global one, where the relevance
of the connections could be decided at the level of nodes in
relative terms.

In this work, we concentrate on a particular technique
that operates at all the scales defined by the weighted net-
work structure. This method, based on the local identification
of the statistically relevant weight heterogeneities, is able to
filter out the backbone of dominant connections in weighted
networks with strong disorder, preserving structural proper-
ties and hierarchies at all scales. We discuss our multiscale
filter in relation to the appropriate null model that provides
the basis for the statistical significance of the heterogeneity
measurements. We apply the technique to two real world net-
works, the U.S. airport network and the Florida Bay food web,
and compare the results to those obtained by the application
of thresholding methods.

Results and Discussion
In Statistical Mathematics, as in other areas, filtering tech-
niques aimed at uncovering the relevant information in data
sets are popular and successful. One could cite, for in-
stance, the Principal Components Analysis to identify hidden
patterns by reducing the effective dimension of multivariate
data [6]. In the following, we will refer to the network reduc-
tion as the construction of a network that contains far less
data (in our case links) and allows the discrimination and
computational tractability of the relevant features of the orig-
inal networks; for instance, the traffic backbone of a large
scale transportation infrastructure. Reduction schemes can
be divided into two main categories: coarse-graining and fil-
tering/pruning. In the first case, nodes sharing a common at-
tribute could be gathered together in the same class –group,
community, etc.– and then substituted by a single new unit
which represents the whole class in a new network representa-
tion of the system [7, 8, 9, 10]. This coarse-graining is indeed
zooming out the system so that it can be observed at different
scales. Something completely different is done when a filter
is applied. In this case, the observation scale is fixed and the
representation that the network symbolizes is not changed.
Instead, those elements –nodes and edges– that carry rele-
vant information about the network structure are kept while
the rest are discarded. An example of a well-known hierar-
chical topological filter, although usually not referred as such,
is the k-core decomposition of a network [11], with a filtering
rule that acts on the connectivity of the nodes.
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In the case of weighted networks [5], two basic reduction
techniques refer to the extraction of the minimum spanning
tree and the application of a global threshold on the weights
of the links so that just those that beat the threshold are pre-
served. The minimum spanning tree of a graph G, a classical
concept of graph theory [12], is the shortest length tree sub-
graph that contains all the nodes of G. These definitions can
be generalized for weighted graphs [13]. A minimum spanning
tree of a weighted graph G is the spanning tree of G whose
edges sum to minimum weight. This idea has been exploited
along with percolation criticality to define superhighways in
weighted networks [14]. By using opportune transformation
rules for the weights, it is also possible to define maximum
weighted spanning trees and other analogous definitions. One
of the big limitations of this method is that spanning trees are
by construction acyclic. This means that reduced networks
obtained by this algorithm are overly structural simplifica-
tions that destroy local cycles, clustering coefficient and the
clustering hierarchies often present in real world networks.

These previous drawbacks are not present in the appli-
cation of a threshold to the global weight distribution that
removes all connections with a weight below a given value ωc.
This filter has been used for instance in the study of functional
networks connecting correlated human brain sites [15] and
food web resistance as a function of link magnitude [16]. This
approach, however, belittles nodes with a small strength s (de-
fined as the sum of weights incident to the node si =

P
j wij),

since the introduction of ωc induces a characteristic scale from
the outset. As a consequence, strongly disordered networks
with heavy-tailed statistical distributions P (s) and P (ω) make
this simple thresholding algorithm very poorly performing
since nodes with small s are systematically overlooked. This
is even a more serious drawback when weights are correlated
at the local level. In this type of networks, interesting features
and structures are present at all scales and the introduction of
such artificial cut-off drastically removes all information below
the cut-off scale.

Local fluctuations.In order to develop a multiscale reduc-
tion algorithm, we take advantage of the local fluctuations
of weights on the links emanated by single nodes. In hetero-
geneous weighted networks with strong disorder, i.e. heavy
tailed P (ω) and P (s) distributions, a few links carry the
largest proportion of the node’s total strength. Furthermore,
most real networks have nodes surrounded by incident edges
with associated weights that are heterogeneously distributed
and correlated between them. The fingerprint of these cor-
relations is observed in the non-trivial dependence between
weights and topology [5]. The better a node is connected to
the rest of the network, the higher the weight of its edges
so that the strength tends to grow superlinearly with the de-
gree. However, the strength alone is not enough to capture the
weighted structure of nodes even at the local level. We need
to introduce some measure of the fluctuations of the weights
attached to a given node, and we want to do it at the local
level in relative terms so that each node could independently
assess the importance of its connections. To this end, we first
normalize the weights of edges linking node i with its neigh-
bors as pij = ωij/si, being si the strength of node i and wij
the weight of its connections to its neighbor j. Then, by using
the disparity function defined in the Materials and Methods
section, it is possible to see that even at the local level defined
by the edges adjacent to a single node a few of those edges
carry a disproportionate fraction pij of the node’s strength,

with the remaining edges carrying just a small fraction of the
node’s strength [17, 5].

