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Abstract 
 
This paper summarizes the development of the technologies used to produce high quality sprayed concrete layers by ro-
botizing a commercial shotcreting machine and automating the process used in the tunnelling construction industry. The 
proposed method provides the control system with the information of the properties of the pumping process, controlling 
the quality of the concrete layer by adjusting in real-time the trajectory of the shotcreting machine. Given the unstruc-
tured nature of the tunnelling construction method there is an inherent difficulty in the automation of the shotcreting 
process. A complete description of the implemented control architecture of the shotcreting machine, the automated shot-
creting process, the real-time quality layer prediction and the analysis of the tests made in real sites are shown in this pa-
per. 
 
 
1 Introduction 
In the underground construction branch of civil engineer-
ing and mining there are different types of tunnelling 
methods, and one of the major ones, known as drill & 
blasting, often include the process of concrete spraying -or 
shotcreting- process.  This tunnelling method consists of 
three main stages: Drilling and blasting, loading and haul-
ing of blasted rock and supporting of the newly open cav-
ity. In the third step, shotcreting is often the method of 
choice for providing temporary support.  
This process consists on spraying concrete mix on the sur-
face of the new cavity, quickly creating a supporting struc-
ture. The shotcrete surface can be used as temporary sup-
port until a final concrete lining is cast, or even as the final 
lining of the tunnel if additional structural shotcrete is 
added. 
Nowadays, for performing the shotcreting process special-
ized machinery is controlled by qualified operators, which 
create shotcrete layers of specific properties based on their 
experience. The properties and the quality of the layer de-
pend on the type of the lining needed, and basically the 
quality of the layer is measured in terms of homogeneity 
and thickness. In the last years there has been an increasing 
interest on the real time determination of both the homo-
geneity and thickness of shotcrete layers. There are both 
technical and economical reasons that justify this interest: 
On the one hand there is the need of guaranteeing a mini-
mum shotcrete thickness [1], while having the minimum 
required structural strength. On the other hand, contractors 
also do not want to place extra shotcrete on the walls, for 
usually they will not get paid for it. 
Additionally the development of different acquisition 
technologies during the past few years has made plausible 
the introduction of automation techniques in the under-
ground construction process. Different approaches have 
been described for shotcreting automation and thickness 
estimation [2][3][4]. The proposed method provides the 
control system with the information of the properties of the 

pumping process, controlling the quality of the concrete 
layer by adjusting in real-time the velocity of the trajectory 
of the shotcreting machine. 
 

 
Figure 1 Sika®-Putzmeister PM-407 [5]. 

 
The industrial machine Putzmeister-Sika® PM-407 (see 
Fig. 1) has been used as a test platform for the develop-
ment of the shotcrete automation. 

2 Process automation and control 
system of the shotcreting machine  

In tunnelling, after the advancement (drilling and blasting) 
stage, shotcrete is used to cover the surface of the roadway 
to create a support on the working area inside the tunnel. 
The advancement stage is made by introducing explosives 
in the face of the tunnel and making a controlled blast. But, 
as controlled as the blasting can be, the dimensions of the 
resulting surface are completely unstructured and thus, one 
of the implicit difficulties involved in the shotcreting proc-
ess that has avoided its automation.  
Three steps have been defined for the automated shotcret-
ing stage: 
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1. Pre 3D LADAR scan of the working area.  
2. Automated shotcreting process. 
3. Post 3D LADAR scan and layer quality evalua-

tion. 
 

The first step of the automated process is basically done 
by imaging the working surface of the tunnel with a 3D 
LADAR scanner (the LIDAC-16 developed by 
AITEMIN). The information acquired from the first scan 
is then used by the main control system of the machine to 
generate the trajectories to shotcreting a layer. Finally a 
second scan is made in order to evaluate, subsequently, 
the quality of the layer and the amount of concrete used. 
This information can also be used to optimise the control 
parameters of the automatic shotcreting system.   

