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ABSTRACT 

All-trans retinoic acid (RA) causes differentiation of neuroblastoma cells, and 

retinoids have been used in clinical trials in children with advanced 

neuroblastoma. Combination of RA with histone deacetylase inhibitors (HDACi) 

could result in improved antitumorigenic activity. We have examined the effect of 

the HDACi trichostatin A (TSA), sodium butyrate (But), and suberoylanilide 

hydroxamic acid (SAHA), alone and in combination with RA in human 

neuroblastoma SH-SY5Y cells. At concentrations that cause sustained increase of 

histone H3 acetylation, HDACi produced extensive apoptotic cell death as shown 

by flow cytometry analysis and induction of poly ADP-ribose polymerase (PARP) 

proteolysis. HDACi inhibited SH-SY5Y cell growth at much larger extent than RA. 

This compound did not cause apoptosis and did not further increase HDACi-

mediated cell death. In contrast, both types of drugs cooperated to inhibit cell 

growth, although synergistic effects were not found. In surviving cells, HDACi 

repressed Cyclin D1 expression and increased the cyclin kinase inhibitors (CKI) 

p21
Waf1/Cip1

 and p27
Kip1

. Cyclin D1 was not affected by RA, but this retinoid also 

increased CKI levels. Induction of p21
Waf1/Cip1

 and p27
Kip1

 by HDACi was further 

enhanced in the presence of RA. This effect appears to be at least partially due to 

transcriptional stimulation of CKI gene expression, since both types of drugs 

cooperated to increase CKI mRNA levels and to activate the CKI promoters in 

transient transfection assays. These results show the strong anti-tumorigenic 

effects of HDACi in neuroblastoma cells and reinforce the idea that combination 

therapy could be useful to inhibit tumor growth. 



Introduction 

Histone deacetylase inhibitors (HDACi) constitute a promising treatment for cancer 

therapy due to their low toxicity, and first-generation HDACi are currently being tested 

in phase I/II clinical trials (1,2). There are distinct classes of HDAC inhibitors, 

including among others short-chain fatty acids such as butyrate and hydroxamic acids 

such as trichostatin A (TSA) and suberoylanilide hydroxamic acid (SAHA), that 

function by binding to the catalytic site of the enzyme (3).  

During tumorigenesis, histone hypoacetylation can result in the silencing of genes 

involved in regulation of cell growth, differentiation, and apoptosis. HDACi increase 

acetylation of histones and transcription factors (4), which can reverse gene silencing 

facilitating gene expression (5). However, not all genes are upregulated by treatment 

with HDACi and the ratio of upregulated to downregulated genes has been found to be 

close to 1:1 (2). HDACi have been shown to induce G1-phase cell cycle arrest with up-

regulation of p21
Waf1/Cip1 

(6-7), which was associated with an Sp1 site in the gene 

promoter (8-11). These changes can result in cell type specific effects including reduced 

proliferation and metabolic activity, induction of apoptosis and differentiation (12-15).  

Neuroblastoma accounts for more than 15% of cancer-related deaths in early 

childhood (16). Thus, new drugs are needed for the treatment of this disease. The 

finding that all-trans retinoic acid (RA) causes differentiation of neuroblastoma cells 

(17), led to clinical trials that demonstrated a substantial clinical benefit for retinoid 

therapy in advanced neuroblastoma, although 50% of children still relapsed (18).  

The effects of RA are mediated by nuclear receptors. In the absence of ligand these 

receptors act as transcriptional repressors due to the binding of corepressor complexes 

that contain histone deacetylases (HDACs). Ligand binding allows the release of 

corepressors and facilitates the ordered recruitment of coactivator complexes, some of 



which possess histone acetylase (HAT) activity, that cause transcriptional stimulation 

(20). Several retinoids are able also to inhibit the activator protein-1
 

(AP-1) 

transcription pathway, which is activated upon growth
 
factor signaling (19,20) or even 

to have non-genomic effects that lead to stimulation of signaling pathways involved in 

neuronal differentiation (21). 