Being more specific, we are interested in all edges with
weights representing a significant fraction of the local strength
and weight magnitude of each given node. However, local
heterogeneities could simply be produced by random fluctua-
tions. It is then fundamental to introduce a null model that
informs us about the random expectation for the distribution
of weights associated to the connections of a particular node.
Empirical values not statistically compatible with the null
model define, on a node by node basis, whether the observed
weight heterogeneity and intensity are statistically significant
and define the relevant part of the signal due to specific and
relevant organizing principles of the network structure. This
procedure would determine without arbitrariness how many
connections for every node belong to the backbone of con-
nections that carry a statistically disproportionate weight –be
them one, zero or many–, providing sparse subnetworks of con-
nected links selected according to the total amount of weight
we intend to characterize. This reduction scheme necessarily
encodes a wealth of information as the reduced network does
not contain only the links carrying the largest weight in the
network but also all links which can be considered, according
to a pre-defined statistical significance level, defining the rel-
evant structure (signal) generated by the weight and strength
assignment with respect to the simple randomness of the null
hypothesis. An important aspect of this construction is that
the ensuing reduction algorithm does not belittle small nodes
in terms of strength and then offers a practical procedure to
reduce the number of connections taking into account all the
scales present in the system.

The disparity filter. In the following, we discuss the dispar-
ity filter for undirected weighted networks, although it is also
applicable to directed ones as reported in the Supporting In-
formation. The null model that we use to define anomalous
fluctuations provides the expectation for the disparity mea-
sure of a given node in a pure random case. It is based on
the following null hypothesis: the normalized weights which
correspond to the connections of a certain node of degree k
are produced by a random assignment from a uniform distri-
bution. To visualize this process, k− 1 points are distributed
with uniform probability in the interval [0, 1] so that it ends
up divided in k subintervals. Their lengths would represent
the expected values for the k normalized weights pij according
to the null hypothesis. The probability density function for
one of these variables taking a particular value x is

ρ(x)dx = (k − 1)(1− x)k−2dx, [1]

which depends on the degree k of the node under consider-
ation. In the Material and Methods section we provide a
detailed analysis of the null model with respect to the actual
weight distribution in two real world networks.

The disparity filter proceeds by identifying which links for
each node should be preserved in the network. The null model
allows this discrimination by the calculation for each edge of
a given node of the probability αij that its normalized weight
pij is compatible with the null hypothesis. In statistical in-
ference, this concept is known as the p-value, the probability
that, if the null hypothesis is true, one obtains a value for the
variable under consideration larger or equal than the observed
one. By imposing a significance level α, the links that carry
weights which can be considered not compatible with a ran-
dom distribution can be filtered out with an certain statistical
significance. All the links with αij < α reject the null hypoth-
esis and can be considered as significant heterogeneities due
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US Airport Network Florida Bay Food Web

α %WT %NT %ET α %WT %NT %ET

0.2 94 77 24 0.2 90 98 31
0.1 89 71 20 0.1 78 98 23
0.05(a) 83 66 17 0.05 72 97 16
0.01 65 59 12 0.01 55 87 9
0.005 58 56 10 0.0008(a) 49 64 5
0.003(b) 51 54 9 0.0002(b) 43 57 4

to the network organizing principles. By changing the signif-
icance level we can filter out the links progressively focusing
on more relevant edges. The statistically relevant edges will
be those whose weight satisfy the relation

αij = 1− (k − 1)

Z pij

0

(1− x)k−2dx < α. [2]

Note that this expression depends on the number of connec-
tions k of the node to which the link under consideration is
attached.

The multi-scale backbone is then obtained by preserving
all the links which satisfy the above criterion for at least one
of the two nodes at the ends of the link while discounting the
rest 1. In this way, small nodes in terms of strength are not
belittled so that the system remains in the percolated phase.
In other words, we single out the relevant part of the net-
work that carries the statistically relevant signal provided by
the distribution with respect to a local uniform randomness
null hypotheses. By choosing a constant significance level α
we obtain a homogeneous criterion that allows us to compare
inhomogeneities in nodes with different magnitude in degree
and strength. Decreasing the statistical confidence more re-
strictive subsets are obtained, giving place to a potential hi-
erarchy of backbones. This strategy will be efficient whenever
the level of heterogeneity is high and weights are locally cor-
related. Otherwise, the pruning could lose its hierarchical
attribute producing analogous results to the global threshold
algorithm (see section “Networks with uncorrelated weights”
in Supporting Information).

The multiscale backbone of real networks. To test the per-
formance of the disparity filter algorithm, we apply it to the
extraction of the multiscale backbone of two real world net-
works. We also compare the obtained results with the reduced
networks obtained by applying a simple global threshold strat-
egy that preserves connections above a given weight ωc. As
examples of strongly disordered networks, we consider the do-
mestic non-stop segment of the U.S. airport transportation
system for the year 2006 [19] and the Florida Bay ecosystem
in the dry season [20]. The U.S. airport transportation sys-
tem for the year 2006 gathers the data reported by air carriers
about flights between 1078 USA airports connected by 11890
links. Weights are given by the number of passengers traveling
the corresponding route in the year symmetrized to produce
an undirected representation. The resulting graph has a high
density of connections, 〈k〉 = 22, making difficult both its
analysis and visualization. The Florida Bay foodweb comes
from the ATLSS Project by the University of Maryland [21].
Trophic interactions in food webs are symbolized by directed
and weighted links representing carbon flows (mgCy−1m−2)
between species. The network consists of a total of 122 sepa-
rate components joined by 1799 directed links.

