Contributions of Tidal Poisson Terms in the Theory
of the Nutation of a Nonrigid Earth
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Abstract The tidal potential generated by bodies in
the solar system contains Poisson terms, i.e., periodic
terms with linearly time-dependent amplitudes. The
influence of these terms in the Earth’s rotation, al-
though expected to be small, could be of interest in the
present context of high accuracy modelling. We have
studied their contribution in the rotation of a non rigid
Earth with elastic mantle and liquid core. Starting from
the Liouville equations, we computed analytically
the contribution in the wobble and showed that the
presently-used transfer function must be supplemented
by additional terms to be used in convolution with
the amplitude of the Poisson terms of the potential
and inversely proportional to (6 — 0,)*> where o is
the forcing frequency and o, are the eigenfrequencies
associated with the retrograde free core nutation and
the Chandler wobble. These results have been detailed
in a paper that we published in Astron. Astrophys. in
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2007. In the present paper, we further examine the con-
tribution from the core on the wobble and the nuta-
tion. In particular, we examine the contribution on ex-
treme cases such as for wobble frequencies near the
Free Core Nutation Frequency (FCN) or for long pe-
riod nutations. In addition to the analytical computa-
tion, we used a time-domain approach through a nu-
merical model to examine the core and mantle motions
and discuss the analytical results.
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1 Scientific context

In view of the great improvement in the measurement
of the Earth Orientation Parameters, it is necessary
to propose further analytical developments of nutation
and to consider all the phenomena providing contri-
butions at the microarcsecond level (see e.g., Dehant
et al. 2003). In this paper, we show that several purely
periodical terms of nutations with periods of 1, 18.6,
and 10,467.6 years must be re-estimated at this level
of precision, when taking into account the tidal po-
tential generated by bodies in the solar system con-
taining Poisson terms, that is to say, periodic terms
with linearly time-dependent amplitudes. As shown in
Folgueira et al. (2007), the consideration of a linear
time dependence in the amplitude of the forcing poten-
tial produces a change in the amplitudes of some of the
purely periodic terms. These terms must be added to
the adopted model MHB2000 of Mathews et al. (2002,
see also McCarthy and Petit 2004). The results have
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been detailed in the Astron. Astrophys. paper that we
published (Folgueira et al., 2007). These results show
that the most important contributions are stemming
from nutations of high amplitude near the Free Core
Nutation Frequency (FCN) or from very long period
nutations. In the present paper, we further examine
the contribution from the core on these extreme cases
by computing analytically these limits. In order to be
closer to the numerical integration that we have per-
formed, we have considered here the simplification of
a nondeformable Earth.

Our paper is organized as follows. After describing
the differential equations of the rotation of an elastic

Earth with a liquid core (Sects. 2 and 3), we explain 4 Ay, and Ay, and C, Cy, and Cp,

two different approaches, a semi-analytical develop-
ment (Sect. 4.1) and a numerical integration (Sect. 4.2),
to obtain the coefficients of the nutation due to the tidal
Poisson terms. This work is also contributing to the ob-
jectives of the DESCARTES Sub-project entitled: “Geo-
physical effects of adopting the new solutions for the
Earth’s rotation in the framework of the new parame-
ters adopted by the IAU 2000 Resolutions”.

2 The Differential Equations

This section attempts to show firstly the differential
equations describing the rotation of an elastic Earth
with a liquid core of which the solution will be used
to determine the influence of the tidal Poisson terms on
the Earth’s rotation. The formulation and the method-
ology used for the derivation of the solution are briefly
given at the end of this section. For details of the math-
ematical process for obtaining the solution, we refer
the reader to the paper of Folgueira et al. (2007, see
also Dehant et al. 1993 and Greff-Lefftz et al. 2002).