2.1 Robotization of the shotcreting machine 
The shotcreting machines are based on manipulators that 
as an end tool they have a nozzle to spray the concrete fed 
by a concrete pump. It is to be noted that the best way to 
spray the starting mix into a wall is by keeping the spray-
ing vector perpendicular to the surface of the selected 
area, at a certain distance that may vary between 1 and 
1.5m.  
Furthermore this type of machinery hasn’t been designed 
for automation purposes but for manually controlled la-
bour. This implies that some additional factors like me-
chanical deformations, backlashes, or the control type of 
the actuators have to be taken into account in the control 
system of the machine for precise positioning. 
The proposed control system has been designed to use the 
real-time layer thickness estimator and the roadway ge-
ometry information to feedback and adapt the trajectory 
control according to the conditions in order to produce 
high quality concrete layers. 

2.1.1 Mechanical configuration of the manipula-
tor 

The arm of the shotcreting machine is made of 5 degrees 
of freedom (DOF) of hydraulically actuated joints (see 
Fig. 2). The first three are configured as a spherical ma-
nipulator (2 rotational and 1 prismatic joint), and the last 
two rotation joints from the end tool, are specially config-
ured to help the operators to maintain a certain orientation 
without having to move many joints simultaneously.  
There is an additional sixth joint at the end of the tool that 
generates an eccentric rotation of the nozzle. This joint 
was originally design to help the operators to increase the 
smoothness of the spraying, but it is not going to be taken 
into account for automatic control purposes and it is con-
sidered the nozzle in the centre.  
Another property of the system is that it is only possible 
to control the velocity of the first two DOF according to 
the control type of its hydraulic valves (see Table 1). The 
rest of them they just have on/off valves. This configura-
tion affects the way the velocity of the movement of the 
manipulator is controlled (as explained later in section 
2.1.2.2). 

 
 

Figure 2 D-H configuration of the PM – 407 manipulator. 
 

Table 1 D-H Parameters for shotcreting manipulator. 
 

 
 
The direct kinematics of every joint is known by applying 
the Denavit-Hartemberg [6] convention, according to the 
joint configuration (see Table 1), where the target position 
will result by adding to a6 the desired distance between 
the nozzle and the tunnel surface (r). But to control the 
manipulator in position, velocity and orientation accord-
ing to desired target position vector (P), by evaluating its 
inverse kinematics, some details have to be taken into ac-
count.  
 

 
                   a.    b. 
 
Figure 3 Yaw (ψ) and pitch (ϕ) angles of the nozzle dur-
ing spraying. a) Top view and b) Front view. 
 
First of all, P(O6r,R(ψ,ϕ)) is a vector defined by two ele-
ments, the position (X,Y and Z) of and the attitude (ψ,ϕ) 
for the target of spraying; this elements are specified  ac-
cording  to the coordinate system of the origin of the ma-
nipulator (Oo) (see Fig. 3), and they are provided by the 
LADAR system. 
The inverse kinematic problem has been solved using the 
decoupling technique [7]. As in this problem O6 and the 
orientation of the nozzle are known, it is possible to solve 
the position and orientation of the nozzle by evaluating O5 
using an analytical approach by the given equation: 

Joint i α i a i θ i d i Ranges Control Type

1 π/2 -a 1 θ 1 d 1 -158o - 171o
Proportional

2 π/2 0 θ 2 0 19o - 154o
Proportional 

3 0 a 3 0 d 3 0 - 2094 mm On/Off

4 π/2 0 θ 4 0 0 - 360o
On/Off

5 0 0 θ 5 -d 5 -47o - 204o
On/Off

6 0 a 6 0 0 - -
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x5 = x6  – (a6Cos(ϕ)* Cos(ψ)) 
y5 = y6  – (a6Cos(ϕ)* Sin(ψ))  
z5 = z6 + a6Sin(ϕ) 

 
The inverse kinematic problem must proceed finding O3. 
Given the fixed distance O63 = sqrt(a6

2 + -d5
2) and its ori-

entation γ = atan(-d5,a6), O3 can be directly solved by the 
equations:  

x4 = x3 = x6 – (O63Cos(γ+ϕ)* Cos(ψ)), 
y4 = y3 = y6 – (O63Cos(γ+ϕ)* Sin(ψ)), and 
z4 = z3 = z6 + O63Sin(γ+ϕ). 