In Table 1 and Fig. 1, we show statistics for the relative
sizes –in terms of fractions of total weight WT , nodes NT , and
edges ET – preserved in the backbones when the network is fil-
tered by the disparity filter and by the application of a global
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Fig. 1. Fraction of nodes kept in the backbones as a function of the fraction of

weight (left) and edges (right) retained by the filters.

threshold, respectively. The disparity filter reduces the num-
ber of edges significantly even when the significance level α is
close to 1, keeping at the same time almost all the weight and
a high fraction of nodes. Smaller values of α reduce even more
the number of edges but, interestingly, the total weight and
number of nodes remain nearly constant. Only for very low
values of α –when the filter becomes very restrictive– the total
weight and number of nodes start decreasing significantly. In
the case of the airports network, values around α ≈ 0.05 ex-
tract backbones with more than 80% of the total weight, 66%
of nodes, and only 17% of edges. The global threshold filter,
on the other hand, is not able to maintain the majority of the
nodes in the backbone for similar values of retained weight or
edges, as it is clearly seen in the first and second columns of
Fig. 1, respectively.

It is particularly interesting to analyze the behavior of the
topological properties of the filtered network at increasing lev-
els of reduction. Fig. 2 shows the evolution of the cumulative
degree distribution, i. e. Pc(k) =

P
k′≥k P (k′), for different

values of α (left top plot) and ωc (right top plot), respectively.
The original airports network is heavy tailed although cannot
be fitted by a pure power law function. Interestingly, the dis-
parity filter reveals a clear power law behavior as α decreases,
with an exponent γ ≈ 2.3. On the other hand, the global
threshold filter produces subgraphs with a degree distribution
similar to the original one but with a sharp cut-off that be-
comes smaller as the filter gets more restrictive. On the other
side, the weight distribution P (ω) for the disparity filter (left
middle plot) shows that almost all scales are kept during the
filtering process and only the region of very small weights is
affected, in contrast to the global threshold filter that, by def-
inition, cuts P (ω) off below ωc (middle right plot).

In the bottom plots of Fig. 2, we show the clustering coef-
ficient C measured as the average over nodes of degree larger
than 1. It remains nearly constant in both filters until they
become too restrictive, in which case clustering goes to zero2.
In the case of the disparity filter, clustering remains constant

1 In the case of a node i of degree ki = 1 connected to a node j of degree kj > 1, we keep the
connection only if it beats the threshold for node j
2The sudden increase of clustering for EB/ET = 0.2 is due to the reduction of the number of
nodes in the network, increasing then the chances of having a random contribution.

3



10
0

10
1

10
2

k
10

-4

10
-2

10
0

P
c(k

)

α=1.0
α=0.5
α=0.1
α=0.01
α=0.001

10
0

10
1

10
2

k
10

-4

10
-3

10
-2

10
-1

10
0

W
B
=W

T

W
B
=0.99W

T

W
B
=0.89W

T

W
B
=0.65W

T

W
B
=0.4W

T

10
0

10
2

10
4

10
6

ω

10
-8

10
-6

10
-4

10
-2

P
(ω

)

10
0

10
2

10
4

10
6

ω

10
-8

10
-6

10
-4

10
-2

10
0

0 0.2 0.4 0.6 0.8 1
E

B
 / E

T

0

0.2

0.4

0.6

0.8

1

clustering
% of weight
% of nodes

0 0.2 0.4 0.6 0.8 1
E

B
 / E

T

0

0.2

0.4

0.6

0.8

1

Disparity filter Global threshold filter

α=0.5

α=0.01

Fig. 3. Topology of the filtered subgraphs for the U.S. airports Network. Top:
Cumulative degree distribution, Pc(k), for the disparity (left) and global threshold

(right) backbones. The values of ωc on the right plot are chosen to generate sub-
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the same as in the top plots. Bottom. Clustering coefficient averaged over nodes of

degree larger than 1 for the two methods as a function of the fraction of edges in the

backbones. Dashed lines show the fraction of nodes and weight for a given fraction

of edges.

up to values of α ≈ 0.01. This is precisely the value below
which both the number of nodes and the weight in the back-
bone start decreasing significantly. Therefore, we can con-
clude that values of α in the range [0.01, 0.5] are optimal, in
the sense that backbones in this region have a large proportion
of nodes and weight, the same clustering of the original net-
work, and a stable stationary degree distribution, all with a
very small number of connections as compared to the original
network. It is important to stress that the disparity filtering
also includes the connections with the largest weight present
in the system. This is because the heavy-tail of the P (ω) dis-
tribution is mainly determined by relevant large-scale weight.
This is clearly illustrated in Fig. 3, where we show that for
statistical significance levels up to α ' 10−3, all the edges
included in the 10-20% of the P (ω) tail are included in the
extracted multiscale backbone.