The basic equations are the angular momentum bal-
ance equations for the whole Earth and the liquid core
relating the angular velocity vectors of the whole Earth,
®, and of the liquid core, @y, to the tidal external poten-
tial. In an Earth-fixed frame of reference, the equations
for the equatorial component w = w; + iw, are (see,
e.g., Sasao et al. 1980; Hinderer et al. 1987):
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where,

V> is the tesseral part of the potential,

are the principal mo-
ments of inertia of the whole Earth, of the liquid core,
and of the mantle, for the equatorial and z-axis (prin-
cipal) mass repartition,

Q2 is the mean angular of the Earth,

o=SAand oy = Cf;Af are the dynamical flattenings
of the whole Earth and of the liquid core,

k is the Love number expressing (without dimension)
the mass redistribution potential at the surface of the
Earth induced by a forcing expressed in terms of a
gradient of an external potential and acting on the
whole Earth,

ki is the Love number expressing (without dimension)
the mass redistribution potential at the surface of the
Earth (and evaluated there) induced by a pressure at
the core-mantle boundary (CMB),

h¢ is the Love number expressing (without dimension)

the deformation of the CMB induced by a volumic

potential evaluated at the surface,

is the Love number expressing (without dimension)

the deformation of the CMB caused by a forcing ex-

pressed in terms of a gradiant of an external potential
evaluated at the CMB,

is the Love number expressing (without dimension)

the deformation of the CMB caused by an inertial

pressure on the CMB,

kfuia is the secular Love number also called the fluid

g‘;‘acs), and
. Q .
qo is defined as GNaleEq where Mg is the Earth’s mass. It

must be noted that we have used here the notations
introduced in Dehant et al. (1993). These notations
are perfectly equivalent to those used in MHB2000.
Mathews et al. (2002) used the compliances instead
of the Love numbers, grouping the Love numbers
with 4.

hit

Elf

Love number (kﬂmd =3

2.3
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We consider that the external potential contains
contributions due to the so-called Poisson terms, that
is to say, terms of the form 7 x ¢! The sets of
fundamental arguments employed in tide and nutation
theories of the rigid Earth are not linear in time and
therefore they do include small nonlinear terms. This
causes slow variations of the fundamental frequencies
and hence also of the frequencies of the spectral terms.
This is particularly true for the arguments arising from
planetary perturbations. The Poisson terms stem from
the approximation for short time scales of the long
term variations arising from planetary perturbations.
Usually one indeed prefers to work with constant fre-
quencies; therefore, one splits the argument into a part
linear with time and a remaining part involving the sec-
ond and higher powers of time. This second part being
very small, the sine or cosine of the argument can be
written as a purely sinusoidal part of which the ampli-
tude has quadratic and higher degree dependences on
the time variable. Within a secular theory of the orbital
motion of the Earth and of the other planets of the So-
lar System, linear as well as non-linear changes in the
obliquity appears. Terms in the spectral representation
which have amplitudes depending polynomially on
time are usually referred to as Poisson terms. The exter-
nal tide generating potential can therefore be written:

Vor = Vor,0 + Var,1t + V21,2t2
+ Z(VZI,n,O + Varp1t)e' o,

n

3)

where the amplitudes V31,0 and Va;, 1 are both
related to the spectral component of frequency o,.
Moreover, we assume that the solutions of Egs. (1)
and (2) can be written as follows:

w = wy+ wt +a)2t2

+ D (@00 + op1)e ", “)
n
wf = wr,0 + of 11 + wf,2t2
+ ) (@00 + wpaat)e . )

n

3 Analytical Solutions

The substitution of the above expressions (4) and (5)
for w and wyr, as well as Eq. (3) for the external

potential, into Egs. (1) and (2), provides a set of
ten algebraic equations, which allows us to directly
obtain the expressions for wg, w1, @2, W0, W1, WO,
wf1, wp, oo and w1 in terms of the coefficients
of the external potential: Va10, Vai.1, V212, Vaino
and V21 ,.1. The part related to Va1 ,0 and Vap 41
reduces to:
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and the reduced solution for the core wobble ws is:
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In the above expressions,

is the frequency of the nearly diurnal free wobble
(NDFW) associated with the free core nutation
(FCN), and expressed in the terrestrial frame,
UIQCN = opcN + R is its counterpart in the celestial
reference frame, and

AQu (1 k >
ocw =—— |1~
Am Kftuia

(10)

is the Chandler wobble (CW) frequency in the terres-
trial frame.