Combination therapy of RA with HDACIs may improve efficacy while reducing side 

effects. An enhanced inhibitory effect on neuroblastoma cell growth when the HDACi 

M-carboxycinnamic acid bishydroxamide (CBHA) was combined with RA has been 

found (22). To further investigate the effects of deacetylase inhibition, we compared the 

potency of the HDACi sodium butyrate, TSA and SAHA alone and in combination with 

RA to inhibit growth of human SH-SY5Y neuroblastoma cells. This cell line has proven 

to be a valuable model for studying the effects of RA on neuronal differentiation, 

including extension of neuritic processes and growth arrest (23,24). 

 

Materials and Methods 

Cell proliferation assays 

SH-SY5Y cells were grown in RPMI containing 10% fetal calf serum (24). 24 h 

before the beginning of treatments cells were shifted to medium containing AGX100 

resin-charcoal treated serum to eliminate retinoids. Cytotoxicity was determined by 

colorimetric MTT assay, as recommended by the manufacturer (Roche). Absorbance 

was read at 550 and 690 nm. Cells were plated in 96-wells plates (7 x 10
3
 cells/well), 

and assays performed after incubation for 24 and 48 h with RA and HDACi. When the 

Caspase Family Inhibitor (Fluoromethylketone) Z-Val-Ala-Asp (OMe)-FMK (Z-VAD) 

was used cells were inoculated at a density of 20 x 10
3
 cells/well. DNA synthesis was 

determined by [
3
H]thymidine incorporation in cells inoculated in 6-multiwells plates (6 



x 10
5
 cells/well). Cells were treated for 24 h with the different compounds and for the 

last 2 h with 2 µCi/well of [
3
H]thymidine. Cells were disrupted and incorporated 

radioactivity was determined in a liquid scintillation Beta Wallac Counter. For counting, 

cells were inoculated in 6-well plates at 5 x 10
4
 cells/well, treated 24 later with the 

different compounds and counted every two days in Neubauer chambers. Cell 

morphology was assessed at 200X in a Zeiss inverted phase contrast microscope. 

Flow cytometry 

Triplicate cultures of SH-SY5Y cells grown in 60 mm Petri dishes were transferred 

to the medium containing depleted serum and after 24 h incubated with the different 

compounds for 48 h. Both floating and adherent cells were collected, washed twice with 

cold PBS, fixed with chilled ethanol 70% and centrifuged. Pellets were incubated for 30 

min at 37ºC with 0.1 g/ml RNAse A and stained with propidium iodide (50 µg/ml) for 

sorting in a FACScan (Becton-Dickinson) cell sorter. Percentage of cells in subG1, G1, 

S and G2/M phases was calculated with WinMDI and Cylchred software for Windows. 

Western blot 

Cell lysates were obtained as previously described (25). Proteins were separated in 

SDS-PAGE and transferred to PDVF membranes (Immobilon Millipore) that were 

blocked for 1 h at room temperature with 4% BSA. Incubation with primary antibodies 

(25,26) was performed overnight at 4ªC, and with the secondary antibody for 1 h at 

room temperature. Blots were visualized with ECL (Amersham). Antibodies against 

Cyclin D1, p21
Waf1/Cip1

, p27
Kip1

 and poly (ADP-ribose) polymerase (PARP) were 

obtained from Santa Cruz Inc and used at a 1:2000 dilution. The antibody for acetylated 

histone H3 in lysines 9 and 14 (Upstate) was used at a 1:5000 dilution. Membranes 

were stripped, blocked and reprobed with anti human actin antibody (Santa Cruz). 

Northern blot 



Total RNA from cells grown in 90 mm dishes was isolated with TriReagent (Sigma), 

following the manufacturer’s protocol. Total RNA (15 µg) was run in 1% 

formaldehyde-MOPS agarose gels and transferred to nylon Nytran-N (Schleicher & 

Schuell) as described (24-26). Then RNA was linked to membrane using UV-

Stratalinker and stained with 0.02% methylene blue to assess equal loading. Probes 

were labeled by random primer with Ready-To-Go DNA Labeling kit and [ -
32

P]dCTP 

(Amersham Pharmacia Biotech). The labeled probes were hybridized with specific 

probes for Cyclin D1, p21
Waf1/Cip1 

and p27
Kip1

 as described (25-26). 