As an illustration of the efficacy of the disparity filter, we
visualize the obtained multi-scale backbone in Fig. 4. In the
case of the US airport network we use the significance value
α = 0.003 (see entry (b) in Table 1 and Fig. 3). Interest-
ingly, the disparity filter offers a perspective of the network
that reveals its geographic constrains (notice that each node
is placed in the plane according to its actual coordinates on
the earth). It is possible to identify local hubs with very well
defined basins of attraction made of small airports connected
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a

Fig. 4. Fraction of edges in different Global Threshold backbones (GTB) included

in the Disparity backbone (DB) as a function of the significance level. As shown,

points a and b in the US airport network mark Disparity backbones including a 100%
of the 40-W and 10-W Global Threshold backbones, respectively; points a and b in

the Florida Bay food web mark Disparity backbones including a 100% of the 40-W

and 13-W Global Threshold backbones, respectively. See also Table 1.

to them [23], a star-like pattern that is particularly clear in
Alaska airports or mid west cities. In addition, the hierarchy
of the transportation system is fully highlighted, including
not just the most high flux connections but also small weight
edges which are statistically significant as they represent rele-
vant signal at the small scales. In this way, all important con-
nection on the local and global level are considered at once.
This would not be possible with a global threshold algorithm,
that would simply eliminate all connections below the scale
introduced by the cut-off threshold.

The Florida Bay food web is a directed network (see Sup-
plementary Information for an explanation of the methodol-
ogy in the case of weighted directed neworks). We draw its
multiscale backbone for α = 0.0008, which contains the top
40% of heaviest links (see entry (a) in Table 1 and Fig. 3).
Notice that, in this case, the concentration of weight in a few
links is so important that the represented disparity backbone
contains approximately half of the total weight in the net-
work. Again, star motifs are uncovered, formed by mainly
incoming connections -like for the pelican- or mainly out-
going ones -bivalves. More in general, specific subsystems
dominated by significant fluxes can be easily identified, which
might be an evidence of a historical evolution of the network
from smaller modular and disconnected structures to the com-
plete ecosystem we observe today. Another interesting remark
refers the presence in the backbone of species with relatively
few trophic links. Species with few connections are usually
assumed to have a low impact on the ecosystems. However,
counterexamples can be found and such species may act as
the structural equivalent of keystone species, whereas species
with many trophic linkages may be more conceptually simi-
lar to dominant species [24]. Due to its local approach, our
filter mixes both types in the backbones, where simultane-
ously coexist big hubs –like the Predatory Shrimp, which in
the complete network approximately has an average number
of incoming connections and the maximum number of outgo-
ing ones, 13 and 61 respectively– with more modest species in
terms of connections –like Benthic Flagellates, with in-degree
1 and out-degree 10, both below the average.

Conclusions. The disparity filter exploits local heterogeneity
and local correlations among weights to extract the network
backbone by considering the relevant edges at all the scales
present in the system. The methodology preserves an edge
whenever its intensity is a statistically not compatible with re-
spect to a null hypothesis of uniform randomness for at least
one of the two nodes the edge is incident to, which ensures
that small nodes in terms of strength are not neglected. As
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Fig. 5. Pajek representations [22] of disparity backbones. Top. The α = 0.003 multiscale backbone of the 2006 domestic segment of the U.S. airport transportation

system. This disparity backbone includes entirely the top 10% of the heaviest edges. Bottom. The α = 0.0008 multiscale backbone of the Florida Bay ecosystem in the dry

season. This disparity backbone includes entirely the top 40% of the heaviest edges. These disparity backbones correspond to points (b) for the US airport network and (a)

for the Florida Bay food web in Table 1 and Fig. 3. The connection with maximum weight for the US airport network is Atlanta-Orlando, with value ωmax = 1, 290, 488
pasengers/year and for the Florida Bay Food Web Free Bacteria to Water Flagellates with value ωmax = 12.90 mgCy−1m−2.

a result, the disparity filter reduces the number of edges in
the original network significantly keeping, at the same time,
almost all the weight and a large fraction of nodes. As well,
this filter preserves the cut-off of the degree distribution, the
form of the weight distribution, and the clustering coefficient.

As a criticism, one could say that it only works in the
case of systems with strong disorder, where the weights are
heterogeneously distributed both at the global and local level.
Nevertheless, all filters present limitations, one has to take
them into account in relation to the problem under analysis.
Which strategy is the most appropriate for a particular prob-
lem should be carefully judged and we cannot exclude the
possibility that a combination of different techniques turns
out to be the most appropriate. Yet, the ubiquitous pres-
ence of fluctuations and disorder spanning many length scales
uncovered in many real networks provides a wide range of
potential applications for the present methodology in biology
(metabolic networks, brain, periodically regulated genes), in-
formation technology (Internet, World Wide Web), economics
(World Trade Web) and finance (stocks markets).