If we consider that the Earth is not deformable (non-
def stands for non-deformable; this is the case consid-
ered in the section on Numerical Integration), all Love
numbers become zero so that:

wa il

!/
O-FCI\Inomlefa Af V-
21,n,0
Am (0 - GFCNnondef)

+[-

+
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where
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(14)

Thondeso and Tyopger1 are called transfer functions for
the non-deformable Earth (nondef); with,

A
aFCNnondef = _Q [1 + A_af] (15)
m
AQu
0‘CVVnondef = A_ (16)
m

If we consider that the Earth is completely rigid (rig;

OCW,ig OFEuler), the core contribution disappears
so that:
3 OEuler
Wiy = — | ———2 |y
e a’Q H: 0 — OEuler 2100
OEuler R
A%
|: (o — UEuler) ] 2
o
[—ﬂ} Vatn, 1t} elont,
0 — OEuler
3
= —— {Trig0(0) Va1 0
a2 U o’
+Trig1(0)iVar 1
+T1ig0(0) Var a1} €' (17)
with,
OEuler = Qo (18)
A
Ucwnondef = A_UEuler (19)
m
where
OEul
Trigo(0) = ————— (20)
0 — OEuler
o] Tyioo(o
Trigl(a) - _ Euler s = rth( ) Q1)
(0 — OEuler) O — OFEuler

T)ig0 and T4 are called transfer functions for the rigid
Earth (rig).
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In the next paragraph, we compute the difference @ First, for o’ close to O'FCN . Eq- (24) can be writ-

between the non-deformable Earth and the rigid Earth ten:
response for the wobble (wponder — @rig). The analytical ,
expression is thus: , o BaAy TFCNnondet
Wpondef — Wrig = 22QA (o' — o )

3 m FCNyondef

Dnondef — Prig = 5= Va1
asg Vaino + ——————— + Varnat | (25)
(G o GFCNllondef)

{ |:_ UCWnondef 4 OEuler

0 — oCwW, 0 — OEuler
nondet where we see that, for a frequency close to the FCN

/
o aA .
FCNnonget ™ " } Vot no resonance, the term in Vy; , 1 may largely be en-

Am (0 — OFCNyonger) hanced.
. . ,
_ OCWaondet OBuler e For a very long nl%tatlon period (o’ close to zero),
(o — Ucwnonde[)z (0 — ORuler)? Eq. (24) can be written:
/ .
OFCNy et @ AT i| Vi " o ATV Q 26)
A _ 2 S, nondef — Wrig = 202 7
m(0 = OFCN, o pder) a’Q2 A, OFCN et
+ |:_ Ucwnondef + OEuler
0 = OCWyondet @ — OEuler which shows that for the precession or the very long
£ . nutation period, we may have a contribution from
o Hondet. Vatnat ey due to the Poisson terms in the forci
Am(0 — OFCNor) o, e core due to the Poisson terms in the forcing.

It must be noted that Ferrandiz et al. (2004) have

@) also considered the effects of a liquid core on the
) ) Poisson terms and have evaluated an additional core
which can also be written: contribution to precession related this. They have
3 found an effect at the level of 20 milliarcsecond

@nondef — ®rig = "5 (mas) per century.
{ Taondefo(@) = Trigo(@)) (Vatno + Vain.1t) e Starting from Eq. (24), we can also evaluate the

effects for the classical large nutations such as at
13.66 days, 0.5 and 1 year, 9.3 and 18.6 years. We

. . have noted that the transfer function for the Poisson
For the retrograde diurnal wobble corresponding to . .
nutation, Eq. (22) can be written using the fact that o = part of the potential (the second term of Eq. (24)) is

—Q 4o larger than the transfer function for the periodic part
of the potential (the first term of Eq. (24)) by a fac-

+(Thondef1(0) — Trigi (0))iVar 1} €' (23)

Onondef — Wrig = 3 tor of about 200 for both the prograde annual nuta-
a? tion and the retrograde semi-annual nutation, if the
. OB CNponder aAfVai n0 frequencies are expressed in cycle per day. The ef-
(0" = 0N, et Am fective contributions to the Earth nutations depend
. however on the ratio between V; and V. .
FCNmndcfQ A AfiVa1 .1 : b 21.n-0
+1 + o )2 ) For the two highest terms mentioned here and far
m .
o FCNnonder from long period as well as far from the FNC pe-
11 + TFCNuondet aAVarnit riod, i.e. the semi-annual retrograde nutation and
~ OFRCN o) Am the prograde annual nutation, the final contribution
is at the level of 1076, which is very small.
elont 24)

The only contributions to purely periodic nutation am-

plitude from the Poisson part of the forcing would then

This equation may be considered in different be either for very long periods or for nutation close

frequency ranges within the nearly diurnal fre- to the FCN. They come from the existence of a core
quency band: within the Earth.
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4 Contributions to the Nutation:
Two Approaches