Transient transfections 

SH-SY5Y cells (1x10
6
) were plated in 60 mm wells, changed to serum-free medium 

24 hours later and transfected with 5 µg of luciferase reporter plasmids containing 2.3 

kb of the human p21
Waf1/Cip1

 promoter and 1.9 kb of the human p27
Kip1

 promoter (26). 

Transfection was obtained by incubation with a mixture of cationic liposomes (1.5 

µl/µg DNA) for 6 h. Cells were then treated for 48 h with RA and/or HDACi and 

activity determined. Each experiment was performed in triplicate and was repeated at 

least 3 times. Data are mean ± S.D and are expressed as fold induction over the values 

obtained in the untreated cells. 

 

Results 

Effects of HDACi on histone H3 acetylation 

Incubation of SH-SY5Y cells during 6 hours with TSA, But and SAHA caused a 

dose-dependent increase of histone H3 acetylation. A detectable increase was observed 

with the lower dose of TSA used, 50 nM, and 100 nM TSA caused an acetylation at 

least as strong as that produced by 2 mM But or 1 µM SAHA (Fig. 1A). However, the 

effect of these TSA concentrations on H3 acetylation is transient. Whereas But and 



SAHA produced a sustained increase in histone H3 acetylation that was very strong 

after 48 h, concentrations of TSA 200 nM or lower had little effect at this time point 

(Fig. 1A). As shown in Fig. 1B, 100 nM TSA caused a stronger acetylation than 2 mM 

But after 6 h of incubation, but the opposite was true after 24 h. Re-addition of TSA 

after 24 h caused again a strong increase in the levels of acetylated H3 histone (Fig. 1C), 

suggesting that this reduction results from a rapid metabolism of TSA in SH-SY5Y cells 

rather than being secondary to changes in HDAC sensitivity to this compound. 

Combined effects of HDACi and RA on SH-SY5Y cell growth and morphology 

By using MTT assays to measure viability, the dose- and time-dependent effects 

observed showed that significant killing of SH-SY5Y cells by HDACi required 48 h. At 

24 h (Fig.2A, left panel), the different HDACi had little effect even at high 

concentrations both in the presence and absence of RA. However, after 48 h 

concentrations of 100 nM TSA, 1 mM But or 0.5 µM SAHA were ineffective, but 

higher concentrations (200 and 500 nM TSA; 2 and 5 mM But; and 1 and 2 µM SAHA) 

caused a strong dose-dependent decrease of cell viability. Whereas RA (1 µM) did not 

reduce this parameter, the retinoid was able to increase the effect of low HDACi 

concentrations, although a strong synergistic effect was not found (Fig. 2A, right panel). 

Direct cell counting also demonstrated a marked effect of HDACi on SH-SY5Y cell 

viability. Fig.2B shows that whereas control cells proliferate rapidly, at 48 h TSA 200 

nM, But 2 mM and SAHA 1 µM caused a strong inhibition of cell proliferation, and that 

essentially no viable cells remain after 4 days of treatment with the HDACi. An 

inhibitory effect of HDACi on DNA synthesis was already observed at 24 h (Fig. 2B). 

Concentrations higher than 200 nM TSA, 2 mM But or 0.5 µM SAHA reduced 

thymidine incorporation and RA, that only caused a weak dose-dependent inhibition, 

again potentiated HDACi action.  



In SH-SY5Y cells, RA treatment for 48 h induced morphological differentiation with 

neurite extension (Fig. 3). In contrast, morphology after treatment with HDACi (200 

mM TSA, 2 mM But or 1 µM SAHA) was typical of cells undergoing cell death, with 

neurite shortening and appearance of cells in suspension. This occurred both in the 

presence and absence of RA (Fig. 3). 

Flow cytometry analysis confirmed that HDACi produced SH-SY5Y cell death, 

manifested by accumulation of subG1 cell debris. Approximately 60% of cells treated 

with 2 mM But or 1 µM SAHA were in subG1 both in the presence and absence of 1 

µM RA after 48 h of incubation (Fig. 4A). These compounds also caused a significant 

decrease on the number of cells on S-phase. In contrast, 100 nM TSA had little effect on 

cell death or cell cycle progression, showing that a sustained increase in histone 

acetylation is required for these HDACi actions.  