Materials and Methods
Local heterogeneity of edges’ weight. In order to asses the effect of inhomo-

geneities in the weights at the local level, for each node i with k neighbors one can

calculate the function [17, 5]

Υi(k) ≡ kYi(k) = k
X
j

p2
ij . [ 3 ]

The function Yi(k) has been extensively used in several fields as a standard indica-

tor of concentration for more than half a century: in Ecology [25], Economics [26],

Physics [27] and recently in the Complex Networks literature where it is known as

the disparity measure [17]. In all cases, Yi(k) characterizes the level of local het-

erogeneity. Under perfect homogeneity, when all the links share the same amount

of the strength of the node, Υi(k) equals 1 independently of k, while in the case

of perfect heterogeneity, when just one of the links carries the whole strength of the

node, this function is Υi(k) = k. An intermediate behavior is usually observed in

real systems with Υi(k) ∝ kα and the exponent close to 1/2. In this case, the

weights associated to a node are then peaked on a small number of links with the

remaining connections carrying just a small fraction of the node’s strength. This is

the situation where our filter will be more useful, highlighting structures impossible

to detect using the global threshold filter. In this way, the disparity function can be

used as a preliminary indicator of the presence of local heterogeneities.
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Fig. 2. Top sketch. Sequential diagram illustrating the disparity filtering tech-

nique at the local level. We focus on the central node in orange and its first neigh-

borhood. a) original network; b) edges of the central node with weights that are

statistically significant heterogeneity; c) the same for the neighbors; d) intersection

of the colored edges in b) an c) that are finally selected in the backbone. Middle
graphs. Distribution of link’s weights spanning for six decades. Even though this

distribution does not have a clear functional form, a direct power law fit of the form

ω−β yields an exponent β = 1.1, so with a diverging first moment. Bottom
graphs. Scattered plot of the disparity measure for individuals airports of the US

airport network. The grey area corresponds to the average plus 2 standard deviations

given by the null model.

The null model. The probability density function of Eq. (1), along with the join

probability distribution for two intervals given by

ρ(x, y)dxdy = (k−1)(k−2)(1−x−y)k−3Θ(1−x−y)dxdy, [ 4 ]

5



where Θ(·) is the Heaviside step function, can be used to calculate the statistics of

Υnull(k) for the null model. The average µ(Υnull(k)) = kµ(Ynull(k))
and the variance σ2(Υnull(k)) = k2σ2(Ynull(k)) are found to be:

µ(Υnull(k)) =
2k

k + 1
[ 5 ]

σ2(Υnull(k)) = k2

„
20 + 4k

(k + 1)(k + 2)(k + 3)
− 4

(k + 1)2

«
.[ 6 ]

Notice that the two moments depend on the degree k so that each node in the net-

work with a certain degree k should be compared to the corresponding null model.

The observed values Υob(k) compatible with the null hypothesis could be de-

fined as those in the region between 〈Υnull(k)〉+a ·σ (Υnull(k)) and perfect

homogeneity, so that local heterogeneity will be recognized only if the observed values

lie outside this area,

Υob(k) > µ(Υnull(k)) + a · σ (Υnull(k)) . [ 7 ]

The variable a is a constant determining the confidence interval for the evaluation

of the null hypothesis. The larger it is the more restrictive becomes the null model

and the more disordered weights should be for local heterogeneity to be detected. A

typical value in analogy to gaussian statistics could be for instance a = 2.

As shown in Fig. 5, the overall distributions of weights for both networks con-

sidered here are very broad, with tails approaching power-law behaviors spanning six

decades for the U.S. airport network and more than four for the Florida Bay food

web. At the local level, Υ(k) measurements cannot be explained by the null model

for most nodes.
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5. Barrat A, Barthélemy M, Pastor-Satorras R, Vespignani A (2004) The architecture of

complex weighted networks. Proc. Natl. Acad. Sci. USA 101, 3747–3752.

6. Jolliffe I (2002) Principal Component Analysis. (Springer-Verlag, second edition, New

York).

7. Kim B J (2004) Geographical Coarse Graining of Complex Networks. Phys. Rev. Lett.

93, 168701.

8. Song C, Havlin S, Makse H A (2005) Self-similarity of Complex Networks Nature

433,392–395.

9. Itzkovitz S, Levitt R, Kashtan N, Milo R, Itzkovitz M, Alon U (2005) Coarse-graining

and self-dissimilarity of complex networks. Phys. Rev. E 71, 016127.

10. Gfeller D, los Rios P D (2007) Spectral coarse-graining of complex networks. Phys.

Rev. Lett. 99, 038701.

11. Chalupa J, Leath P L, Reich G R (1979) Bootstrap percolation on a Bethe lattice. J.

Phys. C 12, L31.

12. Kruskal J B (1956) On the shortest spanning subtree of a graph and the traveling

salesman problem. Proceedings of the American Mathematical Society 7, 48–50.

13. Macdonald P J, Almas E, Barabási A-L (2005) Minimum spanning trees of weighted

scale-free networks. Europhys. Lett. 72, 308.