4.1 Semi-Analytical Development

As the ratio of the non-rigid Earth circular nutation
to the rigid Earth circular nutation (the so-called B-
ratio of Wahr, 1981) is identical to the ratio of the
non-rigid Earth wobble to the rigid Earth wobble, the
above expressions obtained for the wobbles can be
used for determining the nutation B-ratios. By using
a semi-analytical development of the tide generating
potential of Roosbeek (1998, see also Roosbeek and
Dehant 1998), we then evaluate numerically the am-
plitude of each rigid Earth nutation. This allows us
to compute the non-rigid Earth nutations for the each
nutation frequency, either in the prograde part of the
spectrum or in the retrograde part of the spectrum.
The combination (sum and differences potentially di-
vided by the sine of the mean obliquity) of prograde
and retrograde nutations allows to compute the nuta-
tion in longitude Ay and in obliquity Ae. Identifying
the purely-periodic terms and the Poisson terms in the
tide generating potential it is then possible to compute
the contribution to the nutation due to the tidal Poisson
terms.

The contributions for the nutation in longitude Ay
and in obliquity Ae that are above the level of 0.1 u as
(microarcseconds), are written as follows:

AYPOIssON — 0 45in(—1") + 0.5 sin
+5.9sin(2l' —2F +2D — 29)
—0.7 sin(—£2)
Fig. 1 (a) On the left, time (a)

evolution of the each
contributing term of the
purely periodic nutation in 251
longitude coming from the
tidal Poisson terms of the
forcing. The time is measured {5 ]
in Julian years and the
amplitudes in
microarcseconds. (b) On the
right, time evolution of the
total contribution to periodic
nutation in longitude due to
the tidal Poisson terms of the
forcing

Nutation in longitude

P =-3823298.12 d

AgPoisson _ (5 cos(—!") — 0.2 cos QQ
—2.3cos(2l' —2F +2D —2Q)

+0.3 cos(—€2) (27)
where [’ is the mean anomaly of the Sun, F is the mean
angular distance of the Moon from the ascending node,
D is the difference between the mean longitudes of the
Sun and the Moon, and €2 is the mean longitude of the
ascending node of the lunar orbit. These terms corre-
spond to the retrograde annual nutation, the prograde
18.6 year nutation, the nutation at the very long period
of 10,467.6 years appearing in Roosbeek’s tidal poten-
tial used here, and the retrograde 18.6 year nutations.
As explained in Sect. 3, they correspond to very long
period nutation or to a nutation close to the FCN.

Figures 1(a) and 2(a) show the time evolution of
each of four terms found to be above 0.1 pas for the nu-
tation in longitude and obliquity. Figures 1(b) and 2(b)
represent the global contribution coming from the sum
of these four terms.

4.2 Numerical Integration

In parallel to the analytical approach developed in
Folgueira et al. (2007) as well as in the previous
sections, we have calculated the nutations of the
Earth numerically using a numerical integration
approach. For obtaining such rotational motions of
the Earth, we have used the SONYR model (Bois,
Journet, Vokrouhlivky, and Rambaux) allowing to
compute rotational and orbital motions of terrestrial
planets. SONYR is the acronym of Spin-Orbit N-bodY
Relativistic model, a dynamical model of the solar
System that includes the coupled spin-orbit motions of

(b)

Nutation in longitude
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Fig. 2 (a) On the left, time (@)
evolution of the each
contributing term of the
purely periodic nutation in

Nutation in obliquity
P=-3823298.12 d 2]

Nutation in obliquity

obliquity coming from the 2]
tidal Poisson terms of the
forcing. The time is measured
in Julian years and the
amplitudes in
microarcseconds. (b) On the
right, time evolution of the
total contribution to periodic
nutation in obliquity due to
the tidal Poisson terms of the
forcing

the terrestrial planets and of the Moon. It is described
in a series of papers (see a review in Bois (2000)
and reference therein; Bois and Vokrouhlicky (1995);
Rambaux et al. (2007)).