   Proteolysis of PARP after incubation for 48 h with 200 nM TSA, 2 mM But or 1 µM 

SAHA (Fig. 4B), demonstrated that HDACi caused apoptotic cell death. In contrast, 

incubation with 1 µM RA for the same time period did not alter cell cycle distribution 

and did not induce apoptotic SH-SY5Y cell death.  

To determine if cell death caused by HDACi is caspase dependent, we first 

determined PARP proteolysis in the presence and absence of the caspase inhibitor Z-

VAD. As shown in Fig.5A the 89 kDa band representing cleavage of the protein was 

found after 24 h of incubation with 2 mM But or 2 µM SAHA alone, but this band was 

absent in cells treated with the combination of HDACi and Z-VAD. The effect of the 

caspase family inhibitor was also examined in MTT assays performed in cells treated 

with But (2 and 5 mM) and SAHA (1 and 2 µM). Fig. 5B shows that at 24 h incubation 

these compounds had little effect on cell viability, in agreement with the results shown 

in Fig.2A. However, after 48 h both inhibitors caused a dose-dependent reduction of 



cell viability that was significantly reversed in the presence of Z-VAD, indicating the 

participation of caspases in HDACi-mediated apoptosis of SH-SY5Y cells. 

 

H3 acetylation and CKI and cyclin D1 expression in HDACi-treated cells 

The effect of 24 h incubation with the various HDACi on histone H3 acetylation 

paralleled closely regulation of cyclin D1 and CKI levels in SH-SY5Y cells (Fig. 6A). 

TSA was effective at 200 nM, and at 500 nM that induced a very strong histone H3 

acetylation, caused a marked reduction of cyclin D1 and a strong increase of 

p21
Waf1/Cip1

. But was effective from 0.5 mM, causing a progressive decrease of cyclin 

D1 and a concomitant induction of the CKI, and the same was true for SAHA between 

0.5 and 2 µM. RA did not increase the levels of acetylated H3 and did not reduce cyclin 

D1 expression. However, an increase in p21
Waf1/Cip1

 expression was also found after 

treatment with 10 µM RA (Fig. 6A). On the other hand, the combination of SAHA or 

But with 1 µM RA did not cause a further reduction of cyclin D1 expression, but up-

regulation of p21
Waf1/Cip1 

levels by the HDACi was further increased in the presence of 

the retinoid (Fig. 6B), suggesting that regulation of this CKI plays a more important role 

than cyclin D1 on the repression of SH-5Y5Y cell growth found with the combined 

treatment. Since other CKIs could also contribute to the arrest of cell growth observed 

after HDACi and RA treatment, the levels of p27
Kip1

 were also measured. As shown in 

Fig. 6C, the levels of this inhibitor were also elevated after the treatments, although less 

strongly than p21
Waf1/Cip1

.  

When the time-course of the effect of But (2 mM) on CKI expression was analyzed, 

it was found that the induction of p21
Waf1/Cip1 

and p27
Kip1

 levels followed similar 

kinetics. No CKI induction was observed after 1 and 3 h of incubation with the 



inhibitor, but a detectable increase was found between 5 and 7 h (Fig.6D). The influence 

of increasing concentrations of the different HDACi, as well as RA, was then examined 

after 6 h of treatment (Fig.6E). Whereas at 24 h an increase in CKI expression was only 

detected at high TSA concentrations (see Fig.6A), at 6 h of incubation the increase in 

p21
Waf1/Cip1 

and p27
Kip1

 levels were maximal at a TSA concentration as low as 50 nM. 

These results match again the stimulation of histone H3 acetylation, since the actions of 

low TSA concentrations were transient and a strong acetylation after 24 h was only 

obtained at high concentrations of this inhibitor. This contrasts with the effects of 

butyrate that caused a sustained induction of CKI and histone acetylation, at all 

concentrations used. On the other hand, RA was also effective to increase the CKIs after 

6 h of treatment even at 0.1 µM. 

In agreement with previous reports indicating that HDACi can induce p21
Waf1/Cip1 

gene transcription, treatment with these compounds at concentrations that caused H3 

acetylation also increased the levels of p21
Waf1/Cip1 

transcripts in SH-SY5Y cells (Fig. 