14. Wu Z, Braunstein L A, Havlin S, Stanley, H E (2006) Transport in Weighted Networks:

Partition into Superhighways and Roads. Phys. Rev. Lett. 96, 148702.
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SUPPORTING INFORMATION

The disparity filter for directed weighted networks
In many systems, interactions between pairs of elements are
asymmetric, running partial or totally in one of the two pos-
sible directions. Noticeable examples are the World Wide
Web [1], email networks [2], citation networks [3], genetic and
metabolic networks [4, 5], or economic networks such as the
World Trade Web [6], among others. The undirected net-
work representation becomes then a first order approxima-
tion that can be refined by representing the connections as
arrows, indicating the source node at the tail and the desti-
nation node at the head. In this way, directed network rep-
resentations are more complete and convey more information
about the system when directionality of the interactions is
relevant. This increase of information content is reflected at
the simplest level even in the description of the nodes’ con-
nectivities, so that each vertex has to be described by two
coexisting degrees kin and kout representing the number of
incoming neighbors pointing to it and the number of outgoing
neighbors pointed by it respectively, which sum up to the to-
tal degree k = kin + kout. Hence, the degree distribution for
a directed network is a joint degree distribution P (kin, kout)
of in- and out-degrees, which in general may be correlated. In
the following, we assume they are not.

Our filtering methodology to extract the backbone of rel-
evant connections in complex multiscale networks can be ex-
tended to weighted directed networks. In this type of repre-
sentations, the total strength si associated to a certain node
i has two contributions coming from the incoming strength
sini and the outgoing strength souti , which are obtained by
summing up all the weights of the incoming or outgoing links
respectively. The normalized weights of edges linking node i
with its neighbors are calculated as pinij = winij /s

in
i if the link

corresponds to an incoming connection, and poutij = woutij /souti

if it is associated to an outgoing one, being winij the weight of

the incoming connection to its neighbor j and woutij the weight
of the outgoing one. Take into account that the incoming con-
nection from the point of view of the head node is at the same
time an outgoing connection of the tail node.

The strategy in this case is as before based on the detec-
tion local heterogeneities. The goal is to preserve the edges
carrying a weight that represents a local significant deviation
with respect to a statistical null model for the local assignment
of weights by using the disparity function. But this time with
the condition that incoming and outgoing links associated to a
node must be considered separately. For each node i with kin

incoming neighbors and kout outgoing ones, one can calculate
the functions

Υi(k
in) ≡ kinYi(k

in) = kin
X
j

(pinij )2, [8]

Υi(k
out) ≡ koutYi(k

out) = kout
X
j

(pijout)
2. [9]

Yi(k
in) characterizes the level of local heterogeneity in the

incoming weights while Yi(k
out) correspond to the outgoing

counterpart. As happens in the undirected case, under per-
fect homogeneity, when all the incoming (outgoing) links share
the same amount of the incoming (outgoing) strength of the
node, Υi(k

in) (Υi(k
out)) equals 1 independently of kin (kout),

while in the case of perfect heterogeneity, when just one of the
incoming (outgoing) links carries the whole incoming (outgo-
ing) strength of the node, this function is equal to kin (kout).
An intermediate power law behavior is usually observed in
real systems indicating that the incoming (outgoing) weights

associated to a node are peaked on a small number of links
with the remaining connections carrying just a small fraction
of the node’s incoming (outgoing) strength. This is the situ-
ation where our filter will be more useful, highlighting struc-
tures impossible to detect using the global threshold filter. In
this way, the disparity function can be used as a preliminary
indicator of the presence of local heterogeneities.

The null model. The null model that we use to define anoma-
lous fluctuations of weights in directed networks with strong
disorder provides the expectation for the disparity measures
above in a pure random case. The null hypothesis is made in-
dependently for the set of incoming and outgoing connections
and is the same as in the undirected case. It assumes that the
normalized weights which correspond to the incoming (outgo-
ing) connections of a certain node of in-degree kin (kout) are
produced by a uniform random assignment. To visualize this
process, kin−1 (kout−1) points are distributed with uniform
probability in the interval [0, 1] so that it ends up divided in
kin (kout) subintervals. Their lengths would represent the ex-
pected values for the kin (kout) normalized weights pinij (poutij )
according to the null hypothesis. The incoming and outgoing
probability density functions for one of these variables taking
a particular value x is

ρ(x)dx = (κ− 1)(1− x)κ−2dx, [10]

where κ stands for kin or kout as the fluctuations in incoming
or outgoing intensities are being evaluated. This probability
density function, along with the join probability distribution
for two intervals given by

ρ(x, y)dxdy = (κ− 1)(κ− 2)(1− x− y)κ−3Θ(1− x− y)dxdy,
[11]

where Θ(·) is the Heaviside step function, can be used to
calculate the statistics of Υnull(k

in) and Υnull(k
out) for the

null model. The averages µ(Υnull(κ)) = κµ(Ynull(κ)) and the
standard deviations σ2(Υnull(κ)) = κ2σ2(Ynull(κ)) are found
to be:

µ(Υnull(κ)) = 2κ
κ+1

[12]

σ2(Υnull(κ)) = κ2
“

20+4κ
(κ+1)(κ+2)(κ+3)

− 4
(κ+1)2

”
. [13]

Notice that the two moments depend on the incoming or out-
going degree κ so that each node in the network with a certain
kin and kout should be compared to the corresponding func-
tions.