In the frame of the present paper and in order
to compare with the analytical results developed in
the previous sections (see Eq. (22) for instance), we
have in particular calculated the difference between
the nutation of a rigid Earth and the nutation of a
two-layered Earth model. As seen from Eq. (22),
there are three contributions from the existence of a
core, among which one contribution related to V21 .0
and two new contributions related to V21,1, the
Poisson part of the forcing potential. As the numerical
approach is based on a forced model of the celestial
bodies motions and not on potential-form forcing, it
is impossible to separate the three contributions. It
is however interesting to compare the results at the
global level as, in principal, if the time-dependent
amplitudes of the nutations can be separated from their
constant amplitudes, it is possible to isolate the term
in V21,1t from the two other terms in V21,0 and
Va1.n.1. However, the terms coming from the coupling
between the core and the mantle (i.e. the non-rigid
part of the transfer function in the frequency domain)
and from the periodic forcing (the terms in V21 4.0
in Eq. (22)) are mixed with the contributions of the
purely-periodic terms coming from the Poisson terms
in the rotation of the mantle and the core (the terms in
Vai1,n,1 in Eq. (22)).

To that aim, we have taken the following approach.
First, we neglect in a first approximation the purely rel-
ativistic terms in the post-newtonian development. We
then compute the dynamical behavior of the two rota-
tional motions of the mantle and the core, for an Earth

0000 20004 3000} 49000 | 50000 | 60G00
ars

consisting of a completely homogeneous body and for
an Earth consisting of two layers. In order to be able
to consider core-mantle coupling, we have included
the Poincaré model for the core in the SONYR model
(see, e.g., Poincaré 1910; Moritz 1980). The coupling
mechanism between the mantle and core in this model
is called inertial coupling, and is due to the pressure
of the fluid on the core-mantle boundary. It is possi-
ble at this level to compare the results from the two
Earth models. It must be noted that in our numerical
approach we have ignored the deformation contribu-
tions and did only consider the core existence for the
geophysical part of the equations.

Table 1 provides the ratios between the non-rigid
contributions and the rigid contributions for the main
prograde and retrograde nutations of the Earth. In this
case the terms coming from the transfer function result-
ing from the existence of a core and the terms coming
from the Poisson part of the forcing are mixed. As our
analytical developments have shown in Sects. 2 and 3,
the main contribution is not coming from the Poisson
terms in the forcing, but rather from the core FCN res-
onance. We find that the contribution of the prograde
18.6 years nutation is smaller than the unity whereas
the ratio for all other nutations are greater than 1 as in
the case of Wahr’s B-ratio (Wahr 1981).

Table 1 Ratio non-deformable nutation amplitude over the rigid
nutation amplitude

Prograde Retrograde
Nutation period nondef/rig nondef/rig
18.6 years 0.9914806597 1.007487569
Semi-annual 1.220587363 1.088899310
Annual 1.851327564 1.068475799
Monthly 1.130579228 1.122725790
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For the next step, we want to determine the am-
plitudes of the purely Poisson terms (the terms in
V21.2,1t) in the Earth orientation and the amplitudes of
the purely periodic terms (the two other terms in V21 ,, 0
and V31 ,,.1). This determination involves the Fourier
analysis of the Earth orientation obtained in a N-body
integration in terms of constant and time-dependent
amplitudes for each nutation. This formal decomposi-
tion of long-term motions in Fourier series and Poisson
terms is however very tricky as the length of the time
series used for this decomposition is of importance
in this approach. For most of the terms, we can only
estimate the sum of the two contributions, and we can
only estimate the ratios and the difference between the
total non-rigid contribution and the rigid contribution
as done above for the construction of the table. For the
terms of which the period is smaller than the time span
of the time series, it is in principal possible to separate
the Poisson terms from the periodic contribution to
nutations by fitting an amplitude and a term propor-
tional to the time for each frequency. However, as seen
from the previous sections, the time dependent parts
are very small. Additionally, many terms interfere with
one another and the identification of purely-periodic
and Poisson amplitudes becomes impossible.

One possibility to obtain a clear separation, and thus
to obtain the impact on the purely-periodic nutations of
the Poisson terms in the forcing, would be to compute
two orbital motions of the Earth reconstructed using
a tidal potential for the Earth with and without Pois-
son terms and to compare the results from the numeri-
cal integration approach for both cases. This will allow
obtaining their respective contributions to the Earth
rotation.

Additionally, for the nutation close to the FCN, it is
impossible to perfectly clear the he nutation time series
from the free core nutation excitation if the initial con-
ditions are not properly chosen or if no dissipation is
taken into account. A method for getting independence
from the initial conditions has been developed for Mer-
cury by Bois and Rambaux (2007) and could possibly
be applied for the Earth.
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