6A). In addition, these levels were further induced in the presence of RA. p27
Kip1 

mRNA levels also increased after incubation with But 2 mM and SAHA 1 µM, and RA 

further potentiated this increase. Cooperation of the retinoid with HDACi to stimulate 

activity of a luciferase reporter plasmid containing the p21
Waf1/Cip1 

promoter in transient 

transfection assays was also found (Fig. 6B). RA increased by 2 fold promoter activity, 

and the various HDACi were able to further induce this stimulation. TSA 200 nM was 

less potent that But 2 mM or SAHA 1 µM for this induction. Induction of p27
Kip1

 

promoter activity was also found after the treatments. RA was able to induce by 3-4 fold 

reporter activity and to cooperate with the HDACi to stimulate the promoter (Fig. 6C).  

 



Discussion 

We have compared the effect of the HDACi sodium butyrate (But) with that caused by 

two hydroxamic acid derivatives, TSA and SAHA, on human SH-SY5Y neuroblastoma 

cells. It has been shown that TSA at nanomolar concentrations causes a strong 

accumulation of acetylated histones in cells and blocks HDAC activity in vitro (27). 

Our work confirms that low concentrations of TSA cause a strong increase in histone 

H3 acetylation in SH-SY5Y cells. However, the effect of this inhibitor is transient when 

used at doses lower than 200 nM. This could result from a short-life of this compound 

in these cells, since re-addition of TSA again increases acetylation. The effects of But, 

at millimolar concentrations, or SAHA, a second generation HDACi (28) at micromolar 

concentrations, are more stable being able to increase acetylation even after 48 hours. 

Interestingly, SAHA has been successful in phase II trials for the treatment of cutaneous 

T cell lymphoma (29), and is the first HDACi approved by the FDA to enter the clinical 

oncology market.  

The concentrations of HDACi that produced long-standing histone hyperacetylation 

also caused strong growth inhibition. Inhibition is consequence of increase in apoptotic 

cell death, as indicated by the appearance of cells in subG1, and the induction of PARP 

proteolysis, a late apoptotic event. HDACi-induced apoptosis appears to be at least 

partially caspase-dependent, since cell death was attenuated in the presence of a caspase 

family inhibitor. Besides inducing apoptosis, in the surviving cells HDACi also caused 

a significant decrease of the number of cells in G1 and S-phases. Since Cyclin D1 is 

essential for G1 entry, this reduction could be related to the decrease of this protein 

found in HDACi-treated cells. It has been shown that the HDACi BL1521A reduces 

Cyclin D1 transcripts in neuroblastoma cells (30) and we also observed this reduction in 

SH-SY5Y cells treated with But, TSA or SAHA. However, the possibility that HDACi 



could also alter Cyclin D1 stability in agreement with the very recent finding that TSA 

induces ubiquitin-dependent degradation of Cyclin D1 in breast cancer cells (31) cannot 

be excluded.  

Cyclin dependent kinase (CDK) activity is counteracted by cyclin kinase inhibitors 

(CKI). The WAF/KIP family of CKIs that includes among others p21
Waf1/Cip1

 and 

p27
Kip1

, inhibits kinase activity of G1/S CDKs (32). In agreement with observations in 

other cells (6-11,33,34), HDACi caused an important increase of p21
Waf1/Cip1

 in SH-

SY5Y cells. It has been suggested that this induction is a critical effector of HDACi for 

cell cycle arrest and that cells lacking this CKI are insensitive to these compounds (35). 

However, butyrate can induce G1 arrest in mouse embryonic fibroblasts lacking 

p21
Waf1/Cip1

, suggesting that Cyclin D1 could be the key factor in this inhibition (36). In 

any case, growth arrest promoted by HDACi in SH-SY5Y cells was accompanied by 

both Cyclin D1 reduction and p21
Waf1/Cip1 

induction. This CKI was not the only 

inhibitor induced by these agents, since the levels of p27
Kip1

 were also increased upon 

incubation with HDACi. The increase in p27
Kip1

 most likely contributes to the 

inhibition of growth by HDACi in SH-SY5Y cells. In contrast with p21
Waf1/Cip1 

that 

appears to be a common target for different HDACi, induction of p27
Kip1

 appears to be 

more selective. For instance the HDACi TSA and valproic acid, but not butyrate or 

BL1521, have been found to induce this protein in other neuroblastoma cell lines 

(7,33,34).  