In real or modeled networks, the disparities can be di-
rectly observed and the functions Υob(k

in) and Υob(k
out) can

be compared against the null model expectations. Values com-
patible with the null hypotheses could be defined as those in
the region between 〈Υnull(κ)〉 + a · σ (Υnull(κ)) and perfect
homogeneity, so that local heterogeneity will be recognized
only if the observed values lie outside this area,

Υob(κ) > µ(Υnull(κ)) + a · σ (Υnull(κ)) . [14]

The parameter a is a constant determining the confidence in-
terval for the evaluation of the null hypothesis. The larger it
is the more restrictive becomes the null model and the more
disordered weights should be for local heterogeneity to be de-
tected. A typical value in analogy to gaussian statistics could
be for instance a = 2. In this way, it is possible to characterize
quantitatively the level of disorder observed in the distribu-
tion of weights in incoming and outgoing links. Specially when
this disorder is high, our disparity filtering technique allows
us to extract the backbone of relevant directed connections.
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The disparity filter. The disparity filter proceeds by identify-
ing which incoming and outgoing links for each node should be
preserved in the network. The null model allows this discrim-
ination by the calculation for each incoming (outgoing) edge
of a a given node i of the corresponding probability αinij (αoutij )

that its normalized weight pinij (poutij ) is compatible with the
null hypothesis. In statistical inference, this concept is known
as the p-value, the probability that if the null hypothesis is
true one obtains an o value for the variable under consider-
ation larger or equal than the observed one. By imposing a
significance level α, the incoming (outgoing) links that carry
weights which can be considered not compatible with a ran-
dom distribution can be filtered out with an certain statistical
significance. All the incoming (outgoing) links with αinij < α

(αoutij < α) reject the null hypothesis and can be considered as
significant heterogeneities. By changing the significance level
we can filter out the incoming (outgoing) links progressively
focusing on more relevant heterogeneities. Statistically signif-
icant inhomogeneous weights will be then those which satisfy

αinij = 1− (kin − 1)

Z pin
ij

0

(1− x)k
in−2dx < α, [15]

αoutij = 1− (kout − 1)

Z pout
ij

0

(1− x)k
out−2dx < α. [16]

Note that these expressions are calculated as a function of the
probability density function Eq. [10], and again depend on
the number of connections kin or kout of the node to which
the directed link under consideration is attached.

The multi-scale backbone of weighted directed networks
is then obtained by preserving all the incoming and outgoing
links which beat the threshold for at least one of the two nodes
at the ends of the link while discounting the rest. Notice that
an outgoing connection for the tail node is an incoming con-
nection for the head one, so the outgoing connections and the
appropriate null model should be considered for the first while
incoming connections and the corresponding null model for
the second. In the case of a node i with out-degree kouti = 1
connected to a node j with in-degree kinj > 1, we keep the
connection only if it beats the threshold for the in-null model
of node j, while if the in-degree of node i kini = 1 and it is
connected to a node j of out-degree koutj > 1, we keep the con-
nection only if it beats the threshold for the out-null model
of node j. In this way, relevant fluctuations at all scales are
selected and small nodes in terms of strength are not belittled
so that the system remains in the percolated phase. Finally,
in the rare case than node i has out-degree kouti = 1 and in-
degree kini > 1 and is connected to a node j with in-degree
kinj = 1 and out-degree koutj > 1, we keep the connection as it
is the only way to maintain the connectivity of the network.

By choosing a constant significance level α we obtain a ho-
mogeneous criteria that allows us to compare inhomogeneities
in nodes with different magnitude in connections and strength.
Decreasing the statistical confidence more restrictive subsets
are obtained, giving place to a potential hierarchy of back-
bones. This strategy will be efficient whenever the level of
heterogeneity is high. Otherwise, the pruning could lose its
hierarchical attribute.

Networks with uncorrelated weights
The disparity filter and the global threshold strategy give sim-
ilar results when applied to a complex network with uncorre-
lated weights, whenever their probability distribution P (ω)
has a well defined average. From a practical point of view, a
network with uncorrelated weights can be easily realized by
assigning to each edge of the network an intensity drawn in-

dependently at random from P (ω). Distributions with a well
defined average could be homogeneous distribution, where all
weights fluctuate around a characteristic value, but could also
be highly heterogeneous ones, for instance those with power-
law form with exponent larger than two.

Next, we prove analytically –for undirected networks al-
though the same reasoning is also valid for directed ones– the
approximate equivalence of the two models for a certain rela-
tion between the significance level α and the global threshold
ωc, that we derive. More specifically, we demonstrate that
the probability for a given edge of weight ωij connected to a
node i of degree k of remaining in the disparity-filtered net-
work S(ωij |k) is the same as that of remaining in the globally
thresholded one Θ(ωij −ωc), where Θ(·) is the Heaviside step
function. Henceforth, we generally refer to these probabilities
as survival probabilities.