 
Then, the three first parameters can be evaluated just with 
the position of O3, indeed θ1 = Atan(O3y ,O3x). In this case 
there is just one solution for θ1 because of the constraint 
on the joints. Normally θ1= Atan(O3y ,O3x)+ π  is also a 
possible solution but if this solution is chosen, it will give 
automatically a negative solution for θ2 and this is not al-
lowed by the constraints of the machine. 
Hence, there is just a unique θ1 it is possible to evaluate 
O1 according to the next equation: 

 
 O1 = (-a1Cos(θ1), -a1Sin(θ1), L1), 

 
and so is the distance O31. According to this the distance 
of the prismatic joint can be evaluated by d3 = sqrt(O31

2-
a3

2), and finally, θ2 can be evaluated by the equation: 
 

θ 2 = Atan(n,q)-Atan(a3,d3) + π /2 
 
where n = O3 -O1 projected on y1 and q = O3 -O1 projected 
on x1. 
Now that θ 1, θ 2 and d3 have been found, the transforma-
tion matrix T0

3 can be evaluated and therefore the position 
and the orientation of O3 are known. Moreover, the matrix 
between the O3 and O6 is also known according to the 
transformation matrix T3

6. In this way it can be deter-
mined that θ4 = Atan(T3

6(1,3),-T3
6(2,3)) and θ5  = 

Atan(T3
6(3,1),  T3

6(3,2)). 
The problem with this method is that in order to be cor-
rect there is a condition that has to be fulfilled and it is 
that z3 must be perpendicular to z5 and therefore to z6. 
This is determined by the geometry configuration of the 
manipulator and in fact there are very few circumstances 
in which this condition coincides with the previous in-
verse kinematic evaluation.  
Therefore it is necessary to find an O3 that may fulfils the 
perpendicular condition between z3 and z6. This problem is 
solved by recursive iterations where the reference system 
O6 = O6*Rz(φ) (where Rz(φ) is the rotation matrix or the 
roll angle of the nozzle ) is rotated around z6 until the dot 
product z3.  z6 = 0.  
This means that the link between O3 and O5 is rotated 
around z6 adding in each iteration a constant value to φ, 
changing the position of O3 and O1, and therefore chang-
ing the value of θ1, θ2, d3, θ4 and θ5. Each of these posi-
tions must be evaluated every iteration, according to the 
equations shown before, until the perpendicular condition 
is satisfied.  

This process may take to much CPU time if it is not done 
with certain logic. For example the direction of the rota-
tion may be selected according to the attitude of the noz-
zle and the quadrant where it is located.  
Additionally, the time of the process may decrease by in-
creasing the rate of φ and using statistical strategies to av-
erage the value of the product between iterations. This is 
the case when, for example, the value of the dot product 
passes through zero between iterations. 
 

 
 
Figure 4 Flowchart for the inverse kinematics resolution 
for the shotcreting machine’s manipulator.  