The influence of HDACi on p21
Waf1/Cip1 

levels is due to transcriptional stimulation. 

Most likely Sp1 binding motifs that mediate p21
Waf1/Cip1

 induction in other cell types 

(9-11) also mediate induction in SH-SY5Y cells. An increase in the amount of 



acetylated histone H3 associated to the p21
Waf1/Cip1

 promoter (8) as well as a reduction 

in HDAC1 binding (37) has been obtained by chromatin immunoprecipitation assays 

after treatment of other cells with HDACi. This should also occur in SH-5Y5Y cells in 

which an increase in H3 acetylation is found. Our data also demonstrate that HDACi 

increase p27
Kip1

 mRNA levels and stimulate p27
Kip1

 promoter activity in transfection 

assays. Although the promoter elements that mediate p27
Kip1 

gene transcription by 

HDACi have not been yet defined, most likely increased association of acetylated 

histones with the promoter is involved in this stimulation.  

Retinoids have been used in clinical trials in patients with neuroblastoma (16-18), 

although their therapeutic use is limited by their toxicity. Our data show that the effect 

of RA in SH-SY5Y cell growth is much weaker than that of HDACi. In contrast with 

HDACi, treatment of SH-SY5Y cells with RA did not cause apoptosis. This could be 

related to increased expression of Bcl-2 (38), an effective apoptosis suppressor. Also, 

contrary to that found with HDACi, RA did not reduce Cyclin D1. However, in 

agreement with previous results in neuroblastoma cells (24,39), RA caused CKI 

induction. Our data show that the increase in p21
Waf1/Cip1 

and p27
Kip1

 appears to be at 

least partially due to transcriptional stimulation since RA increased CKI transcripts and 

caused promoter activation in reporter assays. In addition, it has been recently reported 

that RA induces p27
Kip1

 phosphorylation that leads to its stabilization and accumulation 

into the nuclear compartment (40). The promoter elements responsible for induction of 

p27
Kip1

 gene expression by RA are still unknown, but the increase of p21
Waf1/Cip1 

promoter activity by RA could depend on a promoter response element that mediates 

p21
Waf1/Cip1

 induction by RA in leukemia cells (41).  



It has been proposed that the combination of retinoids with other drugs could result 

in improved antitumorigenic activity, allowing the use of low retinoid concentrations 

and reducing its side effects (19). The HDACi CBHA and RA have been described to 

inhibit neuroblastoma cell growth in significantly lower concentrations when used 

together than when used individually (23). Our results show a clear cooperation of RA 

with other HDACi to increase p21
Waf1/Cip1 

and p27
Kip1

 levels in SH-SY5Y cells that 

might be involved in the stronger reduction in cell proliferation found when both agents 

were used together. This cooperation was also observed for mRNA induction and 

promoter activation, confirming their transcriptional effect on CKI gene expression. In 

contrast, RA did not increase HDACi-mediated cell death and did not further reduce 

cyclin D1 expression. This could explain why strong synergistic effects of both types of 

drugs on SH-SY5Y growth arrest were not found.  

Our results as well as the finding that HDACi can suppress growth in human-mouse 

neuroblastoma xenografts (13,42), suggest that HDACi that cause a sustained increase 

of histone acetylation could be promising therapeutic agents for neuroblastoma 

treatment. Their anti-tumorigenic effects could be stronger than those of retinoids and 

both types of drugs could cooperate to inhibit neuroblastoma growth. 
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Figure Legends 

 

Figure 1. Effect of HDACi on histone H3 acetylation. A, Western blot analysis of 

acetylated histone H3 (Ac His H3) from control SH-SY5Y cells (C) and cells treated 

with the indicated concentrations of TSA, butyrate (But) and SAHA for 6 h (upper 

panels) and 48 h (lower panels). In B, cells were treated for 6 and 24 h with 100 nM 

TSA or 2 mM But. In C, cells pretreated for 24 h with 100 nM TSA or 2 mM But were 

incubated for an additional 6 h period with the HDACi. Actin levels were used as a 

loading control. 