From Eq.[2] in the main text, the disparity filter keeps

those edges with weights ωij > (α−1/(k−1) − 1)
P
l6=j ωil. The

disparity filter survival probability can thus be expressed as

S(ωij |k) =

Z
· · ·
Z

Θ

0@ωij − (α−1/(k−1) − 1)
X
l 6=j

ωil

1A ·
·
Y
l 6=j

P (ωil)dωil. [17]

In the previous equation, we have taken into account that,
for this particular model, weights are uncorrelated and that
for every edge the weight is identically and independently
distributed according to P (ω). Calculations are very much
simplified in the Laplace space where, generically, we de-

fine the Laplace transform of a function f(ω) as f̂(u) =R∞
0
f(ω)e−uωdω. Using this transformation, equation (17)

reads

Ŝ(u|k) =
1

u
P̂
h
u(α−1/(k−1) − 1)

ik−1

. [18]

For large degrees, one can make the approximation

P̂
h
u(α−1/(k−1) − 1)

i
' P̂

ˆ
u lnα−1/(k − 1)

˜
, [19]

and truncating the Taylor series expansion to the first order
in u

P̂
h
u(α−1/(k−1) − 1)

i
' 1− 〈ω〉u lnα−1/(k − 1). [20]

Substituting this into Eq. [18],

Ŝ(u|k) ' 1

u

»
1− 〈ω〉u lnα−1

(k − 1)

–k−1

' 1

u
e−〈ω〉u lnα−1

. [21]

Notice that this expression has lost any dependence on the
vertex degree k. Finally, inverting the Laplace transforma-
tion

S(ωij |k) ' Θ(ωij − 〈ω〉 lnα−1). [22]
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Fig. 6. Fraction of nodes and edges as a function of the fraction of total weight

retained by the global and disparity filters acting on the airport network with a random

assignment of weights according to the distribution P (ω) ∝ ω−2.5.

Hence, the survival probability under the disparity filter
with significance level α is approximately equal to the sur-
vival probability under the global threshold for a threshold
value ωc = 〈ω〉 lnα−1, independent of the degree k. Figure 1
shows the result of both filters on the airport network with a
random assignment of weights to edges. In this case, we use
P (ω) ∝ ω−β with β = 2.5. As it is clearly visible, both filters
give very similar results, in agreement with the calculations
above.

Unbounded average. Notice that if the average of P (ω) is un-
bounded, the previous relation is not well defined. However,
this is the case of most real networks, that are characterized
by a weight distribution that is power-law with exponent less
than two, so that its first moment diverges. In this situation,
the equivalence of the two methodologies does not hold. This
is mainly due to the symmetry breaking that we impose on the
filtering condition when we consider that the same intensity w
may be relevant in a different way if considered as associated
to ωij and ωji. Each edge is incident to two nodes; while the
weight carried by the edge may not be a relevant fluctuation
for one node (for instance a node with several other links with
large weight) it could be a relevant fluctuation for the other
node. This is what allows us to preserve relevant fluctuations
at different scales and providing a backbone including nodes
handling a total weight of very different magnitude.

For this reason, instead of considering weights directly, our
methodology works with the normalized weights pij = ωij/si
and pji = ωij/sj as independent quantities. One might want
to enforce symmetry by imposing a rule AND instead of the
rule OR that we have chosen, so that a connection is preserved
whenever its intensity is significant for both nodes involved.
However, the rule OR in the disparity filter, that we prefer
because it ensures that small nodes in terms of strength are
not belittle, only demands that the connection is important
for one of the two. Remember that in networks where weights
are not correlated there is a relation between the strength s
of nodes and the average weight in the network of the form
s ' k〈ω〉. If the average is not well defined, the strength of
nodes can fluctuate wildly so that the same weight can be ex-
perienced as extremely important or unimportant depending
on the node and, as a consequence, the rules AND and OR
produce very different results.

In Fig. 2, we show the effect of considering the disparity
filter with rules AND and OR on networks with uncorrelated
weights with unbounded average. The AND disparity filter is
qualitatively very similar to the global threshold algorithm re-
garding number of preserved nodes and edges, while the OR
disparity filter maintains a similar number of edges with a
much larger number of nodes.
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% of weight in backbone
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% of nodes disparity filter .OR. rule
% of edges disparity filter .OR. rule
% of nodes disparity filter .AND. rule
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Fig. 7. Fraction of nodes and edges as a function of the fraction of total weight

retained by the global and disparity filters (with .OR. and .AND. rules) acting on the

airport network with reshuffled weights.
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6. Serrano M A, Boguñá M, Vespignani A (2007) Patterns of dominant flows in the world

trade web. J. Econ. Interac. Coor. 2, 111–124.

9


	Results and Discussion
	Local fluctuations
	The disparity filter
	The multiscale backbone of real networks
	Conclusions

	SUPPORTING INFORMATION
	The disparity filter for directed weighted networks
	The null model
	The disparity filter

	Networks with uncorrelated weights
	Unbounded average