2.1.2 Control architecture 
The main control is based on a computer (master control-
ler) which, through the information provided by multiple 
sensors and measurement systems, is responsible for mov-
ing the arm of spraying at a determined velocity by evalu-
ating the position and attitude of the nozzle tip with re-
spect to the surface of the tunnel, having defined previ-
ously the work area and the thickness of the layer. 
It has a distributed structure which is designed to inter-
connect the interfaces that are designed to monitor and 
control the shotcreting machine, its manipulator and to 
add additional control elements (see Fig. 5).  
It is divided in four main modules: the manipulator’s in-
terface, the pumps’ interface, the additional elements 
(LADAR scanner or the remote control), and the main 
controller that has a visual based Human Machine Inter-
face (HMI), designed for its use in construction sites, and 
that it is in charge of the control system of automated 
shotcreting process. 
The system is capable of running in three modes of opera-
tions: a) Automatic mode where the complete process is 
done in an autonomous process; b) Semiautomatic mode, 
where the operator can move the manipulator using a re-
mote control but is assisted by the main control system in 
order to guide him to maintain the correct attitude and po-
sition of the nozzle according to the surface of the tunnel; 
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and c) the manual mode, that is the last mode of opera-
tion, where the operator uses the remote control to move 
freely the manipulator but it is assisted by the control sys-
tem in order to move the joints with coordinated move-
ments instead of one joint at a time (as it is done in the 
operation without any automation). 

 

 
 

Figure 5 Main control architecture.  
 
The last two modes of operations were implemented in 
case unexpected issues arises inside the tunnel construc-
tion process (like faults or water leaks) and the automated 
control system is not able address them. These modes 
won’t be discussed further in this document. 

2.1.2.1 Main controller and HMI 
The main controller is based con an industrial PC and it is 
designed to control the automated shotcreting process in-
teracting with the different interfaces and additional com-
ponents of the installed on the machine.  
The windows based control application (see Fig. 6) is de-
signed to be used by construction workers and provides 
the user with a user friendly HMI which is accessible 
through a touch screen panel. 
 

 
Figure 6 HMI controller.  
 

It has a main VRML model of the manipulator (1) that 
shows its position in real time during the automated shot-
creting process. It can also be configured to monitor the 
progress of the process while moving the manipulator in 
semiautomatic or manual operation mode. 
Maybe this functionality doesn’t make much sense if the 
main controller is installed onboard; but one of the main 
objectives of the complete development is to prevent that 
the operator gets near the working area and may be able 
to operate from a remote location, as it is intended in fur-
ther developments. 
The application also has an independent control for each 
joint (2), high level macros for different operations like 
the automated shotcrete process or locating the manipula-
tor by entering the desired position and attitude according 
to the machine’s  coordinates (3), and different options for 
the system configuration (4). 

2.1.2.2 Manipulator’s interface 
The interoperability between the application software and 
the movement of the manipulator’s joints is made by an 
interface (see Fig. 6) which main functionality is based on 
a motion control card, which has a dedicated PID filtered 
position and velocity control for the proportional actuated 
joints, and has been programmed to accurately process a 
time based control of the position of each on/off actuated 
joint (see Table 1).  
It also provides the control software with the information 
of the different encoders and positions sensors and it has 
been programmed to evaluate the velocity of each joint in 
order to get to the desired position making coordinated 
movements at the desired velocity. 
This interface was designed to minimize the main CPU 
time of usage for processing low level information. The 
configuration makes suitable the use of the main control-
ler with non real-time based operation systems. 
It is connected to the main controller through an Ethernet 
which is intended to which minimize the signal distortion 
produced by external noise sources, but instead it decreas-
ing transfer rate. Nevertheless the transmission rate is 
made between 100 and 200 samples per second.  
So when the an automated spraying process has to be 
made, first the complete set of target positions and the 
shotcreting speed  is evaluated a priori by the main con-
trol system and then sent to the motion control card. Dur-
ing the spraying the desired velocity can be modified in 
real time in order to adapt the spraying according to the 
mix pumpability conditions, meanwhile it feedbacks the 
main controller with the position of the joints of the ma-
nipulator to visually monitor the process from the HMI. 

2.1.2.3 Pump’s interface 
This interface (see Fig. 6) has been designed only to 
measure the different values used to evaluate the amount 
and the velocity of the pumped concrete and send them to 
the main control system through an USB connection. 
A set of sensors have been installed in the machine in or-
der to measure different parameters (pressure, concrete 
flow, etc.). These parameters are measured not only for 
quality control purposes, but also for detecting the pump 
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