 

Figure 2. Effect of HDACi and RA on SH-SY5Y cell proliferation. A, MTT assays in 

cells treated for 24 h (left panel) and 48 h (right panel) with 1µM RA in presence and 

absence of increasing concentrations of TSA (100, 200 and 500 nM), But (1, 2 and 5 

mM) and SAHA (0.5, 1 and 2 µM). The first bar indicates the values obtained in the 

untreated cells and the second bar cells reated with RA alone. B, Growth curve of 

control (C) SH-SY5Y cells, and cells treated with 200 nM TSA, 2 mM But and 1 µM 

SAHA. C, [
3
H]thymidine incorporation in cells incubated for 48 h with 0, 0.1, 1 and 10 

µM RA alone or in combination with TSA (200 and 500 nM), But (2 and 5 mM) and 

SAHA (1 and 2 µM).  

 

Figure 3. Influence of HDACi and RA on cell morphology. Photomicrographs at 200X 

of SH-SY5Y cells treated for 48 h with RA (1 µM), TSA (200 nM), Butyrate (2 mM) or 

SAHA (1 µM), as indicated. 

 



Figure 4. HDACi induce SH-SY5Y cell death by apoptosis. A, Cell cycle analysis by 

flow cytometry after 48 h treatment with TSA, But or SAHA in the presence and 

absence of RA. The percentage of cells in each phase was obtained from histogram 

analysis with WinMDI software. Data represent the mean ± S.D of three independent 

cultures. B, Induction of PARP proteolysis by HDACi in cells treated for the same time 

period with the indicated concentrations of HDACi and/or RA. Two bands are detected 

in the Western blot of HADCi treated cells: the 113 kDa PARP band and the 89 kDa 

band representing proteolytic processing. The blot was reprobed with an actin antibody 

used as a loading control.  

 

Figure 5. Caspases are involved in HDACi-mediated cell death. A, PARP proteolysis 

was determined by Western blot in SH-SY5Y cells treated for 24 h with ???But….alone 

or in combination with the caspase family inhibitor Z-VAD (20 µM). B, MTT assays 

after 24 and 48 h incubation with But (1 and 2 mM) and SAHA (1 and 2 µM), in the 

presence and absence of the same concentration of Z-VAD. 

 

Figure 5 Effect of HDACi and RA on expression of Cyclin D1 and CKIs. A, Levels of 

Cyclin D1, p21
Waf1/Cip1

, acetylated histone H3 (Ac His H3) and actin in cells treated for 

24 h with the compounds indicated. C: control cells. B, Levels of the same proteins in 

cells incubated with the indicated concentrations of But and SAHA alone and in 

combination with 1 µM RA for 48 h. C, Influence of 24 h incubation with the different 

HDACi and RA on p27
Kip1

 and actin levels. D, Time course of CKI induction. Western 

blots of p21
Waf1/Cip1

, p27
Kip1

 and actin in cells treated for 1, 3, 5 and 7 h with 2 mM 

But. E, Levels of the same proteins in cells incubated with increasing concentrations of 

HDACi and RA for 6 h. 



 

Figure 6. Transcriptional stimulation of CKI gene expression by HDACi and RA. A, 

Cyclin D1, p21
Waf1/Cip1

 and p27
Kip1

 mRNA levels in SH-SY5Y control cells (C) and 

cells treated for 48 h with TSA, But and SAHA alone or in combination with RA. The 

18S ribosomal RNA detected by methylene blue staining was used as a loading control. 

B, Transient transfection assays with a reporter plasmid containing the 5´-flanking 

region of the p21
Waf1/Cip1

 gene. Luciferase activity was determined in cells treated for 

48 h with 200 nM TSA, 2 mM But or 1 µM SAHA in the presence (dark bars) and 

absence (light bars) of 1 µM RA. Data are mean ± S.D and are expressed as fold 

induction with respect to the levels obtained in the control cells. In panel C, luciferase 

activity was determined after the same treatments in cells transfected with a plasmid 

containing the p27
Kip1

 promoter.  


